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1. Introduction

State-of-the-art speech recognition systems are known to perform reasonably well when the speech sig-
nals are captured in a hoise-free environment using a close-talking microphone worn near the mouth of the
speaker. The progress of such systems has reached the point where real speech recognition systems have
been deployed in the marketplace for a variety of uses. As recognition performance continues to improve,
it is expected that demand for such systems will further increase. However, many of the target applications
for this technology do not take place in noise-free environments. To further compound the problem, it is
often inconvenient for the speaker to wear a close-talking microphone. As the distance between the
speaker and the microphone increases, the speech signal becomes increasingly susceptible to background
noise and reverberation effects that significantly degrade speech recognition accuracy. This is especialy
problematic in situations where the locations of the microphones or the users are dictated by physical con-

straints of the operating environment, as in meeting rooms or automobiles.

This problem can be greatly alleviated by the use of multiple microphonesto capture the speech signal
[9]. Microphone arrays record the speech signal simultaneously over a number of spatially separated chan-
nels. Many array-signal -processing techniques have been developed to combine the signals in the array to

achieve a substantial improvement in the signal-to-noise ratio (SNR) of the output signal.

Currently, microphone array-based speech recognition is performed in two independent stages. array
processing and recognition. Array-processing algorithms, typically designed for speech enhancement, pro-
cess the captured waveforms and the output waveforms are passed to the speech recognition system. These
systems implicitly assume that the array processing methods which provide the best enhancement will
result in the best recognition performance. However, recognition systems, unlike enhancement algorithms,
do not operate on the speech waveform itself, but rather a set of features extracted from the waveform. As
a result, improvements in the quality of the output waveform may not necessarily trandate into improve-
ments in the quality of the recognition features and, by extension, improvements in recognition perfor-

mance.

The goal of this thesis is to improve the performance of microphone array-based speech recognition
systems. We propose to design microphone array-processing strategies specifically for use with speech rec-

ognition systems, without regard to SNR, perceptual quality of the signal, or other speech enhancement
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metrics. We will consider the array-processing front end and the speech recognition system as one com-
plete system, not two independent entities cascaded together. This approach will enable us to integrate
information from the recognition system into the design of the array processing strategy to achieve better
recognition performance than conventional array processing methods. Specifically, the microphone-array/
speech recognition system will be treated as a single closed-loop system, with information from the statis-
tical models of the recognition system used as feedback to tune the parameters of the array processing
scheme. We believe this will enable us to achieve better recognition performance than conventional array

processing methods in microphone-array speech recognition systems.
This document is organized as follows:

Chapter 2 discusses previous approaches to microphone array processing for speech and their use for
speech recognition. Conventional speech recognition compensation techniques which have been applied to
array-processed speech are also considered. In Chapter 3, a new approach to array processing motivated
solely by speech recognition performance is presented, along with some preliminary results using this
approach. Chapter 4 describes proposed work to be performed in this thesis to expand the ideas described
in Chapter 3. Chapter 5 outlines the overall goals for the thesis and a preliminary timetable for the pro-

posed research.
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2. Review of Previous Microphone Array Processing
Srategiesfor Speech Recognition

Array signal processing is a very mature field, with applications not just in speech processing, but in
radar, sonar, and other areas. In fact, many of the most successful microphone array speech processing
strategies are not specific to speech signals at all. These classic array-processing techniques utilize well-
tested, well-understood array properties to enhance any distant noisy target signal. More recently, the
demand for hands-free speech communication and recognition has increased and as a result, newer tech-
niques have been developed to address the specific issues involved in the enhancement of speech signals
captured by a microphone array. In addition, several speech recognition compensation algorithms, origi-
nally developed for degraded single-channel speech, have improved the recognition performance of speech
processed by a microphone array. Some of the more successful array processing algorithms and speech
recognition compensation methods will be presented in this chapter, along with their benefits and draw-

backs.

2.1 Array Processing M ethods

2.1.1 Fixed Beamfor ming

The most widely used array-processing method is called beamforming [13]. Beamforming refersto any
method that algorithmically (rather than physically) steers the sensors in the array toward a target signal.
The direction the array is steered is called the “look direction”. Beamforming algorithms can either be
fixed, meaning that the array-processing parameters are “ hardwired” and do not change over time, or adap-
tive, where parameters are time varying and adjusted to track changes in the target signal and environment.
The most common form of fixed beamforming is the delay-and-sum method. In delay-and-sum, signals
from the various microphones are first time-aligned to adjust for the delays caused by path length differ-
ences between the target source and each of the microphones, using avariety of methods (e.g. [7][24]). The
aligned signals are then summed together. Any interfering noise sources that do not lie along the look
direction remain misaligned and are attenuated by the averaging. It can be shown that if the noise signals
corrupting each microphone channel are uncorrelated to each other and the target signal, delay-and-sum

processing results in a 3 dB increase in the SNR of the output signal for every doubling of the number of
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microphones in the array [13]. Many microphone array-based speech recognition systems have success-
fully used delay-and-sum processing to improve recognition performance, and because of its simplicity, it
remains the “method of choice” for many array-based systems (e.g. [12]). Most other array-processing pro-
cedures are variations of this basic delay-and-sum scheme or its natural extension, filter-and-sum process-
ing, where each microphone channel has an associated filter and the captured signals are first filtered

before being combined.

