Classifier-based Mask Estimation for Missing Feature Methods of Robust Speech Recognition

Michael L. Seltzer, Bhiksha Raj & Richard M. Stern

Department of Electrical and Computer Engineering and School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Missing Feature Compensation

Noise corrupts some time-frequency locations more than others

Consider noisy regions "missing"

- All regions of local SNR less than 0 dB considered missing.
- Missing Feature Methods perform compensation using remaining reliable regions.
- No stationarity assumptions are made.

Missing Feature Compensation

 For missing feature methods to be successful, we need a spectrographic mask, a binary mask that accurately labels the reliable and corrupt features.

How do we estimate masks?

- Conventional mask estimation methods estimate local SNR
 - Methods assume noise is pseudo-stationary
- Is this really a noise estimation problem?
 - No!
 - Mask estimation is a binary decision process
- Solution: Build a 2-class classifier
 - Use all available information to make a decision
 - No stationarity assumptions about noise

Voiced Speech Feature Extraction

- Most of the energy of voiced speech is centered around the harmonics of the fundamental frequency
- Noise may or may not contain energy at these frequencies.
- Can we measure how much energy is at the harmonics (speech) and how much is not (noise)?

Yes! Use Comb Filters

- Capture the energy at and between the harmonics
 - The ratio of the energies of these two filters give us a measure of noise content, the *Comb Ratio*.

$$H_{comb}(z) = \frac{z^{-p}}{1 - gz^{-p}}$$
 $H_{combshift}(z) = \frac{-z^{-p}}{1 + gz^{-p}}$

Comb Ratio as a measure of SNR

- Average Comb Ratio vs. global SNR for the voiced frames of a single utterance
 - Clear relationship between SNR and the Comb Ratio

SNR vs. Comb Ratio

What about the pitch?

- Comb filtering assumes we know the fundamental frequency of the speech signal. (We don't.)
- There are several pitch tracking algorithms that we can use to estimate the pitch.

More Voiced Speech Features

- Voiced speech has a distinctive spectral contour
 - Noise will change this contour.

Features to capture spectral contour

- Sub-band Energy to Frame Energy Ratio
- Flatness: variance of the energy in a local spectrographic region

Voiced Speech Feature Summary

- Voiced Feature Set:
 - Comb Ratio
 - Sub-band Energy to Frame Energy Ratio
 - Flatness
 - Ratio of secondary and primary autocorrelation peaks
 - Ratio of sub-band energy to estimate of noise floor energy
- Using ratios rather than absolute values for features enables the classifier to be invariant to overall signal level

What about the unvoiced speech?

- For unvoiced speech we only use the features that characterize spectral shape:
 - Sub-band Energy to Frame Energy Ratio
 - Flatness
 - Sub-band Energy to Sub-band Noise Floor Ratio

Classification Strategy

- Multivariate Gaussian classifier
- Separate classifier for voiced and unvoiced regions
- Separate classifier per sub-band
- Trained with oracle masks that label training data as reliable or unreliable

How well do we do?

- Speech corrupted by noise
 - 3 noise environments: white noise, factory noise, music
 - Assumption: Known operating environment
 - Training Set:
 - 2880 utterances from Resource Management corrupted with noise at various SNRs.
 - Test Set:
 - 1600 utterances from Resource Management corrupted with noise at a single SNR
 - Oracle masks for Evaluation:
 - If local SNR is < -5dB, consider mask location to be corrupt

Mask Estimation Performance

Performance compared to "oracle masks" via confusion matrix.

AWGN

Voiced

	"1"	"0"
1	87%	13%
0	16%	84%

Factory

	"1"	"0"
1	79 %	21%
0	21%	79 %

Music

	"1"	"0"
1	72 %	28%
0	33%	67%

Unvoiced

	"1"	"0"
1	76 %	24%
0	13%	87%

		"1"	"0"
	1	71%	29%
Ī	0	22%	78%

	"1"	"0"
1	64%	36%
0	28%	72 %

Speech Recognition with Estimated Masks

Speech + White Noise

Recognition Accuracy vs. SNR

Speech Recognition with Estimated Masks

Speech + Factory Noise

Recognition Accuracy vs. SNR

Speech Recognition with Estimated Masks

Speech + Music

Recognition Accuracy vs. SNR

Conclusions

- Missing Feature Methods have great potential for compensation for stationary and non-stationary noises, if the spectrographic masks are known.
- We have developed a classification scheme for mask estimation that is free of the stationarity assumptions made by previous methods.
- We obtained substantial improvements in recognition accuracy with classifier-based masks over conventional mask estimation methods in all three noise conditions.