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Missing Feature Compensation

“Even then, if she took one step forward”
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Clean Speech Speech + White Noise 15 dB

• Noise corrupts some time-frequency locations more than others
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Consider noisy regions “missing”
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Speech + White Noise 15 dB “Corrupt” regions removed

• All regions of local SNR less than 0 dB considered missing.

• Missing Feature Methods perform compensation using
remaining reliable regions.

• No stationarity assumptions are made.
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Missing Feature Compensation

• For missing feature methods to be successful, we
need a spectrographic mask, a binary mask that
accurately labels the reliable and corrupt features.

Mask
Estimation

Missing
Feature
Comp

Speech
Feature

Extraction
Recognizer Text+

Noise



Robust Speech Group5Carnegie Mellon UniversityCarnegie Mellon University

How do we estimate masks?

• Conventional mask estimation methods estimate local SNR
– Methods assume noise is pseudo-stationary

• Is this really a noise estimation problem?
– No!
– Mask estimation is a binary decision process

• Solution: Build a 2-class classifier
– Use all available information to make a decision
– No stationarity assumptions about noise
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Voiced Speech Feature Extraction

• Most of the energy of voiced speech is centered
around the harmonics of the fundamental frequency

• Noise may or may not contain energy at these
frequencies.

• Can we measure how much energy is at the
harmonics (speech) and how much is not (noise)?
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Yes! Use Comb Filters

• Capture the energy at and between the harmonics
– The ratio of the energies of these two filters give us a

measure of noise content, the Comb Ratio.

p

p

comb
gz

z
zH −

−

−
=

1
)( p

p

combshift
gz
z

zH −

−

+
−=

1
)(

200 400 600 800 1000 12000

0.5

1

Frequency (Hz)

|H
|



Robust Speech Group8Carnegie Mellon UniversityCarnegie Mellon University

Comb Ratio as a measure of SNR

• Average Comb Ratio vs. global SNR for the voiced
frames of a single utterance
– Clear relationship between SNR and the Comb Ratio

SNR vs. Comb Ratio
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What about the pitch?

• Comb filtering assumes we know the fundamental
frequency of the speech signal. (We don’t.)

• There are several pitch tracking algorithms that we
can use to estimate the pitch.
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More Voiced Speech Features

• Voiced speech has a distinctive spectral contour
– Noise will change this contour.

Features to capture spectral contour

• Sub-band Energy to Frame Energy
Ratio

• Flatness: variance of the energy in
a local spectrographic region
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Voiced Speech Feature Summary

• Voiced Feature Set:
– Comb Ratio
– Sub-band Energy to Frame Energy Ratio

– Flatness

– Ratio of secondary and primary autocorrelation peaks

– Ratio of sub-band energy to estimate of noise floor energy

• Using ratios rather than absolute values for features
enables the classifier to be invariant to overall signal
level
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What about the unvoiced speech?

• For unvoiced speech we only use the features that
characterize spectral shape:
– Sub-band Energy to Frame Energy Ratio

– Flatness

– Sub-band Energy to Sub-band Noise Floor Ratio
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Classification Strategy

• Multivariate Gaussian classifier

• Separate classifier for voiced and unvoiced regions

• Separate classifier per sub-band

• Trained with oracle masks that label training data as
reliable or unreliable
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How well do we do?

• Speech corrupted by noise
– 3 noise environments: white noise, factory noise, music

• Assumption: Known operating environment

– Training Set:
• 2880 utterances from Resource Management corrupted with noise at

various SNRs.

– Test Set:
• 1600 utterances from Resource Management corrupted with noise at a

single SNR

– Oracle masks for Evaluation:
• If local SNR is < -5dB, consider mask location to be corrupt
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Mask Estimation Performance

• Performance compared to “oracle masks” via confusion matrix.
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Speech Recognition with Estimated Masks

• Speech + White Noise

Recognition Accuracy vs. SNR
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Speech Recognition with Estimated Masks

• Speech + Factory Noise

Recognition Accuracy vs. SNR
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Speech Recognition with Estimated Masks

• Speech + Music

Recognition Accuracy vs. SNR
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Conclusions

• Missing Feature Methods have great potential for compensation
for stationary and non-stationary noises, if the spectrographic
masks are known.

• We have developed a classification scheme for mask estimation
that is free of the stationarity assumptions made by previous
methods.

• We obtained substantial improvements in recognition accuracy
with classifier-based masks over conventional mask estimation
methods in all three noise conditions.


