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Abstract

When speech is corrupted by noise, the performance of automatic speech recognition systems degrades

significantly. There have been many algorithms proposed that compensate for the negative effects of noise

in speech and greatly improve recognition accuracy. However, these methods assume that the corrupting

noise is stationary. If the noise is non-stationary, these methods fail. A promising new group of compensa-

tion algorithms have recently emerged which do not have this restriction on the noise characteristics. These

methods operate on the notion that noise affects different frequency bands of speech differently depending

on the relative energies of the speech and the noise at each time-frequency location. In a spectrographic

display of noisy speech, regions of low SNR will be more corrupt than regions of high SNR. Low SNR

regions of a spectrogram are considered to be “missing” or “unreliable” and are removed from the s

gram. Noise compensation is carried out by either estimating the missing regions from the rem

regions in some manner prior to recognition, or by performing recognition directly on incomplete sp

grams. These techniques clearly require a "spectrographic mask" which accurately labels the relia

unreliable regions of a spectrogram. Currently, there are no good techniques for accurately estimat

a mask.  The methods that have been used so far rely on the assumptions about the interfering nois

global SNR or stationarity, and fail when these assumptions do not hold. 

In this thesis we have designed a classifier for spectrographic mask estimation that does not m

assumptions about the characteristics of the interfering noise. The classification is performed usi

tures that exploit the intrinsic characteristics of the speech itself. A separate mask-estimation class

been designed for voiced and unvoiced spectrographic regions of speech. In voiced regions, featu

exploit the inherent harmonicity and the distinctive spectral contour of voiced speech are utilized in

estimation. In order to derive the features in the voiced speech regions, a new pitch tracking algo

proposed which is more robust to noise than other methods. While there is no harmonicity pre

unvoiced speech, it also has a distinct spectral contour which forms the basis of the feature set use

unvoiced spectrographic regions. 

Experiments in mask estimation were performed on speech corrupted by white noise and spee

rupted by music. The masks generated by the classifier are evaluated in two ways. The estimated m
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compared with oracle masks generated from full a priori knowledge of the corrupting noise to determine

the classifier accuracy. The masks are then passed to two different missing feature reconstruction methods

to determine the improvement in recognition accuracy. 

The spectrographic masks generated by the classifier result in recognition accuracy that is comparable

to the best previously reported method of mask estimation for speech corrupted by white noise. On speech

corrupted by music, which is highly non-stationary, the classifier-based masks produce significant and

consistent improvements in recognition accuracy. No other reported mask estimation method to has been

able to do so. 
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Chapter 1
Introduction

Automatic speech recognition (ASR) is statistical pattern classification problem. A sequence of feature

vectors derived from short windowed segments of speech is input to an ASR system where each feature

vector is labeled as belonging to one of a set of many possible sound classes. The decision as to which is

the most likely sound class is based on the distributions of the feature vectors belonging to each sound

class which are learned from a corpus of training speech. Using these distributions, the sound class that is

the most likely to have generated the input feature vector is the class label for that input segment. 

When speech is corrupted by noise, speech recognition accuracy degrades [1]. The feature vectors gen-

erated from noisy speech are no longer similar to the class distributions learned from the training data. If

the noise is stationary, this degradation can be minimized by retraining the system on speech that has been

corrupted with the same level of noise as the speech being recognized. However, because of the noise,

there is inherently more variability in the training data, and as a result, the variance of the distributions of

the sound classes increases [23]. Even with retraining, this “broadening”of the class distributions l

increased classification errors over the case where both the training and test speech are both clea

the noise is non-stationary, retraining the system on noise-corrupted speech does not help. The non

arity of the noise implies that the noise used to degrade the training speech will not necessarily be re

tative of the noise that corrupts the test speech. As a result, there can still be a large mismatch bet

feature vectors of the speech to be recognized and the distributions of the sound classes learne

training. 

Techniques which attempt to reduce the effects of noise on speech recognition performance ar

compensation methods. Several compensation methods proposed in the literature have been quite su

ful at improving the performance of speech recognition systems on noise-corrupted speech. Some 

such as Codeword Dependent Cepstral Normalization [1] and Spectral Subtraction [5] attempt to “

the incoming noisy data before it reaches the recognizer for classification. Others, such as Paralle

Combination [18] and Maximum Likelihood Linear Regression [24] modify the class distributions w

the recognizer to alleviate the negative effects of the noise. 
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However, all of these methods assume that the corrupting noise is stationary and that the effect of the

noise can be represented by a linear transformation of some kind. Therefore, while the above methods are

very successful if these conditions are met, they fail when the corrupting noise is non-stationary.

A promising new group of compensation methods have emerged which do not have this stationarity

restriction. They are based on the notion that in noisy conditions, the human auditory system preferentially

processes the high energy components of the speech signal while suppressing the weaker ones [31]. These

new methods mimic this idea by suppressing the low SNR components of a speech signal in favor of the

components of high SNR in some fashion. 

Missing feature methods [7][27][43] are one such class of compensation techniques. They attempt to

emphasize the high SNR components of speech not just in frequency but in time as well. Speech is trans-

formed to a two-dimensional time-frequency display where each pixel location represents the energy at

that time-frequency location. When speech is corrupted by additive noise, different pixels in the spectro-

gram will be affected differently, depending on the relative energies of the speech and the noise at each

particular time-frequency location. Missing feature approaches effectively erase the low SNR pixels from

the spectrogram. This is done by creating a binary mask based on local SNR that labels each time-fre-

quency location in the spectrogram as “present” (meaning reliable) or “missing” (meaning corrupt

spectrographic mask is then applied to the spectrogram and recognition is either performed on the

ing incomplete spectrogram, or the erased pixels are reconstructed in some fashion and then recog

performed on the reconstructed complete spectrogram. 

Missing feature methods have been shown to be very successful at compensating for noise in s

both stationary and non-stationary noise conditions when the spectrographic mask labeling every time-fre-

quency location as reliable or unreliable is known a priori [43][10]. However, when the masks ar

unknown, these techniques are unusable. 

In this thesis, we attempt to design a classifier that automatically determines whether each ti

quency location in a spectrogram is reliable or unreliable and then generates a spectrographic mas

ingly. Because the missing feature methods are able to compensate for both stationary and non-s

noises, the classifier is designed to exploit the intrinsic features of speech itself while making m
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assumptions about the corrupting noise. We apply the resulting estimated masks to two missing feature

compensation methods to evaluate their effectiveness for use with missing feature approaches to robust

speech recognition.

