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Introduction

• Current speech recognition technology is capable of good
performance in quiet conditions with close-talking microphones.

• In many applications, the environment is noisy and the use of a
close-talking microphone is impossible or inconvenient.

• As the distance between the user and the microphone grows,
the signal is increasingly susceptible to distortions from the
environment.

• Using an array of microphones, rather than a single microphone,
has been proposed as a solution to this problem.
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• Combine multiple signals captured by the array to obtain a higher
quality output signal, as judged (typically) by a human listener.

• Many array processing methods exist:
– Fixed/adaptive schemes, de-reverberation techniques, blind source

separation.

• The objective of these methods is speech enhancement,
a signal processing problem.
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Automatic Speech Recognition (ASR)

• Parameterize speech signal and compare parameter sequence
to statistical models of speech sound units to hypothesize what
a user said.

• The speech signal is interpreted by a machine.

• The objective is accurate recognition, a statistical pattern
classification problem.
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• Recognition with microphone arrays has been
performed by “gluing” the two systems together.
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ASR with Microphone Arrays

• We believe this is not the ideal approach.
– Systems have different objectives.
– Each system does not exploit information present in the

other.
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• Consider array processor and speech recognizer to be
components of a single interconnected system which allows
information to pass in both directions.

• Develop an array processing scheme specifically targeted at
improved speech recognition performance without regard to
conventional array processing objective criteria.

A new approach
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ASR-based Array Processing

• The simplest beamforming technique (delay and sum) simply
averages the signals together:

• Others weight or filter the signals before combining:

• How do we choose the weights or filter coefficients to improve
speech recognition performance?
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What criterion do we want?

• Want an objective function that uses parameters
directly related to recognition

h1

h2

hM

MIC1

MIC2

MICM

Σ FE −−−− ε

x1

x2

xM

y

τ1

τ2

τΜ

My

Clean Speech
Features

Ms

minimize ε



9CMU Robust Speech Group

An Objective Function for ASR

• Define Q as the SSE of the log Mel spectra of clean
speech s and noisy speech y

where y is the output of a filter-and-sum microphone
array and M[ f, l] is the lth log Mel spectral value in
frame f.

• My[ f, l] is a function of the signals captured by the
array and the filter parameters associated with each
microphone.
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Calibration of Microphone Arrays for ASR

• Calibration of Filter-and-Sum Microphone Array:

– Have a user speak an utterance with known
transcription.

• With or without close-talking microphone

– Derive optimal set of filters.
• Minimize the objective function with respect to the filter

coefficients.

• Since objective function is non-linear, use iterative gradient-
based methods.

– Apply to all future speech.
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Calibration Using Close-talking Recording

• Given the close-talking mic recording for the
calibration utterance, derive an “optimal” filter for
each channel to improve recognition
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Multi-microphone data sets

• TMS
– Recorded in the CMU

Speech Lab
• Approx. 5m x 5m x 3m
• Noise from computer fans,

blowers ,etc.

– Isolated letters and digits,
keywords

– 10 speakers * 14 utterances
= 140 utterances

– Each utterance has close-
talking mic control waveform
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Multi-microphone data sets (2)

• WSJ + off-axis noise source
– Room simulation created

using the image method
• 5m x 4m x 3m
• 200ms reverberation time

• WGN source @ 5dB SNR

– WSJ test set
• 5K word vocabulary

• 10 speakers * 65
utterances = 650
utterances

– Original recordings used as
close-talking control
waveforms
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Results

• TMS data set, WSJ0 + WGN point source simulation
– Constructed 50 point filters from a single calibration

utterance
– Applied filters to all test utterances
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Calibration without Close-talking Microphone

• Obtain initial waveform estimate using conventional
array processing technique (e.g. delay and sum).

• Use transcription and the recognizer to estimate the
sequence of target clean log Mel spectra.

• Optimize filter parameters as before.
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Calibration w/o Close-talking Microphone (2)

• Force align the delay-and-sum waveform to the
known transcription to generate an estimated HMM
state sequence.
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Calibration w/o Close-talking Microphone (3)

• Extract the means from the single Gaussian HMMs of
the estimated state sequence.
– Since the models have been trained from clean speech, use

these means as the target clean speech feature vectors.
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Calibration w/o Close-talking Microphone (4)

• Use estimated clean speech feature vectors to
optimize filters as before.
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Results

• TMS data set, WSJ0 + WGN point source simulation
– Constructed 50 point filters from calibration utterance

– Applied filters to all utterances
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Results (2)

• WER vs. SNR for WSJ + WGN
– Constructed 50 point filters from calibration utterance using

transcription only

– Applied filters to all utterances
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Is Joint Filter Estimation Necessary?

• We compared 4 cases:
– Delay and Sum

– Optimize 1 filter for Delay and Sum Output
– Optimize Microphone Array Filters Independently
– Optimize Microphone Array Filters Jointly
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Summary and Future Work

• We have presented a new microphone array calibration scheme
specifically designed for speech recognition.

• We have achieved improvements in WER of up to 37% over
conventional Delay and Sum processing using this method.

• Successfully fedback information from the recognizer all the way
back to the waveform level.

• We plan to investigate the following extensions to the algorithm:
reverberation compensation, unsupervised optimization, filter
adaptation.