2.1.2 Adaptive Beamfor ming

In adaptive beamforming, the array-processing parameters are dynamically adjusted according to some
optimization criterion. The Frost algorithm [10] is a weighted delay-and-sum technique in which the
weights applied to each signal in the array are adaptively adjusted, subject to a unity-gain constraint. In the
Griffiths-Jim agorithm [11], a fixed beamformer and an adaptive beamformer are combined to obtain the
desired target signal. In some cases, the filter parameters can be calibrated to a particular environment or
user. In [23], such a calibration scheme is designed for a hands-free telephone environment in an automo-
bile. A series of “typical” target signals from the speaker, as well as jammer signals from the hands-free
loudspeaker, are captured in the car and used for initial calibration of the parameters of a filter-and-sum
beamforming system. These parameters are then adapted during use based on the stored calibration signals

and updated noise estimates.

These adaptive-filter methods assume that the target and jammer signals are uncorrelated. When this
assumption is violated, as is the case for speech signals in a reverberant environment, the methods suffer
from signal cancellation because reflected copies of the target signal appear as unwanted jammer signals.
This seriously degrades the quality of the output signal and resultsin poor speech recognition performance.
Van Compernolle [33] showed that signal cancellation in adaptive filtering methods can be reduced some-

what by adapting the parameters only during silence regions when no speech is present in the signals.

2.1.3 Dereverberation Techniques

Reverberation is a significant cause of poor speech recognition performance in microphone array-based
speech recognition systems [29]. Because none of the traditional beamforming methods successfully com-
pensate for the negative effects of reverberation on the speech signal, much recent research has focused in

this area. Most of the research effort has focused on estimating and then inverting the impul se response of
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the room which characterizes effect of the room on the target signal asiit travels to the microphone. How-
ever, room impulse responses are generally non-minimum phase [22] which causes the inverted derever-
beration filter to be unstable. As a result, approximations to the true inverse of the transfer functions have
to be used. Miyoshi and Kaneda [19] show that if multiple channels are used and the room transfer func-
tions of al channels are known, the exact inverse is possible to obtain if the transfer functions have no
common zeros. However, concerns about the numerical stability and hence, practicality, of this method
have been raised because of the large matrix inversions it requires [27][30]. Liu et al. [18] break up room
transfer functions into minimum phase and all-pass components and process these components separately
to remove the effects of reverberation. However, even in simulated enviroments, they report implementa-
tion difficulties in applying this method to continuous speech signals. Raghaven et al. [29] take a dightly
different approach to the reverberation problem. They estimate the transfer function of the source-to-sensor
room response for each microphone in the array using [5], and then use a truncated, time-reversed version
of this estimate as a matched-filter for that source-sensor pair. The matched filters are used in a filter-and-
sum manner to process the array signals. They show that this method is able to reduce the effects of rever-

beration significantly and obtain recognition improvementsin highly reverberant environments.

These dereverberation methods, however, require that the room transfer functions, from the source to
each microphone in the array, be static and known a priori. While the transfer functions can be measured
[5], this is both inconvenient and unrealistic, as it requires the use of additional hardware to estimate the
impulse responses and assumes that the transfer functions are fixed, which implies the location of the

talker and the environmental conditionsin the room will not change over time.

2.1.4 Blind Source Separation

Blind source separation (BSS) has also been applied to microphone array environments, e.g. [15]. In the
general BSS framework, observed signals from multiple sensors are assumed to be the result of acombina
tion of source signals and some unknown mixing matrix. In one family of BSS techniques, called indepen-
dent component analysis (ICA), the inverse of this unknown mixing matrix is estimated in the frequency
domain for each DFT bin independently using iterative optimization methods [6]. Using this estimated
inverse matrix, the microphone signals are “separated” on a frequency-component basis, and then recom-

bined to form the output signal. Informal listenings of the separation produced by this method applied to a
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recording of two sources captured by two microphones are quite compelling [ 16]. However, these methods
assume that the number of competing sound sources is both known and identical to the number of micro-
phones present. Additionally, these methods assume that the sources are mutually independent point
sources and are unable to process target signalsin correlated or diffuse noise, both of which are commonin
microphone array recordings. Acero et al. [2] attempt to relieve some of these problems by removing some
of “blindness” in the source separation. They consider the source mixtures to contain only one signal, the
target speech signal of interest, and treat the other signal as unwanted noise. A probabilistic model of
speech (a vector quantized codebook of linear prediction coefficient vectors representing clean speech) is
then used to guide the source separation process to obtain the desired signal. However, no measurable

results of the performance of this method were reported.