This thesis is organized as follows:

Chapter 2 presents the missing-feature reconstruction paradigm. It describes how the effect of noise on

speech can be modeled as missing features of a spectrogram and then explains two missing-feature recon-

struction methods that will be used in this thesis. Chapter 3 examines the mask estimation problem in more

detail and reports some previous work in this area by other researchers. Chapter 4 describes a novel pitch

detection algorithm that is required for certain pitch-dependent classifier features. Chapter 5 discusses the

feature extraction procedure. The classification features for voiced and unvoiced speech used to estimate

the spectrographic masks are described. In Chapter 6, the classification strategy is presented, and mask

estimation accuracy is analyzed. Results on speech recognition accuracy when the estimated masks are

used with missing-feature methods for noise compensation are reported. Chapter 7 summarizes our conclu-

sions and suggestions for future work are proposed.
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Chapter 2
Spectrograms and Missing Feature Compensation

2.1 Introduction

Missing feature methods compensate for noise in speech by utilizing only reliable, high SNR regions of

time-frequency representations of the noisy speech while ignoring the corrupt low SNR regions. In this

chapter, we will describe the spectrogram, the most common time-frequency representation of speech. We

will discuss the effect of noise on a spectrogram and how regions of low SNR can be modeled as missing

features by applying a spectrographic mask that effectively removes them from the picture. We will then

describe two missing feature methods that enhance the incomplete spectrograms and dramatically improve

speech recognition performance if the spectrographic masks are completely known a priori. 

2.2 The Mel Spectrogram

A spectrogram is a two-dimensional representation of a speech signal. Time is displayed on the hori-

zontal axis and frequency on the vertical axis. Each time-frequency location in the spectrogram represents

the power  in the signal at time l and frequency ω, as given by Equation (2.1), where  is

the Short-Time Fourier Transform (STFT) [42] of length  of the signal x[n]. 

(2.1)

While the value of can be computed at every time step, it is more common to compute the

point STFT at every Lth sample in the sequence. When the sequence of STFT vectors computed

every L samples are arranged in consecutive columns, they comprise a two-dimensional picture that

describes energy of the signal across time and frequency. The intensity of each point represents the value

of , i.e. the logarithm of the signal power at time l and frequency ω. Figure 2.1 shows a typ-

ical spectrogram. 

The missing feature compensation methods used to evaluate the work in this thesis all operate on a vari-

Px l ω,( ) X l ω,( )

2L 1+

Px l ω,( ) 1
2L 1+
---------------- X l ω,( ) 2=

Px l ω,( )

2L 1+

Px l ω,( )( )log
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win-
ant of the traditional spectrogram known as the mel spectrogram. The mel spectrum captures the power at

the output of a bank of bandpass filters. In practice, the filters are overlapping triangles of unit area with

increased bandwidth at higher frequencies applied to the power spectrum of the signal [35]. The composite

magnitude response of twenty mel filters is shown in Figure 2.2.

In the mel spectrogram, each pixel  represents the power at time l at the output of the kth mel

filter, given by

(2.2)

where  are the DFT coefficients of the impulse response of the th mel filter and  is the th

Figure 2.1 This figure shows a spectrogram of the utterance “Redefine Red Alert”. The length of the analysis 
dow was 30ms. Adjacent windows were overlapped by 5ms.
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Figure 2.2 The composite frequency response of 20 Mel filters.
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frequency component of the DFT of the th analysis window of the speech signal . The value at each

time-frequency location in the mel spectrogram is given by , i.e. the logarithm of the power

at the output of mel filter k in frame l. Thus, the mel spectrogram consists of a sequence of log mel-spectral

vectors, each of which has  components, where  is the total number of mel filters. The mel spectro-

gram can be viewed as an spectrally smeared version of the classical spectrogram. Frames are typically 25

ms long, and overlap by 15 ms for the mel-spectral representation. Figure 2.3 shows the mel spectrogram

representation of the same utterance used in Figure 2.1.

2.3 Modeling Noise as Missing Spectrographic Features

Missing feature compensation methods treat spectrographic regions that have been most corrupt by

noise as “unreliable” or “missing” and remove them from the spectrogram. This notion therefore req

measure of “reliability”. A logical choice for such a measure is the local SNR. Regions of high SNR c

considered reliable while regions of low SNR can be considered corrupt. If speech is corrupted wit

tive noise, we have 

(2.3)

where  is the noisy speech signal,  is the clean speech signal, and  is the noise that h

added to the signal. It can be shown [43] that the SNR at every time-frequency location in the mel s

gram of  can be computed from the mel spectrograms of  and  if  and  are k

l x n[ ]

Px l k,( )( )log

K K

Figure 2.3 The Mel spectrogram of the utterance “Redefine Red Alert”. 20 Mel filters covering the frequency r
from 150 Hz to 8 KHz were used. The analysis windows were 25ms long. Adjacent frames were overlapped b

y l[ ] x l[ ] n l[ ]+=

y l[ ] x l[ ] n l[ ]

y l[ ] x l[ ] n l[ ] x l[ ] n l[ ]
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a priori. This local SNR is given by Equation (2.4).

(2.4)

If the speech and the noise are both completely known a priori, we can calculate the local SNR at every

 for the noisy speech. All of the spectrographic elements that have an SNR below a fixed threshold.

can then be removed. Figure 2.4 shows a mel spectrogram of an utterance of noisy speech and Figure 2.5

shows the same spectrogram when all time-frequency locations with a local SNR of less than 0dB have

been erased. 

Missing feature compensation can now be applied to the incomplete spectrogram shown in Figure 2.5.

A binary representation of Figure 2.5 represents the spectrographic mask for this utterance. Based on local

SNR, it labels which pixels are “reliable” and which are “missing”. 

2.4 Reconstruction Missing Spectrographic Features

Once the unreliable pixels in the noisy mel spectrogram have been erased, we can perform miss

ture compensation. The missing feature methods that will be used in this thesis are called Cluste

Reconstruction and Correlation Based Reconstruction. These methods, developed by Raj [43

SNR l k,( ) 10 10
Px l ωk,( )
Pn l ωk,( )---------------------- 

 log=

l k,( )

Figure 2.4 Mel spectrogram of the utterance “Redefine 
Red Alert” when the speech has been corrupted with 
white noise to 10dB.

Figure 2.5 The same Mel spectrogram but all regions 
with a local SNR of less than 0dB have been deleted.
The white regions of the figure represent the deleted 
regions.
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attempt to reconstruct the missing features by making explicit used of the information contained in the

remaining reliable spectrographic elements. Additionally, both utilize a priori information gained from a

training corpus of clean speech to estimate the missing components of the corrupted spectrographic dis-

play. However, the techniques differ in the kind of a priori information used and how it is applied in the

reconstruction process. 

