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1 Overview

The aim of this thesis is to advance the state-of-the-art in reinforcement
learning and planning algorithms so they can be applied to high-dimensional
real-world problems. The main focus is to enable the reuse of knowledge
across different problems in order to solve new problems faster or better, or
enable solving larger problems than would be possible without learning from
smaller problems first. The key approach for attaining these goals is to use
multiple state representations in a single domain that together enable transfer
of knowledge as well as learning and planning on different levels of details.
In particular, while most domains have an obvious “ground truth” state
representation such as absolute position and velocity with respect to a fixed
origin or joint position and velocities, it is sometimes beneficial to consider
ambiguous state representations in terms of local features of the agent or
actuator. While such state representations might only allow for short term
predictions of the state evolution and alias multiple states, they are powerful
tools to generalize knowledge across different parts of the environment or
to new problems. In order to avoid the limitations of state aliasing, it is
however important to use them in conjunction with more powerful state
representations, such as the “ground truth” state representation.

This document is organized as follows: In chapter 2, I introduce and
describe the experimental domains I am using to validate the ideas and al-
gorithms. In chapter 3, I describe an algorithm to speed up the creation of
global control laws using dynamic programming by transferring knowledge
from previously solved problems in the same domain. Results are presented
for simulations in the marble maze domain. Several possibilities for future
work are described that built upon the presented results. In chapter 4, we
describe an alternative representation for control laws based on trajectory
libraries. Results are shown on both a simulated marble maze as well as a
physical implementation of the domain. Several topics for future work are
presented. Finally in chapter 5, we propose ways of transferring the libraries
presented in chapter 4.



2 Experimental Domains

2.1 Marble Maze

(a) original (b) simulation

Figure 1: A sample marble maze

Two domains are used to validate and gauge the proposed algorithms:
The marble maze domain and the Little Dog domain. The marble maze
domain (Figure 1) is also known as “Labyrinth” and consists of a plane with
walls and holes. A ball (marble) is placed on a specified starting position
and has to be guided to a specified goal zone by tilting the plane. Falling
into holes has to be avoided and the walls both restrict the marble and can
help it in avoiding the holes. Both a hardware based, computer controlled
setup as well as a software simulator are designed and implemented.

The simulation used so far uses a four-dimensional state representation
(x,y,dx,dy) where x and y specify the 2D position on the plane and dzx, dy
specify the 2D velocity. Actions are also two dimensional (fz, fy) and are
force vectors to be applied to the marble. This is not identical but similar
to tilting the board. The physics are simulated as a sliding block (simplifies
friction and inertia). Collisions are simulated by detecting intersection of
the simulated path with the wall and computing the velocity at the time of
collision. The velocity component perpendicular to the wall is negated and
multiplied with a coefficient of restitution of 0.7. The frictional forces are
recomputed and the remainder of the time slice is simulated to completion.
Some of the experiments use Gaussian noise, scaled by the speed of the
marble and added to the applied force in order to provide for a more realistic
simulator and to gauge the robustness of the policies. A higher-dimensional
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marble maze simulator was used by Bentivegna [3]. In Bentivegna’s simulator
the current tilt of the board is also part of the state representation.

Figure 2: The real world maze

The experiments that were performed on the real world maze used hobby
servos for actuation of the plane tilt. An overhead Firewire 30fps, VGA
resolution camera was used for sensing. The ball was painted bright red and
the corners of the labyrinth were marked with blue markers. After camera
calibration, the positions of the blue markers in the image are used to find
a 2D perspective transform for every frame that turns the distorted image
of the labyrinth into a rectangle. The position of the red colored ball within
this rectangle is used as the position of the ball. Velocity is computed from
the difference between the current and the last ball position. Noise in the
velocity is quite small compared to the observed velocities so we do not
perform filtering. This also avoids adding latency to the velocity. As in
the simulator, actions are represented internally as forces. These forces are
converted into board tilt angles, using the known weight of the ball. Finally,
the angles are sent to the servos as angular position.

2.2 Little Dog

Another domain we will use for gauging the effectiveness of the algorithms
is the Little Dog domain. Little Dog is a quadruped robot developed by
Boston Dynamics for DARPA (Figure 3). It has four legs, each with three
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(a) robot (b) simulator

Figure 3: Little Dog platform

(a) physical board (b) computer model

Figure 4: Sample terrain board

actuated degrees of freedom. Two degrees of freedom are at the hip (forward-
backward, inward-outward) and one at the knee (forward-backward). This
results in a twelve dimensional action space (three for each of the four legs).
The state space is 36 dimensional (24 dimensions for the legs and twelve for
the center of mass). The task to be solved in this domain is to navigate a
small-scale rough terrain model with obstacles (figure 4).

For preliminary experiments, we devised a simple simulator of a planar
quadruped (figure 3). Each leg is simulated as a massless spring-damper
with two degrees of freedom: the angle with respect to the body and its
length. Actions in the simulator are desired angles and lengths of the legs.
If they cannot be obtained because the foot intersects the ground, forces
proportional to the difference between achieved length and desired length
as well as torques proportional to the difference between achieved angle and



desired angle are applied to the body of the robot. The state space of the
system is 14 dimensional: six dimensions for the position and velocity of the
center of mass and eight dimensions for the current angle and length of the
legs. Since the legs are massless, their velocities are not part of the state.
For later experiments, we will use a 3-dimensional model and environment.
It will still use massless spring dampers as legs. Digital models of physical
obstacles, as seen in figure 4, will be used in the simulator.

To validate the simulators and as a more important testbed for the algo-
rithms, we will use the physical Little Dog. The software interface provided
by BDI will be used to communicate with the robot over a wireless or possi-
bly wired Ethernet connection. The robot is localized using a Vicon motion
capture system which uses retro-reflective markers on the robot in conjunc-
tion with a set of six infrared cameras. Additional markers are located on the
terrain boards. The proprietary Vicon software provides millimeter accuracy
location on the robot as well as the terrain boards. Combined with accurate
3d laser scans of the terrain boards, no on-board sensor is needed to sense
the obstacles.