2.1.5 Auditory model-based Array Processing

The auditory system is an unbelievably good array processor, capable to isolating target signals in
extremely difficult acoustic conditions. In auditory model-based methods, no output waveform is pro-
duced, but rather some representation of the combined signal that models processing believed to occur in
the auditory system. Features can be extracted from this auditory representation and used directly in speech
recognition. Sullivan [31][32] devised such a scheme in which the speech from each microphone was
bandpass filtered and then the cross-correlations among all the microphones in each subband were com-
puted. The peak values of the cross-correlation outputs were used to derive a set of speech recognition fea-
tures. While the method was quite promising in pilot work, the speech recognition performance on real
speech was only marginally better than conventional delay-and-sum techniques and was much more com-

putationally expensive.

2.2 Speech Recognition Compensation Methods

Once the multiple array signals have been processed into a single output signal, there are several classi-
cal speech recognition compensation techniques that have been successfully applied to improve speech
recognition performance. These techniques are not specific to microphone array-based speech recognition,

and can be applied to any conventional compensation situation.
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2.2.1 Maximum Likelihood Linear Regression

Maximum Likelihood Linear Regression (MLLR) assumes that the Gaussian means of the state distri-
butions of the Hidden Markov Models (HMM) representing noisy speech are related to the corresponding

clean speech Gaussian means by alinear regression [17]. The regression hasthe form

Hp, = Apc+b (2.1

where |, is the Gaussian mean vector of the noisy speech, L. isthe Gaussian mean vector of the clean

speech and A and b are regression factors that transform . to W, . These parameters are estimated from

noisy adaptation data to maximize the likelihood of the data. MLLR adaptation can be either supervised or
unsupervised. In the supervised adaptation scheme, MLLR requires a set of adaptation data to learn the
noisy means. For the unsupervised adaptation scheme, the adaptation is performed on the data to be recog-
nized itself. MLLR has been observed to work very well in many situations, including microphone array
environments [14]. However, since the adapted models are assumed to be truly representative of the speech
to be recognized, all of the adaptation dataand the test data need to be acoustically similar. This amountsto

requiring that the corrupting noise be quasi-stationary.

2.2.2 Codeword Dependent Cepstral Normalization and Vector Taylor Series

Codeword Dependent Cepstral Normalization (CDCN) [1][3] and Vector Taylor Series (VTS) [20][21]
are model-based compensation methods that assume an analytical model of the environmental effects on
speech. Noisy speech is assumed to be clean speech that has been passed through a linear filter and then
corrupted by additive noise. Thismodel is represented in the cepstral domain by a non-linear equation:

DFT(n-h-x)y,

z=x+h+IDFT{In(1+e (2.2)

relating the cepstrum of the noisy speech z to the cepstrum of the clean speech x, the cepstrum of the

unknown noise n, and the cepstrum of the impulse response of the unknown filter, h.

Both CDCN and VTS are algorithms that assume no prior knowledge of the filter or the noise. These
methods estimate the parameters by maximizing the likelihood of the observed cepstra of noisy speech,
given a Gaussian mixture distribution for the cepstra of clean speech. Since the transformation that relates

the noisy cepstrato the clean cepstrais nonlinear, both CDCN and VTS approximate it as a truncated Tay-
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lor seriesin order to estimate it.While CDCN uses a zeroth-order Taylor series approximation, VTS uses a
first-order approximation. The estimated filter and noise parameters are then used to estimate the clean
speech cepstra from the noisy cepstra or to adapt the HMMs to reflect the noisy conditions of the speech to
be recognized. Both CDCN and VTS are highly efficient at medium levels of noise (i.e.at SNRs of 10 dB
and above), but VTS performs slightly better. However, both a gorithms assume that the noise is stationary,
and thus, both perform poorly when this assumption is violated In [31], CDCN was applied to features
derived from both delay-and-sum beamforming and cross-correlation-based auditory processing with

improvements in recognition performance seen in both cases.

In this chapter, we have presented array-processing techniques that have been developed for multi-
channel speech processing. Most of these techniques have been able to achieve some improvement in
array-based speech recognition performance, but also make assumptions about the environment or speaker
that are either unrealistic or highly restrictive. Furthermore, with the exception of the auditory model-based
techniques, the algorithms are all speech enhancement algorithms designed to improve the SNR and per-
ceived listenability of the target waveform, not speech recognition performance. We also presented some
compensation algorithms originally developed for single-channel speech recognition, which have been
successfully applied to microphone array speech recognition. It should be noted that our goal should be to
make our front-end array processing methods and our speech recognition compensation methods as com-
plementary as possible. That is, any array processing algorithm and speech recognition compensation algo-
rithm applied in conjunction should result in better recognition performance than either of the methods

applied inisolation.