After missing feature reconstruction is performed in the log spectral domain, the features are trans-

formed to the cepstral domain for recognition using the standard inverse DCT transform. This is an impor-

tant distinction between these methods and other missing feature methods that perform recognition directly

on the log spectra, because speech recognition accuracy is much better when cepstral features are used

rather than log spectral features [13].

2.4.1 Cluster-Based Reconstruction

In the cluster-based reconstruction method, the log-spectral vectors of clean speech training corpus are

grouped into a number of clusters using conventional Expectation-Maximization techniques [14]. The dis-

tributions of the vectors within each cluster are assumed to be Gaussian, and the mean, covariance, and a

priori probability of each cluster are estimated from the training data. To compensate for noisy speech, the

missing features are estimated by first identifying the cluster each corrupted log-spectral vector belongs to

and then using the distributions of these clusters to estimate the noisy missing elements of the vector. Clus-

ter membership is given by the cluster k that has the highest likelihood of generating the noisy vector ,

as given by 

(2.5)

However, because  has missing elements, cluster membership cannot be identified in this way The

missing elements must first be marginalized out of the cluster distributions so that cluster membership can

be estimated only from the components in vector that are present. This marginalization is a crucial step in

properly identifying cluster membership. Because the observed value (considered noisy or corrupt) repre-

sents the combined energy of the speech and the additive noise, we know that this value is the upper bound

on the true value of the speech alone. Therefore, we can use the observed noisy value as the upper bound

for marginalization. Cluster membership is now given by Equation (2.6) where  is a vector of the

S t( )

kS t( ) argmaxk P S t( ) k( )P k( ){ }=

S t( )

Sm t( )
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missing elements of vector and  is the vector of their observed values. 

(2.6)

Once the cluster membership k of a vector has been determined, missing feature reconstruction is per-

formed using bounded MAP estimates based on the Gaussian distribution of the appropriate cluster and the

upper bounds given by the observed corrupt values, as shown in Equation (2.7)

(2.7)

2.4.2 Correlation-based Reconstruction

The correlation-based reconstruction method operates on the premise that the log spectral vectors of

speech are generated by a stationary Gaussian random process. Because of the stationarity assumption, the

means of the elements in the vector are dependent only on their frequency index, not on time. Furthermore,

the covariance between any two elements in a spectrogram is dependent only on their indices and the dis-

tance (in time) between them. Because the distribution of the vectors is assumed to Gaussian, the joint dis-

tribution of all the individual elements in the spectrogram is Gaussian as well. A training corpus of clean,

uncorrupted speech representing samples of this random process is used to estimate its parameters, the

mean and covariance. 

To compensate for missing features using this method, the entire spectrogram is separated into two

parts: the missing components and the observed components. Using the parameters derived from the train-

ing corpus, the MAP estimate of the missing components conditioned on the observed components is com-

puted. This estimate is given by Equation (2.8), where m represents the missing components in the

spectrogram and o represented the observed reliable elements in the spectrogram.

(2.8)

However, jointly estimating all the missing components based on all the observed components in com-

putationally impractical because of the matrix operations required. Therefore, reconstruction is done on a

S t( ) Ym t( )

k̂S t( ) argmaxk P k( ) P S t( ) k( ) Sm t( )d
∞–

Ym t( )

∫ 
 
 

=

Ŝm t( ) argmaxSm
P Sm So µk̂S t( )

Σk̂S t( )
Sm t( ) Ym t( )≤, , ,( ){ }=

Ŝm µm ΣmoΣoo
1– So µo–( )+=
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vector-by-vector basis, jointly estimating the missing components of each vector separately. Furthermore,

the included observed components on which the estimate is conditioned is limited to those in the spectro-

gram that have a relative covariance of 0.5 or greater with at least one missing element in the vector. As

was done in the cluster-based reconstruction method, the MAP estimate of the missing elements can be

upper bounded by the observed “corrupt” value that represents the combined energy of the speech

noise. 

2.4.3 Performance of Missing Feature Methods

Throughout the discussion of missing feature methods, the idea of removing elements of low SN

retaining elements of high SNR has been repeatedly discussed. However, there has been no m

what this SNR threshold used to label the elements as reliable/unreliable is. This is because this th

is not fixed and is dependent on the missing feature method applied. For the methods of Cooke et

threshold has been shown to be 15 dB [8], while the methods used in this work use an SNR thresh

5dB. This number was determined experimentally [43]. To evaluate the effectiveness of the m

described above, a series of experiments was performed using clean speech corrupted with know

sources at various known SNRs. Because the speech signal and the noise signal were both knowna priori,

we could construct “oracle” spectrographic masks based on full knowledge of the local SNR and th

threshold. Figure 2.6 shows recognition accuracy as a function of SNR when speech is corrupt

white noise. Figure 2.7 shows the same plot for speech corrupted with music (which is highly non-s

ary). For comparison, the recognition accuracy when spectral subtraction is used for noise compe
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Figure 2.6 Recognition accuracy obtained missing fea-
ture reconstruction methods are used with oracle masks 
on speech corrupted with white noise.

Figure 2.7 Recognition accuracy obtained missing fea-
ture reconstruction methods are used with oracle masks 
on speech corrupted with music.
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Clearly, these missing feature methods are very powerful if the spectrographic masks are perfectly

identified. There is improvement in the white noise case at every SNR, and more importantly, significant

improvement in the case where speech has been corrupted with music. 

2.5 Summary

In this chapter, we have described the effects of additive noise on a spectrographic representation of

speech. We have shown how regions of a spectrogram with low SNR can be considered “corrupt” 

be removed from the spectrogram to create an incomplete spectrogram. Two missing feature comp

methods have been presented that attempt to reconstruct the missing elements of an incomplete

gram based on the remaining elements and a priori information collected from training data. Finally, w

have demonstrated that these techniques are tremendously effective at reducing the degradation 

recognition performance of noisy speech if full “oracle” knowledge of the spectrographic masks is

able.

Of course, in a real situation, these “oracle” masks are not available. In the next chapter, a

remainder of this thesis, we will describe a classification system to estimate these spectrographic m
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Chapter 3
Classifier-Based Mask Estimation

3.1 Introduction

As shown in Chapter 2, missing feature methods are very powerful noise compensation techniques if

the spectrographic masks identifying all of the corrupt, and therefore “missing” features are know

real situation, we do not have these masks, nor do we have access to the speech and the noise sig

vidually. Therefore, it is necessary to develop a method to estimate these masks using only the a

noisy speech signal. 

In this chapter, we describe the mask estimation problem in further detail and propose a solution

Bayesian classification strategy. We also examine previous related work by other researchers.