3 Dynamic Programming Policy Transfer

3.1 Introduction

Finding policies, a function mapping states to actions, using dynamic pro-
gramming (DP) is computationally expensive, especially in continuous do-
mains. The alternative of computing a single path, although computationally
much faster, does not suffice in real world domains where sensing is noisy and
perturbations from the intended paths are expected. When solving a new
task in the same domain, planning algorithms typically start from scratch.
We devise an algorithm which decreases the computation needed to find poli-
cies for new tasks based on solutions to previous tasks in the same domain.
This is accomplished by initializing a policy for the new task based on policies
for previous tasks.

As policies are often expressed using state representations that do not
generalize across tasks, policies cannot be copied directly. Instead, we use lo-
cal features as an intermediate representation which generalizes across tasks.
By way of this local state representation, policies can be translated across
tasks and used to seed planning algorithms with a good initial policy.

®

: W4

é\ L
il NP

x < < <<
»—»)(««

C N Y

Figure 5: example navigation domain, left: original terrain, middle: feature-based policy,
right: new terrain

For example, in a navigation domain, a policy is usually defined in terms
of (z,y) coordinates. If the terrain or goal changes, the same (x,y) position
will often require a different action. For instance, on the left terrain in figure
5, the policy of the upper left corner is to go down, whereas in the right
terrain the policy of the same position is to go right. However, one can
represent the policy in terms of local features that take into account the
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position of the agent with respect to the goal and obstacles. A new policy
is initialized by looking up what the local features are for each state and
setting the action of that state to the action that is associated with the local
features. By reverting back to the global (x,y)-type state representation,
the policy can be refined for the new task without being limited by the local
state representation.

3.2 Related Work

The transfer of knowledge across tasks is an important and recurring aspect of
artificial intelligence. Previous work can be classified according to the type of
description of the agent’s environment as well as the variety of environments
the knowledge can be transferred across. For symbolic planners and problem
solvers, the high level relational description of the environment allows for
transfer of plans or macro operators across very different tasks, as long as
it is still within the same domain. Work on this goes back to STRIPS [9],
SOAR [16], Maclearn [12] and analogical reasoning with PRODIGY [33].
More recent relevant work in planning can be found in [36, §].

In controls, work has been done on modeling actions using local state
representations [22, 6]. Other work has been done to optimize low-level
controllers, such as walking gaits, which can then be used in different tasks
[15, 5, 28, 35]. Some work has been done in automatically creating macro-
actions in reinforcement learning [24, 31, 29, 23], however those macro actions
could only transfer knowledge between tasks where only the goal was moved.
If the environment was changed, the learned macro actions would no longer
apply as they are expressed in global coordinates, a problem we are explicitly
addressing using the local state representation. Another method for reusing
macro actions in different states using homomorphisms can be found in [27].

3.3 Case Study: Marble Maze

We used the marble maze domain (figure 1) to gauge the effectiveness of our
knowledge transfer approach. The model used for dynamic programming
is the simulator described in section 2.1. The reward structure used for
reinforcement learning in this domain is very simple. Reaching the goal
results in a large positive reward. Falling into a hole terminates the trial and
results in a large negative reward. Additionally, each action incurs a small
negative reward. The agent tries to maximize the reward received, resulting



in policies that roughly minimize the time to reach the goal while avoiding
holes.

Solving the maze from scratch was done using value iteration. In value
iteration, dynamic programming sweeps across all states and performs the
following update to the value function estimate V' for each state s:

Vitl(s) = max{r(s,a) + Vi(s(a))} (1)

where a ranges over all possible actions, 7(s,a) is the reward received for
executing a in state s and s(a) is the next state reached after a is executed
in state s.

The simulator served as the model for value iteration. The state space was
uniformly discretized and multi-linear interpolation was used for the value
function [7].

The positional resolution of the state space was 3mm and the velocity res-
olution was 12.5mm/s. The mazes were of size 289mm by 184mm and speeds
between -50mm/s to +50mm/s in both dimensions were allowed, resulting in
a state space of about 380,000 states. This resolution is the result of balanc-
ing memory requirements and accuracy of the policy. At coarser resolution,
values in some parts of the state space were inadequately resolved, resulting
in bad policies. Variable resolution methods such as [25] could be used to
limit high-resolution representation to parts of the space where it is strictly
necessary. The maximum force on the marble in each dimension was lim-
ited to 0.0014751N and discretized into -.001475N, 0 and +.001475N in each
dimension, resulting in 9 possible actions for each state. With a simulated
mass of the marble of .0084kg, maximal acceleration was about 176mm /s?
in each dimension. Time was discretized to 1/60th of a second.

3.3.1 Local State Representation

The local state representation, chosen from the many possible local repre-
sentations, depicts the world as seen from the point of view of the marble,
looking in the direction it is rolling. Vectors pointing towards the closest
hole, the closest wall as well as along a path towards the goal (dashed line in
figure 6) are computed. These vectors are normalized to be at most length
1 by applying the logistic function to them. The path towards the goal is
computed using A* on a discretized grid of the configuration space (position
only). A* is very fast but does not take into account velocities and does not
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Figure 6: local state representation

tell us what actions to use. Two examples of this local state representation
can be seen in figure 6. In the circle representing the relative state of the
marble, the forward velocity is towards the right. In the first example, the
marble is rolling towards a hole, so the hole vector is pointing ahead, slightly
to the right of the marble, while the wall is further to the left. The direction
to the goal is to the left and slightly aft. This results in a state vector of (.037;
-.25, -.97; .72, -.38; .66, .34), where .037 is the scalar speed of the marble
(not shown in figure), followed by the relative direction to the goal, relative
direction to the closest wall and relative direction to the closest hole. The
second example has the closest hole behind the marble, the closest wall to
the left and the direction to the goal to the right of the direction of the mar-
ble, resulting in a state vector of (.064; .062, .998; -.087, -.47; -.70, .58). As
all vectors are relative to the forward velocity, the velocity becomes a scalar
speed only. Actions can likewise be relativized by projecting them onto the
same forward velocity vector. For comparison purposes, we show results for
a different local state representation in the discussion section (section 3.5).