In the next chapter, we present a framework for a new array processing methodology specifically
designed for improved speech recognition performance, and some pilot experimental work demonstrating

its preliminary implementation.
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3. Preliminary Work in Recognizer-based Array Processing

As stated in the introduction, the goal of this work is to develop array-processing strategies specificaly
designed to improve speech recognition performance. As described earlier, most previous methods suffer
from the drawback that they are inherently speech enhancement schemes, aimed at improving the quality
of the speech waveform as judged perceptually by human listeners or quantitatively by SNR. While thisis
certainly appropriate if the speech signal isto beinterpreted by a human listener, it may not be the right cri-
terion if the signal isto be interpreted by a speech recognition system. Speech recognition systems do not
interpret the waveform itself, but a set of features derived from the speech waveform. Furthermore, recog-
nition systems are large statistical pattern classifiers which typically operate in a maximum likelihood
framework [28]. By ignoring the manner by which the recognition system processes incoming signals,
these speech enhancement algorithms are treating speech recognition systems as equivaent to human lis-

teners, which is clearly not the case.

In this chapter, we describe some preliminary work in the development of an array-processing scheme
that will be the foundation of the work proposed in this thesis. We propose a new filter-and-sum micro-
phone array processing scheme that integrates the speech recognition system directly into the filter design
process. We believe that incorporating the speech recognition system into the array processing design strat-
egy ensures that the algorithm enhances those components of the output signal that are important for recog-

nition, without undue emphasis on the unimportant components.

3.1 Filter-and-sum array-processing

We will employ traditional filter-and-sum processing to combine the signals captured by the array. In
the first step, the speech source is localized and the relative channel delays caused by path length differ-
ences to the source are resolved so that all waveforms captured by the individual microphones are aligned
with respect to each other. Several algorithms have been proposed in the literature to do this, e.g. [7][24].

In thiswork, we have used cross-correlation to determine the delays among the multiple channels.

Once the signals are time aligned, each signal is passed through an FIR filter whose parameters are
determined by the calibration scheme described in the following section. The filtered signals are then

added to obtain the final signal, as shown in Figure 3.1. This procedure can be represented as:
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Vil = 33 hKxIn-k-1; @

i=1k=0
where x[n] represents the nth sample of the signal recorded by the ith microphone, T; represents the delay

introduced into the it channdl to time ali gn it with the other channels, hj[K] represents the K coefficient of

the FIR filter applied to the signal from the ith microphone, and y[n] represents the nth sample of the fina
output signal. K is the order of the FIR filter and N is the total number of microphones in the array. Once

y[n] is obtained, it can be parameterized to derive a sequence of feature vectors to be used for recognition.

MIC 1
oo > Hi2)
MIC 2
O Xl >| Ty > Hy(2) vl

XN[n] 1 1 /
‘—».—» H
MICN v®

Figure 3.1 The filter-and-sum microphone-array-processing a gorithm.

3.2 Speech Recognition-based Filter Calibration

As stated earlier, we propose designing a speech recognition-specific array-processing scheme. In the
filter-and-sum approach, this means choosing the filter parameters h;[K] that will optimize speech recogni-
tion performance. One possible approach is to maximize the likelihood of the correct transcription for the
utterance, thereby increasing the difference between its likelihood and that of other competing hypotheses.
However, because the correct transcription of any utterance is unknown, we optimize the filters based on a
single calibration utterance with a known transcription. Before using the speech recognition system, auser
records a calibration utterance, and the filter parameters are optimized based on this. All subsequent utter-

ances are processed using the derived filters in the filter-and-sum scheme described previously.

The sequence of recognition features derived from any utterance y[n] is a function of the filter parame-

ters h;[n] of all of the microphones, asin (1). In thiswork, recognition features are assumed to be mel-fre-
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guency cepstra. The sequence of mel-frequency cepstral coefficients is computed by segmenting the

utterance into overlapping frames of speech and deriving amel-frequency cepstral vector for each frame. If

we let h represent the vector of all filter parameters h,[k] for all microphones, and yj(h) the vector of

observations of thejth frame expressed as a function of these filter parameters, the mel-frequency cepstral

vector for a frame of speech can be expressed as
2
Z = DCT(Iog(M]DFT(yj(h))‘ )) 2

where Z represents the mel-frequency cepstral vector for the jth frame of speech and M represents the

matrix of the weighting coefficients of the triangular mel filters.This feature extraction processis shown in

Figure 3.2.