3.2 The Mask Estimation Problem

In Chapter 2, we described how local SNR can be used as a measure of the “reliability” of the c

of a spectrographic element. However, without full access to the clean speech and the corrupting n

nal, reliably estimating the local SNR, or even the global SNR of an utterance, is very difficult in som

uation, especially when the corrupting noise is non-stationary. 

However, we do not actually need to know the local SNR. It is important to recognize that we a

trying to estimate the local SNR at every pixel location, but rather we are simply trying to make a 

decision about every pixel’s reliability: either is it usable or it is not. While local SNR is a convenient

sure of “reliability”, it is not the only relevant piece of information. There are perhaps other feature

are easier or more reliable to compute that can be used to distinguish usable and corrupt spectr

pixels. Ideally, we could take all the pieces of information that help decide a pixel’s reliability and com

them to make a single decision. This is a two-class classification problem, where the possible outco

(1) that the pixel is reliable or (0) that the pixel is corrupt. With this strategy, we can combine any a

useful information into the decision process. 

However, the situation is a bit more complicated than it seems at first. Because missing feature m

do not make any assumptions about the nature of the corrupting noise, we would like our mask es
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procedure to be free of assumptions about the noise as well. If we cannot make any assumptions about the

noise signal, we are only left with what we know about speech itself. Therefore, the features used by the

classifier should be based on the intrinsic characteristics of the speech and make few or no assumptions

about the noise. 

3.3 Previous Work

Missing feature methods for robust speech recognition are relatively new, first appearing in 1994 [7].

As a result, the work in mask estimation for missing feature compensation is limited. However, there are

some related fields that have work that is useful to us.

3.3.1 Mask Estimation for Missing Feature Compensation Methods

Other researchers working with missing feature methods have all attempted to estimate the spectro-

graphic masks using a running estimate of the noise spectrum [8]. One such technique for obtaining a run-

ning noise estimate is spectral subtraction [5]. A similar method presented in [43] uses the vector Taylor

series algorithm (VTS) to obtain the running noise estimate. Another method of identifying spectrographic

masks is based on the hypothesis that the energy of highly noisy elements of spectral vectors is signifi-

cantly different from those with low noise[21]. The histogram of spectral elements in any frequency band

over a given time window would therefore exhibit two peaks, one representing the noisy elements and the

other representing the clean elements. Spectrographic masks are derived based on estimates of the noise

spectra obtained as the difference in the positions of the two peaks[10]. No other method has been

employed to identify masks to the best of our knowledge. All of these mask estimation methods perform

well when the corrupting noise is stationary. However, when the noise is non-stationary, they fail and the

mask estimation is very poor. This is illustrated in Figures 3.1 and 3.2. In Figure 3.1, the recognition accu-

racy is plotted versus SNR for speech that has been corrupted by white noise. Two methods of obtaining a

running noise estimate, spectral subtraction and VTS, were used to estimate the spectrographic masks that

were used for missing-feature reconstruction. The masks are quite effective and significant improvements

can be seen over baseline performance. Figure 3.2 shows the recognition accuracy when the same two

mask estimation methods are used for speech that has been corrupted with music. Because the music is

non-stationary, these mask estimations techniques fail and there is no improvement over baseline recogni-
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technique, the performance is actually worse than baseline.

We must recall that the benefit of the missing feature paradigm is that it requires no assumption about

the stationarity characteristics of the noise. It does, however, require an accurate spectrographic mask iden-

tifying reliable and corrupt regions. Therefore, the ability to obtain such a mask when the speech is cor-

rupted with non-stationary noise is critical. To this point, no solution to this problem has been proposed. 

3.3.2 Computational Auditory Scene Analysis

Humans are amazingly capable at distinguishing competing audio streams from each other and isolat-

ing one or more of these streams from the rest. This ability, dubbed the “cocktail party problem” ha

vated extensive research into the perceptual segregation of sound. This research has resulted

theoretical and experimental work in so-called auditory scene analysis by Bregman [6] and others. This le

to the development of early computational models of the auditory system, such as [3] and [50] that 

to emulate our ability to separate concurrent streams of sound from on another. The more recent 

this field has been done by Brown and Cooke [4] and Ellis [16]. Brown and Cooke utilize various fe

derived from grouping and transition cues to separate and organize the individual elements of an a

map, a representation of the higher auditory pathways not unlike a spectrogram display of speech. 

ments are tagged as belonging to a particular audio stream through masks which assign a binary

each element in the auditory map. However, the primary goal of this work is to model the segrega

sound in the auditory system as accurately as possible, not to create a spectrographic masks of rel
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Figure 3.1 Recognition accuracy vs.SNR on speech 
corrupted by white noise when spectral subtracted-
based or VTS-based mask estimation is used with miss-
ing-feature reconstruction.

Figure 3.2 Recognition accuracy vs.SNR on speech 
corrupted by music when spectral subtracted-based or 
VTS-based mask estimation is used with missing-fea-
ture reconstruction.
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corrupt elements. As a result, there is a tremendous amount of complexity in these models that are not

needed for our purposes. Furthermore, the auditory maps that are produced identify all the elements that

belong to a particular sound stream. The notion of “reliable” or “corrupt” is not considered in these m

3.3.3 Co-Channel Speech Separation

One particularly difficult incarnation of the cocktail party effect is the isolation of a single speaker

a mixture of one or more other speakers. When there are two speakers on a single channel, this is k

co-channel speech separation. Extensive research has been done in this field, but without a large a

success. Recently, the work of Morgan et al. [33] and Quatieri [39] has had some promising results

algorithms, however, are primarily focused on the perceptual separation of the two speakers. Tha

end goal is a signal that sounds more separated to a human listener. Because humans and speech

ers process information in different ways, a perceptual improvement does not necessarily translate

improvement in recognition accuracy. 