3.3.2 Knowledge Transfer

The next step is to transfer knowledge from one maze to the next. For the
intermediate policy, expressed using the local state representation, we used a
nearest neighbor classifier with a kd-tree as the underlying data structure for
efficient querying. After a policy has been found for a maze, we iterate over
the states and add the local state representation with their local actions to
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the classifier. It is possible to use this intermediate policy directly on a new
maze. For any state in the new magze, the local representation is computed
and the intermediate policy is queried for an action. However, in practice
this does not allow the marble to complete the maze because it gets stuck.
Furthermore, performance would be expected to be suboptimal as the local
representation alone does not necessarily determine the optimal action and
previous policies might not have encountered certain states that now appear
on the new task.

Instead, an initial policy based on global coordinates is created using
the classifier by iterating over the states of the new maze and querying the
classifier for the appropriate action based on the local features of that state.
This policy is then refined.

3.3.3 Improving the Initial Policy

Originally, we wanted to use policy evaluation to create a value function
from the initial policy which could then be further optimized using value
iteration. In policy evaluation, the following update is performed for every
state to update the value function estimate:

Vit (s) = r(s,a) + Vy(s(a)) (2)

where a = 7(s), the action chosen in state s by the policy .

Compared to value iteration (equation 1), policy evaluation requires fewer
computations per state because only one action is evaluated as opposed to
every possible action. We hoped that the initial value function could be
computed using little computation and that the subsequent value iterations
would terminate after a few iterations.

However, some regions of the state space had a poor initial policy so that
values were not properly propagated through these regions. In goal directed
tasks such as the marble maze, the propagation of a high value frontier
starting from the goal is essential to finding a good policy as the agent will use
high valued states in its policy. If high values cannot propagate back through
these bad regions, the values behind these bad regions will be incorrect and
value iteration will not be sped up. Similarly, if a policy improvement step
was used to correct the policy in these states, the policy of states behind
these bad regions would be updated based on an incorrect value function.

We overcame these two problems by creating a form of generalized policy
iteration [32]. The objective in creating this dynamic programming algo-
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rithm was to efficiently use the initial policy to create a value function while
selectively improving the policy where the value function estimates are valid.
Our algorithm performs sweeps over the state space to update the value of
states based on a fixed policy. In a small number of randomly selected states,
the policy is updated by checking all actions (a full value iteration update
using equation 1). As this is done in only a small number of states (on the
order of a few percent), the additional computation required is small.

In order to avoid changing the policy for states using invalid values, the
randomly selected states are filtered. Only those states are updated where
the updated action results in a transition to a state which has been updated
with a value coming from the goal. This way we ensure that the change in
policy is warranted and a result of information leading to the goal. This can
easily be implemented by a flag for each state that is propagated back with
the values. Note that as a result, we do not compute the value of states that
cannot reach the goal.

3.4 Simulation Results

In order to gauge the efficiency of the algorithm, a series of simulated ex-
periments was run. First, pools of 30 training mazes and 10 test mazes
where created using a random maze generator (mazes available from [30]).
We trained the intermediate classifier with an increasing number of training
magzes to gauge the improvement achieved as the initial policy becomes more
informed. The base case for the computation required to solve the test mazes
was the computation required when using value iteration.

Computational effort was measured by counting the number of
times that a value backup was computed before a policy was found
that successfully solved the maze. The procedure for measuring the compu-
tational effort was to first perform 200 dynamic programming sweeps and
then performing a trial in the maze based on the resulting policy. Following
that, we alternated between computing 50 more sweeps and trying out the
policy until a total of 1000 dynamic programming sweeps were performed.

When performing a trial, the policy was to pick the best action with
respect to the expected reward based on the current estimate of the value
function. Figure 7 shows the quality of the policy obtained in relation to the
number of value backups. The right most curve represents value iteration
from scratch and the other curves represent starting with an initial policy
based on an increasing number of training mazes. The first data points show
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Figure 7: results for one test maze

a reward of -2100 because policy execution was limited to 2100 time steps.
The trials were aborted if the goal was not yet reached.

Clearly, an initial policy based on the intermediate policy reduces the
computation required to find a good policy. However, final convergence to the
optimal policy is slow because only a small number of states are considered
for policy updates. This results in a slightly lower solution quality in our
experiments.

In order to ensure that the savings are not specific to this test maze, we
computed the relative computation required to find a policy that successfully
performs the maze for ten different test mazes and plotted the mean in figure
8 (solid). Additionally, in order to exclude the peculiarities of the training
mazes as a factor in the results, we reran the experiments with other training
mazes. The results can be seen in figure 8 (dashed). Clearly, the individual
training mazes and their ordering do not influence the results very much.

3.5 Discussion

State Representation: The local features that we are proposing as a so-
lution to this problem are intuitively defined as features of the state space
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relative computation vs. number of training mazes
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Figure 8: relative computation, averaged over 10 test mazes, using two different sequences
of training mazes

that are in the immediate vicinity of the agent. However, often the agent is
removed from the actual environment and might even be controlling multiple
entities or there may be long-range interactions in the problem. A more accu-
rate characterization of the features we are seeking are that they influence the
results of the actions in a consistent manner across multiple tasks and allow,
to a varying degree, predictions about the relative value of actions. These
new features have to include enough information to predict the outcome of
the same action across different environments and should ideally not include
unnecessary information that does not affect the outcome of actions. They
are similar in spirit to predictive state representation [21]. These conditions
will preclude features such as position on a map, as this alone will not predict
the outcome of actions — obstacles and goals are much more important.