Mel filteri
400 512 , | 512 " a0 40 13
y—>»| DFT —»| |( )" —» /xx;:z:\ —»| log —®| DCT —» Z

Figure 3.2 The derivation of mel-frequency cepstral coefficients (MFCC) for aframe of speech. The
numbers on the arrows represent the number of terms generated by each block. These numbers may vary
but are typical for most state-of-the-art speech recognizers.

The likelihood of the correct transcription must be computed using the statistical models employed by
the recognition system. In this work, we use SPHINX-I11, an HMM-based speech recognition system. For
simplicity, we further assume that the likelihood of the utterance is largely represented by the likelihood of
the most likely state sequence through the HMMs. Using this assumption, the log-likelihood of the utter-

ance can be represented as
-
L(Z) = S Iog(P(zj‘s,j))+Iog(P(sl, S5, S3, -1 S7)) (©))
j=1

where Z represents the set of all feature vectors { 2y, Zys ooes zT} for the utterance, T is the total number of

feature vectors (frames) in the utterance, s; represents the jth state in the most likely state sequence, and
Iog(P(zj‘sj)) is the log likelihood of the observation vector Z computed on the state distribution of S
The a priori log probability of the most likely state sequence, log(P(s;, S, S3, ..., St)) , is determined by

the transition probabilities of the HMMs. In order to maximize the likelihood of the correct transcription,
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L(Z) must be jointly optimized with respect to both the filter parameter vector h and the state sequence
S1, S, S3, v+ St

For a given h, the most likely state sequence can be easily determined using the Viterbi algorithm.
However, for a given state sequence, in the most general case, L(Z) cannot be directly maximized with
respect to h for two reasons. First, the state distributions used in most HMMs are complicated distribu-
tions, i.e. mixtures of Gaussians. Second, L(Z) and h are related through many levels of indirection, as can
be seen from (1), (2), and (3). As aresult, iterative non-linear optimization methods must be used to solve
for h. Computationally, this can be expensive. A few additional approximations are made that reduce the
complexity of the problem. We assume that the state distributions of the various states of the HMMs are
modelled by single multivariate Gaussian, not mixtures of Gaussians. Furthermore, we assume that to
maximize the likelihood of a vector on a Gaussian, it is sufficient to minimize the Euclidean distance
between the observation vector and mean of the Gaussian. This assumption is equivalent to assuming that
al Gaussians in al HMMs have independent components with equal variance. Thus, given the optimal

state sequence, we can define an objective function to be minimized with respect to h as follows:
T 2
0@ = 3 54 @

where usj is the mean vector of the Gaussian distribution of the state ;- Because the dynamic range of

mel-frequency cepstra diminishes with increasing cepstral order, it is clear that our previous assumption
regarding Gaussian components with equal variance is invalid. As aresult, low-order cepstral terms will
have amuch more significant impact on the objective function (4) than higher ones. To avoid this potential
problem, we redefine the objective function in the log mel-spectral domain, where the assumption of com-

ponents with equal variance is more reasonable:
T 2
Q@) = 3 [1PCT(G -k (5)
J =

Note that the IDCT operation in (5) transforms a thirteen-dimensional cepstral vector back to a forty-

dimensional log mel-spectral vector. Using (1), (2), and (5), the gradient of the abjective function with

respect to h, 0,Q(Z), was determined. The gradient formulation is unwieldy and for brevity, is not

included here. Using the objective function and its gradient, we can minimize (5) using gradient descent
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1. Determine the array path length delays t; and time-align the signals from each the N micro-
phones.

2. Initidize thefilter parameters: h[0] = /N; hj[k]=0, (k# 0).
Process the signals using (1) and derive recognition features.

Determine the optimal state sequence from the obtained recognition features using Viterbi.

a M~ w

Use the optimal state sequence and (5) to estimate optimal filter parameters.

6. If the value of the objective function using the estimated filter parameters has not converged, go
to Step 3.

Table 3.1 The calibration algorithm for filter-and-sum processing for speech recognition.

[26] to obtain locally optimal filter parameters h. The entire algorithm for estimating the filter parameters

for an array of N microphones using the calibration utterance is shown in Table 3.1.

An alternative to estimating the state sequence and filter parameters iteratively isto record the calibra-
tion utterance simultaneously through a close-talking microphone. The recognition features derived from
this clean speech signal can either be used to determine the optimal state sequence, or used directly in (5)
instead of the Gaussian mean vectors. However, even in the more realistic situation where no close-talking
microphone is used, a single pass through Steps 1 through 6 seems to be sufficient to estimate the filter
parameters. The estimated filter parameters are then used to process all subsequent signals in the filter-and-

sum manner described in Section 3.1.