A pilot experiment was performed to examine the methods in [33] for recognition. The utterances

TIMIT speech corpus [24] were resynthesized at a known constant pitch. The recognition accuracy

resynthesized clean speech was the same as the original clean speech. A second utterance was ad

resynthesized speech at 10 dB to create a corpus of co-channel speech where the pitch of the

speaker was known and constant. The co-channel separation algorithm described in [33] was ap

this corpus utilizing the a priori knowledge of the pitch of the resynthesized speaker. Informal listen

tests conducted on a small audience showed a perceptual improvement in the speech after the s

algorithm was applied. However, the improvement in speech recognition accuracy was small. Th

error rate (WER) of the clean resynthesized speech was 9.5%. When the speech was corrup

another utterance to 10 dB, the error rate increased to 44.6%. After the separation algorithm, error 

reduced to 40.1%. This reduction in error rate is quite small, especially considering the constrained

tions and amount of a priori knowledge available because the speech was resynthesized and monoto

In a real co-channel situation, one would be faced with the need to obtain a pitch estimate of one

of the speakers as a starting point for separating the two speech signals. Reliably estimating pitch

speaker in the presence of another is a very difficult task. Nonetheless, the idea of using pitch info

is a good one and will be examined in greater detail in this thesis.
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3.4 Summary

In this chapter, we have described the challenge of estimating the spectrographic masks required by

missing feature compensation methods. We have proposed a classifier based mask estimation solution and

established the guidelines for its design. Some of the previous work of other researchers in this and other

similar fields has been reviewed. Previous mask estimation methods have been successful if the corrupting

noise is stationary, but unsuccessfully when the noise is not. This is a very important limitation to these

methods. The key benefit of missing feature methods for noise compensation is they do not require any

assumption about the noise and therefore can compensate for any type of additive noise. However, if

masks cannot be estimated in non-stationary noise conditions, this benefit will be lost, and missing feature

methods will become yet another compensation method that requires the assumption of noise stationarity.

In the related fields of auditory scene analysis and co-channel speech separation, we have discussed some

ideas that might be relevant to the mask estimation problem, but also highlighted important differences in

the problems they are trying to solve and the problem of spectrographic mask estimation. 

In this thesis, we set out to design a classifier that can generate spectrographic masks for speech cor-

rupted by noise. We will not place any constrains on the noise, nor make any assumptions about its charac-

teristics. Rather, our classifier will rely on the intrinsic characteristics of the speech signal itself. In the next

chapter, we will examine pitch, one of the key intrinsic characteristics of speech, and present a new robust

pitch detection algorithm. Reliable estimates of the pitch will play a significant part in the classification

system for mask estimation. 
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Chapter 4
Histogram-Based Pitch Detection Algorithm

4.1 Introduction

Human speech can be categorized in many ways. One popular way is to distinguish voiced speech from

unvoiced speech [41]. The main difference in voiced and unvoiced speech is the periodicity present in

voiced speech. This results in local peaks in the spectrum of voiced speech at the fundamental frequency,

F0, and its harmonics. This harmonic structure is also a key difference between voiced speech and most

interfering noise signals.  Because of this periodicity, most of the signal energy of voiced speech is con-

tained within its harmonics [33]. Interfering noise, however, follows no such pattern. This energy pattern in

voiced speech can be useful for estimating the noise level present at spectrographic locations. However, we

can only take advantage of this knowledge if we know the fundamental frequency, or pitch, of the speech

signal, which of course, we do not. Furthermore, if we wish to build separate classifiers for voiced speech

and unvoiced speech, we also need to accurately label all frames of an utterance as voiced or unvoiced.

There has been extensive work done in pitch detection [20][40]. These pitch detection algorithms

(PDA) all work quite well when the speech signal is relatively noise free, but the accuracies of their pitch

estimation and voiced/unvoiced labeling decrease significantly as noise is added to the signal. We have

attempted to address this problem by developing a new pitch detection algorithm that is more robust to

additive noise than previous methods. In this chapter we will describe the details our pitch detection algo-

rithm and compare its performance to a well-known and widely used pitch algorithm, RAPT (Robust Algo-

rithm for Pitch Tracking) [48], in both the clean and noise-corrupted speech conditions. 

4.2 The Algorithm

The human auditory system is remarkably robust to environmental noise. We are easily able to isolate a

single auditory stream from a several interfering streams. For instance, we can focus on a single speaker in

a crowded room (the well-known “cocktail party” effect) or a single instrument or group of instrum

playing in a symphony. An extensive amount of work, such as [30][4], has been done to model the

processing of the peripheral auditory system.  The peripheral auditory system can be represented a
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of band pass filters whose filter spacing is approximately linear at lower frequencies and logarithmic at the

higher frequencies, with bandwidth that increases with increasing center frequency. We have attempted to

use this knowledge as a basis for our pitch detection algorithm. This multi-band approach is similar to that

used in the model of the auditory periphery by Meddis and Hewitt [30] and more recently in the computa-

tional auditory scene analysis work of Cooke[4] and Ellis [16]. However, in these methods, information in

the each of the subbands is pooled together into a “summary” function to make a single pitch estim

the algorithm presented here, a pitch estimate is computed in every subband and the multiple pi

mates are used to determine the final pitch estimate. The pitch estimation algorithm has four mai

band-pass filtering, autocorrelation, creating the pitch period histogram, and smoothing. 

4.2.1 Band-Pass Filtering

The Seneff filterbank [45] is one model of the filtering done by the peripheral auditory system

comprised of 40 filters, implemented with a cascade/parallel network as shown in Figure 4.1 (from 

FILTER A is an FIR filter with eight zeros

Each of the 40 FILTER B filters is FIR with 2 zeros

Each of the 40 FILTER C filters is IIR with 4 poles and 4 zeros.

The composite frequency response of the filterbank is shown in Figure 4.2.

FILTER A FILTER B

FILTER C

FILTER B FILTER B

FILTER C FILTER C

Output 1 Output 2 Output 40

Speech
Input

Figure 4.1 Cascade/parallel implementation of the Seneff filterbank.
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4.2.2 Autocorrelation

After band-pass filtering, we have forty subband representations of the speech signal. Each of the forty

subbands of speech contains the harmonics of F0 that reside within the bandwidth of that subband. The

fundamental period of the speech in each subband is determined by autocorrelation, smoothing and peak

detection. To eliminate spurious peaks from the signal and detect peaks more reliably, the autocorrelation

outputs are passed through a low-pass filter and an envelope detector. The distance between the two largest

peaks represents the fundamental period of the signal. At the end of the autocorrelation step of the algo-

rithm, we have forty estimates of the pitch period for a frame of speech, one for each subband in the filter-

bank.

4.2.3 Creating the Pitch Period Histogram

The forty pitch period estimates for the frame of speech are pooled into a pitch period histogram. For

voiced speech, a single period estimate dominates the distribution of the forty candidate values. This is

illustrated in Figure 4.3. However, for unvoiced speech, this distribution is roughly uniform, as shown in

Figure 4.4. The initial pitch period estimate for the frame is determined by majority rule. If a single period
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Figure 4.2 Composite Frequency Response of the Seneff filterbank.
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dominates 25% or more of the frequency bands, the frame is labelled as voiced, with a fundamental fre-

quency determined by the winning pitch period and the sampling rate. Otherwise, the frame is initially

labelled as unvoiced, and the majority pitch candidate is stored for later processing.