In order to gauge the effect of different local state representations, we
created an alternative state representation. In this alternative representa-
tion, the world is represented as seen from the marble, but aligned with the
direction to the goal instead of the direction of the movement. Furthermore,
the view is split up into 4 quadrants: covering the 90 degrees towards the
path to the goal, 90 degrees to the left, to the right and to the rear. For each
quadrant, the distance to the closest hole and closest wall are computed.
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relative computation vs. number of training mazes
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Figure 9: relative computation required for one test maze for two different local state
representation

Holes that are behind walls are not considered. The velocity of the marble is
projected onto the path towards the goal. The resulting state representation
is less precise with respect to direction to the walls or holes than the original
local representation but takes into account up to four holes and walls, one
for each quadrant. As can be seen in figure 9, the results are similar for both
state representations. The new state representation performs slightly better
with fewer training mazes but loses its advantage with more training mazes.

Computational Saving: There are several factors that influence the
computational saving one achieves by using an informed initial policy. The
computational reduction results from the fact that our generalized policy
evaluation only computes the value of a single action at each state, whereas
value iteration tries out all actions for every state. As a result, if the action
space is discretized at high resolution, resulting in many possible actions at
each state, the computational savings will be high. If on the other hand
there are only two possible actions at each state, the computational saving
will be much less. The computation can be reduced at most by a factor
equal to the number of actions. However, since in a small number of states
in the generalized policy evaluation we also try all possible actions, the actual
savings at every sweep will be less. In order to show the effects of changing
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relative computation vs. number of training mazes
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Figure 10: relative computation required for one test maze and different number of actions

the number of actions, we reran the experiments for one maze with actions
discretized into 25 different actions instead of 9. As seen in figure 10, the
relative computational saving becomes significantly larger, as was expected.

We also ran experiments to determine the effect of performing policy
updates on a varying number of states. If many states are updated at every
sweep, fewer sweeps might be necessary, however each sweep will be more
expensive. Conversely, updating fewer states can result in more sweeps,
as it takes longer to propagate values across bad regions which are now
less likely to be updated. The results are presented in figure 11. When
reducing the percentage of states updated to 0.1%, the computational saving
is reduced as it now takes many more sweeps to find a policy that solves
the maze, unless the initial policy is very good (based on several mazes).
The savings become more pronounced as more states are updated fully and
are the greatest when 2.0% of the states are updated, performing better
than our test condition of 0.5%. However, increasing the number of states
updated further results in reduced savings as now the computational effort at
every sweep becomes higher. Comparing the extreme cases shows that when
updating few states, the initial policy has to be very good (many training
mazes added), as correcting mistakes in the initial policy takes longer. On
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relative computation vs. number of training mazes
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Figure 11: relative computation required for one test maze and different percentages of
full updates

the other hand, if many states are updated, the quality of the initial policy
is less important — many states are updated using the full update anyways.

Intermediate Policy Representation: Another issue that arose dur-
ing testing of the knowledge transfer was the representation of the interme-
diate policy representation. We chose a nearest neighbor approach, as this
allows broad generalization early on, without limiting the resolution of the
intermediate policy once many training mazes were added to the interme-
diate policy. However, after adding many mazes, the data structure grew
very large (around 350,000 data points per maze, around 5 million for 15
mazes). While the kd-trees performed well, the memory requirements be-
came a problem. Looking at the performance graph, adding more than 5
mazes does not seem to make sense with the current state representation.
However, if a richer state representation was chosen, it might be desirable to
add more mazes and then pruning of the kd-tree becomes essential.

The nearest neighbor algorithm itself is modifiable through the use of
different distance functions. By running the distances to the closest hole
and wall through a logistic function, we have changed the relative weight
of different distances already. However, instead one could imagine rescaling
distance linearly to range from 0 and 1, where 1 is the longest distance to

18



Figure 12: aliasing problem: same local features, same policy but different values

either hole or wall observed.

Dynamic Programming on Local State Space: As we are using the
local state space to express an intermediate policy, it might be interesting to
perform dynamic programming in this state space directly. Due to the possi-
ble aliasing of different states to the same local state, the problem becomes a
partially observable Markov decision process (POMDP). This is aggravated
if one keeps the value function across multiple tasks, as now even more states
are potentially aliased to the same local state. A policy is less sensitive to
this aliasing, as the actions might still be similar while the values could be
vastly different. An example can be seen in figure 12. Both positions with
the agent have the same features and the same policy, but the value would
be different under most common reward functions which favor short paths to
the goal (either with discounting or small constant negative rewards at each
time step).

3.6 Conclusion

We presented a method for transferring knowledge across multiple tasks in
the same domain. Using knowledge of previous solutions, the agent learns
to solve new tasks with less computation than would be required without
prior knowledge. Key to this knowledge transfer was the creation of a local
state representation that allows for the representation of knowledge that is
independent of the individual task.
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3.7

Future Work

Perform local search for best action (instead of discrete actions)

Verify the claim that doing dynamic programming using this interme-
diate state representation directly has limited use.

Apply DP policy to stochastic simulator and physical maze
Compare 4d state space vs. 6d state space on physical maze

Use a less brittle metric to compare policies (not just computational
effort before successfully solving maze)

Use reward as metric for basis of comparison

20



4 Policies based on Trajectory Libraries

4.1 Introduction

Finding a policy, a control law mapping states to actions, is essential in solv-
ing many problems with inaccurate or stochastic models. By knowing how
to act for all or many states, an agent can cope with unexpected state tran-
sitions. Unfortunately, methods for finding policies based on dynamic pro-
gramming require the computation of a value function over the state space.
This is computationally very expensive and requires large amounts of fast
memory. Furthermore, finding a suitable representation for the value func-
tion in continuous or very large discrete domains is difficult. Discontinuities
in the value function or its derivative are hard to represent and can result
in unsatisfactory performance of dynamic programming methods. Finally,
storing and computing this value function is impractical for problems with
more than a few dimensions.