3.3 Experimental results

Experiments were performed using two databases to evaluate the proposed calibration algorithm, one

using simulated microphone array speech data and one with actual microphone array data.

A simulated microphone array test set, “WSJ SIM”, was designed using the test set of the Wall Street
Journal (WSJO) corpus [25]. Room simulation impulse response filters were designed using the well-
known image method [4] for a room 4m x 5m x 3m with areverberation time of 200ms. The microphone
array configuration consisted of eight microphones placed around an imaginary 0.5m x 0.3m flat panel dis-

play on one of the 4m walls. The speech source was placed one meter from the array at the same height as
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the center of the array, as if a user were addressing the display. A noise source was placed above, behind,
and to the left of the speech source. A room impulse response filter was created for each source/micro-
phone pair. To create a noise-corrupted microphone array test set, clean WSJ0 test data were passed
through each of the eight speech source room impulse response filters and white noise was passed through
each of the eight noise source filters. The filtered speech and noise signals for each microphone location
were then added together. The test set consisted of eight speakers with 80 utterances per speaker. Test sets
were created with SNRs from 0-25 dB. The original WSO test data served as a close-talking control test
Set.

The real microphone array data set, “CMU_TMS’, was collected at CMU [31]. The array used in this
data set was a horizontal linear array of eight microphones spaced 7cm apart placed on a desk in a noisy
speech lab approximately 5m x 5m x 3m. The talkers were seated directly in front of the array at a distance
of one meter. There are ten speakers each with fourteen unique utterances comprised of alphanumeric
strings and strings of command words. Each array recording has a close-talking microphone control

recording for reference.

All experiments were performed using a single pass through Steps 1-6 in the calibration algorithm
described in the previous section. In all experiments, the first utterance of each data set was used as the cal-
ibration utterance. After the microphone array filters were calibrated, al test utterances were processing
using the filter-and-sum method described in Section 3.1. Speech recognition was performed using the
SPHINX-I1I speech recognition system with context-dependent continuous HMMs (eight Gaussian/state)

trained on clean speech using 7000 utterances from the WSJO0 training set.

In the first series of experiments, the calibration procedure was performed on the WSJ SIM test set
with an SNR of 5 dB and the CMU_TMS test set. In the first experiment, the close-talking recording of the
utterance was used in (5) for calibration. The stream of target feature vectors was derived from the close-

talking recording and used in to estimate a 50-point filter for each of the microphone channels.

In the second experiment, the HMM state segmentation derived from the close-talking calibration
recording was used to estimate the filter parameters. The calibration recording used in the previous experi-
ment was force-aligned to the known transcription to generate an HMM state segmentation. The mean vec-

tors of one Gaussian/state HMMs in the state sequence were used to estimate a 50-point filter for each
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Array Processing Method WSJ SIM | CMU_TMS
Close-talking mic (CLSTK) 16.52 19.36
Single mic array channel 93.84 62.32
Delay and Sum (DS) 64.48 39.36
Cdlibrate Optimal Filtersw/ CLSTK Cepstra 33.37 35.0
Cdlibrate Optimal Filtersw/ CLSTK State Segmentations 36.5 37.07
Calibrate Optimal Filtersw/ DS State Segmentations 40.2 34.95

Table 3.1 Word error rate for the two microphone array test corpora, WSJ SIM a 5 dB SNR, and
CMU_TMS, using conventional delay and sum processing and the optimal filter calibration methods
described.

microphone channel.

Finally, we assumed that no close-talking recording of the calibration utterance was available. Delay-
and-sum processing was performed on the time-aligned microphone channels and the resulting output was
used with the known transcription to generate an estimated state segmentation. The Gaussian mean vectors
of the HMMs in this estimated state sequence were extracted and used to estimate 50-point filters asin the
previous experiment. The word error rates (WER) from all three experiments are shown in Table 3.1. The
results using conventional delay-and-sum beamforming are shown for comparison. Large improvements
over conventional beamforming schemes are seen in all cases. With the exception of the calibration using
the close-talking-microphone-based state segmentation for the CMU_TMS test set (WER 37.07), all
improvements in recognition accuracy between delay-and-sum beamforming and the calibration methods
are significant with better than 95% confidence. Having a close-talking recording of the calibration utter-
anceisclearly beneficial, yet substantial improvementsin word error rate can be seen even when no close-

talking recording is used.

Figure 3.3 shows WER as a function of SNR for the WSJ SIM data set, using the proposed calibration
scheme and, for comparison, conventional delay-and-sum processing. For all SNRs, no close-talking
recordings were used. All target feature-vector sequences were estimated from state segmentations gener-

ated from the delay-and-sum output of the array.