4.2.4 Smoothing 

After band-pass filtering, autocorrelation and histogramming are performed on all frames of an utter-

ance, we have an initial labeling of each frame as either voiced or unvoiced, as well as a pitch estimate for

the voiced frames. Additionally, we have retained a potential pitch estimate for each unvoiced frame. This

information is processed by a rule-based smoothing algorithm. The following rules are used to smooth the

estimated pitch contour:

• a voiced segment of speech must consist of at least 3 consecutive frames. Any voiced se

less than 3 frames in length are relabeled as unvoiced

• an unvoiced segment must also last at least 3 frames. Any unvoiced segment that is less

frames is considered incorrectly labeled and changed to voiced speech. The pitch estima

these frames are determined by linearly interpolating between the pitch estimates of the 

ing adjacent voiced frames.

• At voiced/unvoiced or unvoiced/voiced boundaries, the candidate pitch estimates of the 

unvoiced regions are re-evaluated.  If  the unvoiced frames at the boundary have a pitch

mate that is within a fixed threshold of the neighboring voiced frames, those frames are 

beled as voiced. This threshold was empirically set at 8Hz. 
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Figure 4.3 Pitch period histograms for voiced speech. Figure 4.4 Pitch period histograms for unvoiced 
speech.
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4.3 Performance Evaluation

The pitch detection algorithm presented here was evaluated using a corpus of speech waveforms with

simultaneously recorded laryngograph data [12]. The laryngograph data was then processed using methods

reported in [2] to develop an oracle pitch contour for each waveform. Our pitch detection algorithm was

compared to another widely used pitch detection algorithm, RAPT. Four criteria were used to evaluate the

pitch detection algorithm. Frames of voiced speech erroneously labeled as unvoiced speech and frames of

unvoiced speech erroneously labeled as voiced speech were accumulated over the entire test set. The root

mean squared error of the pitch estimates was computed over all regions where the oracle pitch and the

pitch estimate were both voiced.  Additionally, the number of frames where the pitch estimate was more

than 20% away from the reference value was also computed. These were considered gross errors. Similar

pitch detection algorithm performance metrics were reported in [2]. The test set consisted of the first 100

utterances from the oracle corpus. The pitch detection algorithms were run on both clean speech and

speech corrupted with white noise to various SNRs. The results are shown in Table 4.1. The histogram-

based pitch detection algorithm is generally more accurate than RAPT. However, the RAPT pitch tracking

algorithm is significantly faster than the histogram-based pitch algorithm. An utterance that was 3.52 sec-

onds long was processed by both pitch detection algorithms. Each algorithm generated pitch estimates for

the utterance fifty times, and the average computation time was computed. The RAPT algorithm generated

the pitch estimates in 3.5 seconds on average, while the histogram-based method took an average of 58.8

seconds to generate the pitch estimates for the same utterance.

clean speech 20 dB AGWN 10 dB AGWN 0 dB AGWN

RAPT HB RAPT HB RAPT HB RAPT HB

% error voiced 1.4 3.7 5.8 6.4 16.7 11.6 55.0 30.1

% error unvoiced 15.5 5.5 9.1 4.6 5.2 3.5 1.5 1.8

% gross error 0.3 0.05 0.2 0.03 0.08 0.01 0.0 0.1

RMS voiced error 3.6 1.8 3.2 1.8 2.3 1.8 1.6 1.8

Table 4.1. A comparison of two pitch detection algorithms, RAPT, and the Histogram-Based Pitch Detection
Algorithm (HB), for clean speech and speech corrupted with white noise.
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4.4 Summary

In this chapter, we presented a new pitch detection algorithm that is more accurate and more robust to

additive noise than other methods. However, the algorithn is also slower than other methods. We now have

a reliable method of labeling frames of speech as voiced or unvoiced, and estimating the pitch in voiced

frames. This enables us to create a separate classifier for voiced and unvoiced speech. Furthermore, we

will see in Chapter 5 how this pitch information can be used to develop pitch-related classification features

to analyze noise-corrupted speech. 
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Chapter 5
Feature Extraction

5.1 Introduction

Perhaps the most important step in developing a classification scheme is the feature extraction. Regard-

less of the sophistication of the classifier, poor features will result in a poor classifier. Ideal features are

those that maximize the discriminability between the classes. Features that result in good separation of the

classes make the job of the classifier much easier. 

Because voiced speech and unvoiced speech are generated by different production mechanisms, they

have very different characteristics. As a result, we want to make a distinction between the features used to

classify the reliability of spectrographic locations in voiced speech and those used to classify the reliability

of the spectrographic locations in unvoiced speech. We will see in Chapter 6 that the use of different fea-

tures for voiced and unvoiced speech necessitates the use of a separate classifier for each type of speech.

Additionally, we want to create features that make minimal assumptions about the corrupting noise signal

by relying on the inherent characteristics of the speech signal itself.

In this chapter we discuss the characteristics of voiced speech and then develop a series of features that

exploit these characteristics to capture the influence of noise on each spectrographic location. We then

focus on the characteristics of unvoiced speech and describe the features that are used to identify noisy ele-

ments in unvoiced spectrographic regions.

5.2 Features for Voiced Speech

We would like to develop features for our classifier that exploit the intrinsic structure of speech itself,

rather than depending on assumptions about the noise characteristics. The two key characteristics of voiced

speech that we utilize in the design of our classification features are the presence of a strong fundamental

frequency (pitch), and all of its harmonics, and the distinctive spectral contour of voiced speech across fre-

quency.

5.2.1 Comb Ratio
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Because of the harmonic nature of voiced speech, the majority of the energy of a clean voiced speech

signal resides in its harmonics [33].  Additive noise does not typically have this characteristic.  Therefore

when additive noise is mixed with voiced speech, the overall signal energy will increase both at the har-

monics of the pitch and at the frequencies in between.  Therefore, a measure that compares the energy in

the harmonics of voiced speech to the energy outside the harmonics would be a good indicator of noise

present in the signal.  

The amount of energy present in the harmonics can be captured using a comb filter. A comb filter has

peaks at the harmonics of the fundamental frequency (n*F0) and nulls in between (n*F0 + F0/2). Tradi-

tional comb filters are simply delay-and-add filters. The signal is shifted by a single period, added to the

original signal, and normalized. The frequency response is very soft and only has significant attenuation

exactly halfway between harmonics. For a sharper response, an IIR implementation can be used [21]. In

this implementation, given by the transfer function in Equation (5.1), p is the pitch period and g is a tunable

parameter which sets the distance of the poles from the unit circle, and hence, the sharpness of the teeth of

the comb. 