When applied to robotics problems, dynamic programming methods also
become inconvenient as they cannot provide a “rough” initial policy quickly.
In goal directed problems, a usable policy can only be obtained when the
value function has almost converged. The reward for reaching the goal has
to propagate back to the starting state before the policy exhibits goal di-
rected behavior from this state. This may require many sweeps. If only an
approximate model of the environment is known, it would be desirable to
compute a rough initial policy and then spend more computation after the
model has been updated based on experience gathered while following the
initial policy.

In some sense, using dynamic programming is both too optimistic and
too pessimistic at the same time: it is too optimistic because it assumes the
model is accurate and spends a lot of computation on it. At the same time, it
is too pessimistic, as it assumes that one needs to know the correct behavior
from any possible state, even if it is highly unlikely that the agent enters
certain parts of the state space.

To avoid the computational cost of global and provably stable control
law design methods such as dynamic programming, often a single desired
trajectory is used, with either a fixed or time varying linear control law. The
desired trajectory can be generated manually, generated by a path planner
[19], or generated by trajectory optimization [34]. For systems with nonlinear
dynamics, this approach may fail if the actual state diverges sufficiently from
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Figure 13: A library of trajectories (thick arrows) is used to create global policy (thin
arrows) by nearest-neighbor look up

the planned trajectory. Another approach to making trajectory planners
more robust is to use them in real time at fixed time intervals to compute
a new plan from the current state. For complex problems, these plans may
have to be truncated (N step lookahead) to obey real time constraints. It
may be difficult to take into account longer term outcomes in this case. In
general, single trajectory planning methods produce plans that are at best
locally optimal.

To summarize, we would like an approach to finding a control law that,
on the one hand, is more anytime[4] than dynamic programming - we would
like to find rough policies quickly and expend more computation time only
as needed. On the other hand, the approach should be more robust than
single trajectory plans.

In order to address these issues, we propose a representation for policies
and a method for creating them. This representation is based on libraries of
trajectories. Figure 13 shows a simple grid world example with eight possible
actions (N, E, S, W, NE, SE, SW, NW). The cross marks the goal and the
dark 3x3 region is an obstacle. The thick arrows show the two trajectories
which make up the library. These paths can be created very quickly using
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forward planners such as A* or Rapidly exploring Random Trees (RRT)[19].
These trajectories may be non-optimal or locally optimal depending on the
planner used, in contrast to the global optimality of dynamic programming.

Once we have a number of trajectories and we want to use the agent
in the environment, we turn the trajectories into a state-space based policy
by performing a nearest-neighbor search in the state-space for the closest
trajectory fragment and executing the associated action. In the discrete
example environment of Figure 13 we have designated the resulting policy
for all states using thin arrows. For large parts of the environment, marked
by the thick borders, the resulting policy leads to the goal.

4.2 Related Work

Using libraries of trajectories for generating new action sequences has been
discussed in different contexts before. Especially in the context of generating
animations, motion capture libraries are used to synthesize new animations
that do not exist in that form in the library[17, 20]. However, since these
systems are mainly concerned with generating animations, they are not con-
cerned with the control of a real world robot and only string together different
sequences of configurations, ignoring disturbances or inaccuracies.

Another related technique in path planning is the creation of Probabilistic
Roadmaps (PRMs)[14]. The method presented here and PRMs have some
subtle but important differences. Most importantly, PRMs are a path plan-
ning algorithm. Our algorithm, on the other hand, is concerned with turning
a library of paths into a control law. Internally, PRMs precompute bidirec-
tional plans that can go from and to a large number of randomly selected
points. However, the plans in our library all go to the same goal. As such,
the nature of the PRM’s “roadmap” is very different than the kind of library
we require. Of course, PRMs can be used as a path planning algorithm to
supply the paths in our library. Due to the optimization for multiple queries,
PRMs might be well suited for this and are complementary to our algorithm.

Libraries of low level controllers have been used to simplify planning for
helicopters in Frazzoli’s Ph. D. thesis [10]. The library in this case is not
the solution to the goal achievement task, but rather a library of controllers
that simplify the path planning problem. Unlike our work presented here,
the controllers themselves do not use libraries.

Prior versions of a trajectory library approach, using a modified version of
Differential Dynamic Programming (DDP)[13] to produce globally optimal
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trajectories can be found in [1, 2]. This approach reduced the cost of dynamic
programming, but was still quite expensive and had relatively dense coverage.
The approach of this paper uses more robust and cheaper trajectory planners
and strives for sparser coverage. Good (but not globally optimal) policies can
be produced quickly.

4.3 Case Study: Marble Maze

The domain used for gauging the effectiveness of the new policy represen-
tation and generation is the marble maze domain (Figure 1). The model
used for creating trajectories is the simulator described in section 2.1. The
hardware described in the same section was used for the experiments on the
actual maze.