Clearly, a low to moderate SNRs, there are significant gains over conventional delay-and-sum beam-
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Figure 3.3 Word error rate vs. SNR for the WSJ_SIM test set using filters calibrated from delay-and-sum
state segmentations.

forming. However, at high SNRs, the performance of the calibration technique drops below that of delay-
and-sum processing. We believe that this is the result of using the mean vectors from one Gaussian/state
HMMs as the target feature vectors. In doing so, we are effectively quantizing our feature space, and forc-
ing the data to fit single Gaussian HMMSs rather than the Gaussian mixtures which more accurately

describe the data [28] and result in better recognition accuracy.

To demonstrate the advantage of estimating the filter parameters for each microphone channd jointly,
rather than independently, a final experiment was conducted. The recognition performance using jointly
optimized filters was compared to two other strategies: 1) performing delay-and-sum, then optimizing a
single filter for the resulting output signal, and 2) optimizing the filters for each channel independently.
These optimization variations were performed on the WSJ_SIM test set with an SNR of 10 dB. Again, 50-
point filters were designed in all cases. The results are shown in Table 3.2 Joint optimization is signifi-

cantly better than all other methods with better than 99% confidence.

It is clear from these experiments that significant gains in recognition accuracy can be achieved for
microphone-array-based systems if the speech recognition system is incorporated into the design of the

array processing strategy. We have empirically shown that by tuning the filter parameters to maximize the
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Filter Optimization Method WSJ SIM
Delay and Sum 36.43
Optimize Single Filter for D & S output 36.29

Optimize Mic Array Filters Independently 48.19

Optimize Mic Array Filters Jointly 27.79

Table 3.2 Word error rate for the WSJ_SIM test set with an SNR of 10dB for delay-and-sum processing
and three different filter optimization methods.

likelihood of the feature vectors derived from the resulting output signal, we are able to improve our
speech recognition performance over conventional array processing techniques. In the next chapter, ideas

for expanding this work are proposed in order to exploit this speech recognition design methodology.
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4. Proposed Work

The results of the experiments described in the previous chapter confirm that further research into
speech recognition-based array processing algorithms is merited. In this chapter, we describe the directions

that will be pursued in this thesis research.

4.1 Reverberation Compensation

The experiments in the previous section have shown that the likelihood-based filter optimization strat-
egy was effective at reducing the effects of noise on the recognition performance. However, reverberation
is asignificant source of performance loss in speech recognition systems, as noted in Section 2. Previous
dereverberation methods require a complicated process involving external hardware to estimate the
impul se response of the room and assume the reverberation levels do not change over time, which, in real-
istic environments, is not true. We propose to apply our techniqueto train longer filtersin order to automat-
ically compensate for the effect of room reverberation on the recognition features. It should be noted that
we are not attempting to invert or “undo” the reverberation in the signal, just its effect on the derived rec-
ognition features. Compensating for the reverberation in this way allows the system to operate in environ-

ments where the reverberation levels change over time, or are unknown a priori.

4.2 Improved Objective Function

The current objective function employed in the filter parameter optimization is a Euclidean distance
metric which compares the estimated log-mel spectra to the target log-mel spectra determined from the
HMMs via an inverse DCT. Operating in the log-mel spectral domain is necessary because in the cepstral
domain, the coefficients are not of equal dynamic range. Ideally, we would like to formulate and imple-
ment a true maximum likelihood objective function for filter optimization to match the criterion used in
training and testing the speech recognizer. However, speech recognition systems operate on feature vectors
consisting of not just the features themselves but their first and second derivatives, e.g. delta and delta
delta cepstra, as well. Formulating a maximum likelihood objective function and its gradient in terms of
this full feature vector is difficult, if not impossible. As an approximation, we propose to incorporate the

cepstral variances from the HMMs into an objective function defined over the features themselves and not
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the derivatives. This is equivalent to using a separate speech recognizer trained only on feature vectors

(and not their derivatives) for the filter optimization process.

In addition, it was seen in Figure 3.3 that in low-noise, reverberant conditions, approximating the target
feature values of clean speech as the means of single Gaussians results in worse performance than conven-
tional delay-and-sum processing. Therefore, we propose to refine the estimate of the target clean speech

vectors by deriving them from mixtures of Gaussians.

4.3 Unsupervised Processing

The experiments performed in the previous section showed the potential for improved recognition in a
calibration scenario. The resulting filter parameters, used in a conventional filter-and-sum array processing
scheme could be applied in real time. However, if the real-time constraints are relaxed, as is often the case
in transcription tasks, this algorithm could be applied in an unsupervised manner to each utterance to tune
the array-processing filters to each utterance or group of utterances. Thisis expected to provide improved

accuracy, especialy in non-stationary noise situations.