(5.1)

It was determined empirically that setting g = 0.7 captures most of the harmonic information of voiced

speech. The frequency response of this comb filter for a pitch of 160 Hz (p = 100 for a sampling rate of 16

KHz) is shown in Figure 5.1.

Hcomb z( ) z p–

1 gz p––
-------------------=
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Figure 5.1 The magnitude frequency response of the IIR comb filter when g = 0.7 and p=100. The peaks are at the 
harmonics of 160 Hz. 
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To capture the energy of the components of the signal that fall in between the harmonics, the comb fil-

ter is simply shifted by F0/2. The transfer function for this shifted comb filter is given by Equation (5.2).

(5.2)

If we assume that the voiced speech resides at the harmonics of the fundamental frequency while noise

may reside in all frequency bands, the comb filter is a measure of speech and noise energy while the shifted

comb filter is a measure of noise energy only. Thus, the log ratio of the energies of the speech signal passed

through the comb and shifted comb filters is a measure of speech plus noise to noise. The cleaner the

speech signal is, the larger this ratio will be. We call this metric the comb ratio. The comb

ratio, , is given by Equation (5.3), where and  are the outputs when the speech

signal in frame and subband  have been passed through the comb and shifted comb filters, respec-

tively,

(5.3)

The comb ratio can be used as a measure of SNR. Figure 5.2 shows a plot of the average comb ratio

over all voiced frames and all sub-bands vs. global SNR for an utterance corrupted with white noise and

with music. In both cases, the comb ratio tracks with SNR and the two lines are very similar even though

the corrupting signals had very different characteristics. 

5.2.2 Autocorrelation Peak Ratio

The pitch algorithm described in Chapter 4 used autocorrelation to determine the fundamental period of

the speech in each subband by finding the lag between the two largest peaks. If a signal is purely periodic,

then the peaks of the autocorrelation function will all be of uniform height, determined by the energy of the

signal. If a signal is quasi-periodic, such as voiced speech, the secondary peaks in the autocorrelation func-

tion will be less than or equal to the height of the main peak. The less periodic the signal is, the smaller the
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secondary peaks will be. Adding uncorrelated noise to a signal effectively reduces its periodicity, increas-

ing the difference in the heights of the main peak and the secondary peaks. Therefore, we can use the ratio

of the height of largest secondary peak to the height of the main peak as a measure of periodicity. Because

voiced speech is quasi-periodic, the autocorrelation peak ratio will be close to one for clean speech and

decrease as the signal is increasingly corrupted by noise. 

5.2.3 Subband Energy to Fullband Energy Ratio

In addition to its characteristic harmonicity, voiced speech has a distinct spectral shape. The energy of

voiced frames is concentrated at the lower frequencies and tails off at higher frequencies. In Figure 5.3, the

solid line shows the smoothed log spectrum of the vowel “EH” derived from its LPC coefficients. T

local peaks represent the first 3 formants, or resonant frequencies of the vocal tract. As noise is a

the speech, its spectral shape will change as a function of the spectral characteristics of the no

dashed line in Figure 5.3 shows the same vowel spectrum when white noise has been added to the

is evident that additive noise has a more significant impact on the valleys of the spectrum than the

We can use the log ratio of the energy in a subband to the overall frame energy as a measure of 

additive noise on a particular subband and on the overall contour. 
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Figure 5.2 Average Comb Ratio vs. SNR for all voiced bands in an utterance for speech corrupted with noise and 
speech corrupted with music. 
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 white 
5.2.4 Subband Energy to Fullband Noise Floor Ratio

Having knowledge of the noise floor of a noise-corrupted speech signal is obviously very useful for

estimating the SNR. However, an accurate measure of the noise floor is difficult to obtain. If we assume

that the corrupting noise is stationary, we can coarsely estimate the level of the noise floor by looking at the

distribution of the energy of the frames in an utterance. These distributions typically have two modes, one

at a low energy value representing the silence and low energy speech regions and one at a higher energy

representing high energy speech regions. The idea of statistically modeling the energy distributions of

speech has been used for speech endpoint detection using HMMs. We have used a much simpler technique

to get a rough estimate of the noisefloor. The energies of all frames of an utterance are put into a histogram

and the lower energy peak is found. The energy bin in the histogram corresponding to this peak value is

considered the noise floor of the noisy speech signal. We can compare the energies of a subband of a frame

of speech and the overall noise floor of an utterance to help determine the likelihood that a specific spectro-

graphic location has been corrupted by noise. It is important to point out that using the energy of the

silence frames to estimate the noise floor of the entire utterance implies stationarity of the interfering noise.

If the noise is highly non-stationary, the noise floor estimate will not necessarily be accurate.

5.2.5 Subband Energy to Subband Noise floor Ratio

Frequency (Hz)
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speech corrupted with white noise

Figure 5.3 The smoothed spectrum of a vowel “EH” derived from its LPC coefficients. The solid line shows the
spectrum for clean speech and the dashed line show the spectrum when the speech has been corrupted with
noise to 10db.
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While the subband energy to global noise floor ratio is a useful feature, we can gain more local noise

information by repeating the noise floor estimation technique in each subband. In this case, the energy of a

subband of a frame of speech is compared to the estimate of the noise floor of the utterance in that particu-

lar subband.

5.2.6 Flatness

As was noted earlier, voiced speech exhibits a very definitive trajectory across frequency, and when

noise is added to the speech utterance, this spectral shape will change.  As shown above in Figure 5.3, the

valleys in the spectrum tend to flatten as noise is added to a speech signal. This “flatness” can be c

ized by the variance  of the subband energy in a neighborhood of spectrographic locations a

given pixel. For an 3x3 neighborhood of pixels, the flatness is given by Equation (5.4), where 

represents the subband energy of frame  and subband , and  is the mean of the s

energy values in a 3x3 neighborhood around frame  and subband .

(5.4)

For a given subband, a signal corrupted with noise tends to have shallower, flatter valleys t

uncorrupted counterpart. Therefore, we expect noise-corrupted spectrographic locations will have 

variance than cleaner ones. 