4.4 'Trajectory Libraries

The key idea for creating a global control policy is to use a library of trajecto-
ries, which can be created quickly and that together can be used as a robust
policy. The trajectories that make up the library are created by established
planners such as A* or RRT. Since our algorithm only requires the finished
trajectories, the planner used for creating the trajectories is interchangeable.
For the experiment presented here, we used an inflated-heuristic[26] A* plan-
ner. By overestimating the heuristic cost to reach the goal, we empirically
found planning to proceed much faster because it favors expanding nodes
that are closer to the goal, even if they were reached sub-optimally. This
might not be the case generally[26]. We used a constant cost per time step
in order to find the quickest path to goal. In order to avoid risky behavior
and compensate for inaccuracies and stochasticity, we added a cost inversely
proportional to the squared distance to the closest hole on each step. As
basis for a heuristic function, we used distance to the goal. This distance
is computed by a configuration space (position only) A* planner working
on a discretized grid with 2mm resolution. The final heuristic is computed
by dividing the distance to the goal by an estimate of the distance that the
marble can travel towards the goal in one time step. As a result, we get a
heuristic estimate of the number of time steps required to reach the goal.
The basic A* algorithm is adjusted to continuous domains as described
in [18]. The key idea is to prune search paths by discretizing the state space
and truncating paths that fall in the same discrete “bin” as one of the states
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Figure 14: An example of pruning

of a previously expanded path (see figure 14 for an illustration in a simple
car domain). This limits the density of search nodes but does not cause a
discretization of the actual trajectories. Actions were limited to physically
obtainable forces of up to +0.007N in both dimension and discretized to a
resolution of 0.0035N. This resulted in 25 discrete action choices. For the
purpose of pruning the search nodes, the state space was discretized to 3mm
spatial resolution and 12.5mm/s in velocity resolution.

The A* algorithm was slightly altered to speed it up. During search, each
node in the queue has an associated action multiplier. When expanding the
node, each action is executed as many times as dictated by the action multi-
plier. The new search nodes have an action multiplier that is incremented by
one. As a result, the search covers more space at each expansion at the cost
of not finding more optimal plans that require more frequent action changes.
In order to prevent missed solutions, this multiplier is halved every time none
of the successor nodes found a path to the goal, and the node is re-expanded
using the new multiplier. This resulted in a speed up in finding trajectories
(over 10x faster). The quality of the policies did not change significantly
when this modification was applied.

As the policy is synthesized from a set of trajectories, the algorithms
for planning the trajectories have a profound impact on the policy quality.
If the planned trajectories are poor, the performance of the policy will be
poor as well. While in theory A* can give optimal trajectories, using it with
an admissible heuristic is often too slow. Furthermore, some performance
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degradation derives from the discretization of the action choices. RRT often
gives “good” trajectories, but it is unknown what kind of quality guarantees
can be made for the trajectories created by it. However, the trajectories
created by either planning method can be locally optimized by trajectory
optimizers such as DDP[13] or DIRCOL[34].

In order to use the trajectory library as a policy, we store a mapping
from each state on any trajectory to the planned action of that state. During
execution, we perform a nearest-neighbor look up into this mapping using
the current state to determine the action to perform. In order to speed up
nearest-neighbor look ups, the mapping is stored using a kd-tree[11].

Part of the robustness of the policies derives from the coverage of trajec-
tories in the library. In the experiments on the marble maze, we first created
an initial trajectory from the starting position of the marble. We use three
methods for adding additional trajectories to the library. First, a number of
trajectories are added from random states in the vicinity of the first path.
This way, the robot starts out with a more robust policy. Furthermore, dur-
ing execution it is possible that the marble ceases making progress through
the maze, for example if it is pushed into a corner. In this case, an addi-
tional path is added from that position. Finally, to improve robustness with
experience, at the end of every failed trial a new trajectory is added from
the last state before failure. If no plan can be found from that state (for
example because failure was inevitable), we backtrack and start plans from
increasingly earlier states until a plan can be found. Computation is thus
focused on the parts of the state space that were visited but had poor cover-
age or poor performance. In later experiments, the model is updated during
execution of the policy. In this case, the new trajectories use the updated
model. The optimal strategy of when to add trajectories, how many to add,
and from which starting points is a topic of future research.

Finally, we developed a method for improving an existing library based
on the execution of the policy. For this purpose, we added an additional
discount parameter to each trajectory segment. If at the end of a trial the
agent has failed to achieve its objective, the segments that were selected
in the policy leading up to the failure are discounted. This increases the
distance of these segments in the nearest-neighbor look up for the policy
and as a result these segments have a smaller influence on the policy. This
is similar to the mechanism used in learning from practice in Bentivegna’s
marble maze work[3]. We also used this mechanism to discount trajectory
segments that led up to a situation where the marble is not making progress
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through the maze.

4.5 Experiments

%%

(a) Maze A (b) Maze B

Figure 15: The two mazes used for testing

We performed experiments on two different marble maze layouts (Figure
15). The first layout (maze A) is a simple layout, originally designed for
beginners. The second layout (maze B) is a harder maze for more skilled
players. These layouts were digitized by hand and used with the simulator.

10 T : 10

0 20 40 60 80 100 0 20 40 60 80 100 120 140 160

(a) Maze A (b) Maze B

Figure 16: Learning curves for simulated trials. The x axis is the number of starts and
the y axis is the number of successes in 10 starts (optimal performance is a flat curve at
10). We restarted with a new (empty) library three times.

The first set of experiments was run in simulation. For maze A, we ran

100 consecutive runs to find the performance and judge the learning rate of
the algorithm. During these runs, new trajectories were added as described
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(c) after 30 runs (d) after 100 runs

Figure 17: Evolution of library of trajectories. (The trajectories (thick lines) are shown
together with their actions (thin arrows))

above. After 100 runs, we restarted with an empty library. The results
of three sequences of 100 runs each are plotted in Figure 16(a). Almost
immediately, the policy successfully controls the marble through the maze
about 9-10 times out of 10. The evolution of the trajectory library for one of
the sequences of 100 runs is shown in Figure 17. Initially, many trajectories
are added. Once the marble is guided through the maze successfully most
of the times, only few more trajectories are added. Similarly, we performed
three sequences of 150 runs each on maze B. The results are plotted in Figure
16(b). Since maze B is more difficult, performance is initially weak and it
takes a few failed runs to learn a good policy. After a sufficient number
of trajectories was added, the policy controls the marble through the maze
about 8 out of 10 times.