4.4 Incor por ation of Confidence

Confidence measures, such as [8], are used in various ways to quantify the reliability of the statistical
hypotheses of the recognition system. In a degraded environment, there will be portions of the signal which
will be less corrupted than others depending on the relative energies of the speech and noise at any given
time. The less corrupted regions will typically result in better recognition accuracy. Therefore, estimating
parameters using only the more reliable portions of the signal should allow better filter estimation. We can

apply confidence scores to help decide which portions of the signal to use to tune the filter parameters.

4.5 Filter Adaptation

Performance of the algorithm could be improved by adapting the filter parameters over time. There are
many possibilities for doing so. Thefilter can be adapted when a new speaker or a significant changein the
environment is detected. This would not slow the algorithm, as the adaptation could be done in the back-

ground based on recent utterances.
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4.6 Alter native Objective functions

Mel frequency cepstral coefficients (MFCC) are the most common speech recognition features used
today. They are relatively simple to compute and provide good performance over a wide range of condi-
tions relative to other feature sets. However, because of the non-linearity present in the formulation of
MFCCs, minimization of objective function proposed in thiswork requires iterative optimization methods
to find a solution. We can speed up the filter parameter computation tremendously if we can derive alinear
feature formulation, such as Linear Prediction Coefficient-derived Cepstra (L PCC), whose objective func-
tion minimization would have a closed-form solution. We therefore plan to investigate the application of
theideasin thisthesis to alternative feature sets which are linear in nature. It is believed that while the per-
formance may not be as good as systems using MFCCs as a feature set, the improved speed of the algo-

rithm would be a tremendous benefit.

4.7 Application to Single-Channel Speech

The algorithms presented have been applied in the context of a multi-channel input signal. Still, thereis
nothing inherent in the work that restricts its application to multiple channels. We propose to evaluate all
algorithms in a single-channel context and compare it to other compensation methods, such as those pre-

sented in Section 2.
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5. Thess Goals and Timetable

5.1 Resour ces and Databases

Experiments to evaluate the effectiveness of the work in this thesis will be performed on actual multi-
channel speech data collected by us and other researchers. We propose to test our methods on three tasks
that represent a wide range of microphone array-based speech recognition environments, in terms of noise
levels, reverberation levels, and array size.

* Information Kiosk: Many museums, airports, and other locations, are interested in installing infor-
mation kiosks with which users may interact through voice, touch screen and other modalities. Such
kiosks are usualy placed in locations where both noise and reverberation levels are both high and
extremely time-variant. These kiosks could be configured with a moderate number of fixed micro-
phones (4-16).

* Meeting Room: Thereisalot of interest in automatic meeting transcription and summarization. This
environment, typically a conference room, is usualy quite reverberant. The environmental noise lev-
elsareusualy fairly low, but there is often significant amounts of co-channel speech present as meet-
ing attendees will frequently interrupt each other or speak at the same time. The number of

microphones is usually high and arein fixed locations.

Severa sites and organizations (e.g. NIST, UC Berkeley-ICSlI, CMU-ISL) are currently collecting
multi-channel meeting room data for the meeting transcription task. In addition, we expect to collect data
from information kiosk environments. Pilot work and preliminary studies will be performed on data
aready available, CMU_TMS and WSJ _SIM, the two corpora used in the pilot experiments presented in
Section 3.

5.2 Expected Results and Contributions of Thesis

 Array-processing algorithms to effectively compensate for noise and reverberation with little or no a
priori knowledge of the environment.

 Evaluation of the effect of varying levels of noise and reverberation on speech recognition features
and overall speech recognition performancein real environments.

« Incorporation of speech recognition confidence measures into the array-processing design paradigm.
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» Development of efficient adaptation schemes to update the array processing parameters over time.

* Full development of unsupervised array-processing.

» Exploration of alternate speech recognition-based objective functions that are computationally effi-

cient.

» Evaluation of proposed techniques in conjunction with known compensation agorithms such as

CDCN, VTS, and MLLR.

« Evaluation of proposed algorithms on single-channel speech data.

5.3 Preliminary Timetable of Work

Task Start date | End date | Duration
Refinement of Objective Function June2001 | Aug 2001 | 2 months
Investigatipn of design strategy for reverberation Aug 2001 | Nov 2001 | 3 months
compensation
Multi-channel data collection and baseline evaluation Nov 2001 | Jan 2002 | 2 months
Unsupervised array processing parameter estimation Jan 2002 | Mar 2002 | 2 months
Investigation/Integration of confidence measures Mar 2002 | June 2002 | 3 months
Formulation and evaluation of alternate objective June 2002 | Aug 2002 | 2 months
functions
Evaluation of array-processing algorithms with other Aug 2002 | Sept 2002 | 1 month
compensation methods
Application of algorithmsto single channel data Sept 2002 | Oct 2002 | 1 month
Dissertation write-up Oct 2002 | Jan 2003 | 3 months
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