We also used our approach to drive a real world marble maze robot.
This problem is much harder than the simulation, as there might be quite
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Figure 18: Real world results for maze A. The x axis is the number of starts and the y
axis is the number of successes in 10 starts.

large modeling errors and significant latencies. We used the simulator as
model for the A* planner. In the first experiment, we did not attempt to
correct for modeling errors and only the simulator was used for creating
the trajectories. The performance of the policy steadily increased until it
successfully navigated the marble to the goal in half the runs (Figure 18).
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(a) simulation with simulated noise (b) real world

Figure 19: Actual trajectories traveled. The circles trace the position of the marble. The
arrows, connected to the marble positions by a small line, are the actions of the closest
trajectory segment that was used as the action in the connected state

In Figure 19 we show the trajectories traveled in simulation and on the
real world maze. The position of the marble is plotted with a small round
circle at every frame. The arrows, connected to the circle via a black line,

29



indicate the action that was taken at that state and are located in the posi-
tion for which they were originally planned for. Neither the velocity of the
marble nor the velocity for which the action was originally planned for is
plotted. Due to artificial noise in the simulator, the marble does not track
the original trajectories perfectly, however the distance between the marble
and the closest action is usually quite small. The trajectory library that was
used to control the marble contained 5 trajectories. On the real world maze,
the marble deviates quite a bit more from the intended path and a trajectory
library with 31 trajectories was necessary to complete the maze.

Close inspection of the actual trajectories of the marble on the board
revealed large discrepancies between the real world and the simulator. As a
result, the planned trajectories are inaccurate and the resulting policies do
not perform very well (only half of the runs finish successfully). In order to
improve the planned trajectories, we tried a simple model update technique
to improve our model. The model was updated by storing observed state-
action-state change triplets. During planning, a nearest-neighbor look up in
state-action space is performed and if a nearby tuplet is found, the stored
state change is applied instead of computing the state evolution based on the
simulator. While initial results using this method are much better, overall
the performance does not improve much over not using the model (Figure
18). Clearly, a better model update mechanism needs to be developed. An-
other factor that impacted the performance of the robot was the continued
slipping of the tilting mechanism such that over time, the same position of
the control knob corresponded to different tilts of the board. While the robot
was calibrated at the beginning of every trial, sometimes significant slippage
occurred during a trial, resulting in inaccurate control and even improperly
learned models.

4.6 Discussion

We can create an initial policy with as little as one trajectory. Hence, creating
this type of policy can be efficient in its use of computation resources. By
scheduling the creation of new trajectories based on the performance of the
robot or in response to updates of the model, these policies are easy to update.
In particular, since the library can be continually improved by adding more
trajectories, the libraries can be used in an anytime algorithm[4]: while there
is spare time, one adds new trajectories by invoking a trajectory planner
from new start states. Any time a policy is needed, the library of already
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completely planned trajectories can be used.

Furthermore, trajectory planners use a time index and do not require
value functions. They can easily deal with discontinuities in the model or
cost metric. Additionally, no discretization is imposed on the trajectories -
the state space is only discretized to prune search nodes and for this purpose
a high resolution can be used.

Currently, the action selection for the policy is based on a nearest-neighbor
look up in the library of trajectories. A poor choice of distance metric in this
look up can result in a suboptimal selection of actions. In our experiments we
used a weighted Euclidean distance which tries to normalize the influence of
distance (measured in meters) and velocity (measured in meters per second).
As typical velocities are around 0.1m/s and a reasonable neighborhood for
positions is about 0.01m, we multiply position by 100 and velocities by 10,
resulting in distances around 1 for reasonably close data points. The model
learning technique that we used also relies on a nearest-neighbor look up. The
same weights were used for position and velocity. Since the model strongly
depends on the action, which are quite small (on the order of 0.007N), the
weight in the distance metric for the actions is 1210°. The cutoff for switching
over to the simulated model was a distance of 1.

Currently, no smoothness constraints are imposed on the actions of the
generated policies. It is perfectly possible to command a full tilt of the board
in one direction and then a full tilt in the opposite direction in the next time
step (1/30th second later). Imposing constraints on the trajectories would
not solve the problem as the policy uses a nearest-neighbor look up to deter-
mine the closest trajectory and might switch between different trajectories.
However, by including the current tilt angles as part of the state description
and have the actions be changes in tilt angle, smoother trajectories could be
enforced at the expense of adding more dimensions to the state space.

4.7 Conclusion

We have investigated a technique for creating policies based on fast trajectory
planners. Experiments performed in a simulator with added noise show that
this technique can successfully solve complex control problems such as the
marble maze. However, taking into account the stochasticity is difficult using
A* planners which result in some performance limitations on large mazes.
We also applied this technique on a real world version of the marble maze.
In this case, the performance was limited by the accuracy of the model. A
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simple model updating technique was used to improve the model with limited
success.

4.8

Future Work

Use 6 dimensional maze model to incorporate current tilt
Use smoother actions
Apply to Little Dog

Incorporate learning from demonstration by using the observed trajec-
tories.

Use optimizers such as Differential Dynamic Programming (DDP)[13]
or DIRCOL[34] to locally optimize the trajectories.

Use DDP or DIRCOL to update trajectories after a model update.
Combine trajectories, for example weighted average k-NN.

Add local control law to trajectories|[1].
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5 Transfer of Trajectory Libraries

5.1 Introduction

We are considering three alternatives for transferring libraries of trajectories.
All approaches hinge on the use of local features to transfer the policy to new
problems or new parts of the state space. In principle, all approaches create
an intermediate policy from a trajectory library by iterating over every state
on all trajectories, computing the local features of that state and creating a
policy that maps the given local features to their action. At run time, an
action is generated by computing the local features of the current state and
doing a nearest neighbor look up to find the most appropriate action.

The three approaches differ in the details that are expected to be part
of the feature space and in the kind of post-processing that is required after
changing to a new problem. The distinguishing characteristic of the feature
space is information about the direction to the goal state of the problem.

In order to clarify the different ways to transfer libraries, I have created
illustrations using a simple grid-based environment, where the state of the
robot is described by its position (x,y coordinates) and orientation (one of
north, east, south or west).

5.2 Explicit Goal Feature
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Figure 20: The left hand side shows the environment in which the library was created.
The blue, dashed line is the goal feature which for each cell points towards the goal. The
library created using a feature space including this goal feature transfers unambiguously
to a new environment

In this approach, the local features are assumed to contain information
about the goal. For example in the marble maze, the local feature state could
contain a vector pointing along a configuration space path to the goal (see
figure 6). Similarly, in the illustration (figure 20), we have a feature that
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for each cell points to the next cell closer to the goal (this feature does not
differentiate between different orientations). Once we have a library of trajec-
tories, we create a local feature based policy by translating the state-action
mapping to a feature based state-action mapping. In the simple example,
the features that were chosen were the locations of the walls relative to the
direction of the robot as well as the direction, relative to the robot, that
points to the next cell closer to the goal.

During execution we can perform a nearest neighbor look up both in the
library of trajectories based on the absolute state as well as the local feature
based policy. Depending on the relative closeness of the nearest neighbor
point in either policy, the action from one or the other can be chosen. This
way, we can generalize the policy to new parts of the state space. Similarly, if
we execute in a new environment, we can start controlling the system without
creating trajectories - we just use the local feature based policy. This can
be seen on the right side of the illustration: For the two sample states, we
immediately know what to do based on the local feature based library. As
the local feature space contains information about the goal, we expect this
to result in goal directed behavior. This is the easiest way to transfer policies
as no post-processing is required.

5.3 Goal-less Features + Search
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Figure 21: If the goal feature is missing from the feature space used for the library, the
library is ambiguous in some states of the new environment. A search can be used to find
which action choice is appropriate for reaching the goal

Sometimes, it can be advantageous to not include information about the
goal in the local feature space. In this case, we still proceed in the same
way and generate a local feature based policy as described above. However,
states that are similar in the local feature space are now more likely to map
to different actions. For example in the illustration in figure 21, if the local
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feature state shows a wall behind the robot, we can either turn left or right.
When using this local feature based library in a new environment (right side
of figure 21, we now have ambiguity in which action to chose.

This can be viewed as a choice point: if during execution we reach a state
where a k-nearest neighbor look up results in different actions, a decision has
to be made which action to follow. The decision, which action to take, should
ideally depend on where the goal is located and a search is required. In order
to avoid a search during on line execution, we propose a preprocessing step
when using this kind of intermediate policy.

The preprocessing will use the local feature based policy to create tra-
jectories in the absolute state space quickly. Before executing in a new en-
vironment, we have to create trajectories to initialize the library. Instead of
planning from scratch from a given start state, we simulate following the fea-
ture based policy until we reach a state with multiple possible actions. Now
one of the possible actions is picked and the simulation proceeds. Similar
to regular search, we later also have to simulate based on the other action
and pick the better of the actions. The resulting trajectory is added to the
library for this new environment. In the end, this top level search will solve
the navigation problem of reaching the goal.

5.4 Extended Action Generation + Search
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Figure 22: If we created extended actions from coherent parts of the library, we can
simplify the search process as now we only need to pick from extended actions and can
follow the choice over multiple states.

The previous section described a way to use a planner to select which
action to take when the feature based policy contains similar states that map
to different actions. Depending on the complexity of the domain, executing
an action after the choice point might frequently result in a new state that is
ambiguous as well (this would be the case in figure 21, since after the turn,
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we would be in a state with only a wall on the left which again is ambiguous).
In the end, after every action, multiple actions are again available and search
could be as slow as a primitive search over all possible actions. In such cases,
it makes sense to cluster the state-action mappings in the intermediate policy
into distinct “primitives” or “macro actions”. This is illustrated in figure 22,
where we have shown two sample extended actions, one for following the wall
on the left, the other for following the wall on the right.

Now, once a “primitive” is chosen during the post processing phase, it’s
policy is followed for a fixed number of time steps or until the region over
which the primitive is valid is left. At this point, another primitive can be
chosen. A high level search is used to find the best sequence of primitives.
This simplifies the high level process as we have to make fewer choices -
once an extended action is chosen, we can follow it for multiple actions and
despite the fact that the second state in the sample new environment is also
ambiguous, we don’t have to make a second choice.

In order to find the primitives, we plan on clustering the state-action
mappings using unsupervised learning techniques. The clustering will be
performed in a combined state-action space. This way, we ensure that each
cluster contains state-action mappings with similar actions and states. Each
cluster is then converted into a primitive action whose policy is defined as
above, with the state-action mappings belonging to the cluster as the data
for the feature based policy.

Since the high level planner chooses between a set of discrete primitive
actions, the trajectories that it creates will map states to primitive actions.
During execution, a nearest neighbor look up is first performed to find which
primitive action to pick based on the trajectory library. Once the primitive
is decided on, a second nearest neighbor, now in feature space, is performed
using the state-action mappings that define the primitive. Since this second
look-up is not necessarily performed from a state on the path, the low-level
action that is executed might be different from what the planner executed.
However, since both low-level actions came from the same primitive, similar
behavior is expected.

5.5 Future Work

e Evaluate knowledge transfer using Explicit Goal Feature

e Implement and evaluate knowledge transfer using Goal-less Features
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and Search

e Implement and evaluate knowledge transfer using Extended Action
Generation 4 Search

e Do the above for the marble maze and Little Dog
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