5.3 Features for Unvoiced Speech

Unvoiced speech is much more difficult to characterize than voiced speech. Because it is gene

air passing over relaxed vocal chords, the excitation signal is essentially random. There is no harm

or other regularity as in voiced speech. As a result, the pitch-related features developed for voiced

will be ineffective for unvoiced speech. Unvoiced speech also has lower energy than voiced speec

therefore more affected by noise than voiced frames. However, it does have a general spectral sha
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unlike voiced speech and most naturally occurring noises. Unvoiced speech energy is concentrated at the

higher frequencies and tails off at lower frequencies. Figure 5.4 shows the log spectrum of the “SH”

derived from its LPC coefficients. The voiced speech features that do not rely on pitch characterize 

of speech in terms of the relative energy levels in each of the subbands, and the overall and local

shape. They are useful features because we know that adding noise to a speech signal alters both

tive subband energy levels and the spectral shape. This is true for both voiced and unvoiced speec

the energy distribution of unvoiced speech across frequency is very different from that of voiced sp

too will be altered by additive noise. As a result, we can use the remaining four non-pitch depende

tures to characterize unvoiced speech.

5.4 Summary

In this chapter, we have described the features we will use in our classification scheme to detect

spectrographic locations. The pitch algorithm described in Chapter 4 enables us to develop two

related features: the comb ratio and the autocorrelation peak ratio. These features exploit the inher

odicity and harmonicity of voiced speech to estimate the noise levels in each subband. We have als

oped four additional features to characterize the influence of noise in a particular subband of speec

features exploit the characteristic energy distributions of voiced and unvoiced speech across frequ

capture the level of noise corruption in each spectrographic location.
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Figure 5.4 The smoothed spectrum of the unvoiced phoneme “SH” derived from its LPC coefficients. 
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In the next chapter, we will describe the classification scheme that uses these features to decide if a

spectrographic element is reliable or corrupt.
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Chapter 6
Classification Strategy

6.1 Introduction

To estimate a spectrographic mask, we need to decide whether each pixel in the spectrogram is reliable

or corrupt. In the previous chapter, we generated a feature set to characterize the distinctions between good

pixels and bad pixels. This feature set can now be used to make a decision about the reliability of the infor-

mation in the spectrogram at every time-frequency location. In this chapter, we present the decision strat-

egy we will use, Bayesian classification. We construct a two-class classifier using the features described in

Chapter 5. Through a series of experiments, we describe the performance of the classifier with regard to

mask estimation accuracy and speech recognition accuracy achieved when the estimated masks are part-

nered with missing feature compensation methods. 

6.2 Bayesian Classification

For every spectrographic location, we would like to decide, based on a set of features, if the location is

more likely to be reliable or corrupt. That is, given an input feature vector, the classifier should estimate

which class, reliable or corrupt, is more likely to have produced these features. Mathematically, the classi-

fier should assign the feature vector  to the class  that has the highest a posteriori probability

over both classes j={0,1}. This is expressed in Equation (6.1), where  indicates that we choose

class 1 if  and class 0 if .

(6.1)

Because the a posteriori probabilities are usually not directly known, we use Bayes Rule, shown in

Equation (6.2), to express this a posteriori probability as a function of the class conditional probability

, the class prior probability , and the prior probability of the feature vector .
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The class conditional probability and the class prior probability for each class can be determined from

the distributions of the classes learned from training data. Using the a posteriori probabilities of each class

and Bayes rule, we can derive a likelihood ratio, shown in Equation (6.3), that describes the decision

boundary between the two classes.

(6.3)

Note that the prior probability of the feature vector  has been removed because it is constant over

both classes. In our classifier, we assume that the distributions of the features are Gaussian. The likelihood

ratio now describes the decision boundary between two multivariate Gaussian distributions. After taking

the log of both sides and some manipulation, the log likelihood ratio is given by 

(6.4)

where  and  are the mean and covariance matrix, respectively, of the feature vectors in class j. These

parameters are estimated from the training data. 

We will use this multivariate Gaussian classification strategy with full covariance matrices to generate

the spectrographic masks. Because the feature vectors are different for voiced and unvoiced speech, we

will use a different classifier for each type of speech. In addition, the values of the features themselves may

vary significantly from subband to subband within each class. For example, Figure 6.1 shows the mean

value of the comb ratio feature across all twenty subbands for each class. The mean value for the “

class, indicated by the solid line in the figure, varies from 2.2 dB in the first mel filter to 0.12 dB i

twentieth mel filter. If we pool the data from all the subbands into two large classes, the class distrib

will be broader and discrimination between the classes will be more difficult. Therefore, we will also

a separate classifier for each subband of the spectrogram. 

P ωj x( )
P x ωj( )P ωj( )

P x( )
----------------------------------=

P x ω1( )
P x ω0( )
--------------------

P ω0( )
P ω1( )
---------------><

ω1

ω0

P x( )

0.5
Σ0

Σ1
-------- 

  0.5 x µ1–( )TΣ1
1–

x µ1–( )– 0.5 x µ0–( )TΣ0
1–

x µ0–( )
P ω0( )
P ω1( )
--------------- 

 log–+log 0><
ω1

ω0

µj Σj



Chapter 6. Classification Strategy 33

hat is,

ess than

e com-

mask as

r to the

an make:

t as

 two

-

6.3 Mask Evaluation Criteria

In order to determine the effectiveness and the accuracy of the masks estimated by the classifier, cer-

tain performance criteria must be established by which the masks can be judged. The performance of the

classifier will be evaluated in two ways. First, the classification accuracy of the estimated masks will be

considered. Secondly, we will determine the improvement in recognition accuracy achieved when the clas-

sifier-generated masks are used in conjunction with missing feature compensation techniques.

It has been shown that the missing feature reconstruction methods described in Chapter 2 perform opti-

mally when the SNR threshold that determines a spectrographic element’s reliability is -5 dB [43]. T

elements with a local SNR greater than -5 dB are considered reliable and those with a local SNR l

-5 dB are considered corrupt. If perfect knowledge of the noise is available, the local SNR can b

puted for every spectrographic location and the optimal mask can be constructed. We refer to this 

the oracle mask. 

We measure the accuracy of the classifier by comparing the masks estimated by the classifie

oracle masks. In a two-class problem such as this one, there are two types of errors the classifier c

misses and false alarms. We define a miss as the incorrect labeling of a corrupt spectrographic elemen

reliable and a false alarm as the incorrect labeling of a reliable element as corrupt. Similarly, there are

types of correct identifications the classifier can make: hits and correct rejections. We define a hit as the

correct labeling of a corrupt spectrographic element and a correct rejection as the correct labeling of a reli
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Figure 6.1 The mean value of the comb ratio for each class as a function of the mel spectrum subband. The large dis-
parity in the values from filter to filter suggests that using a separate classifier for each subband would be appropriate.
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able spectrographic element. The counts of all four possible classifier outcomes can be accumulated and

used to estimate the probabilities of a hit, miss, false alarm and correct rejection for each classifier. Clearly,

a classifier which maximizes the hit probability and minimizes the false alarm probability is optimal and

will result in the most accurate spectrographic masks.

Performance of the classifier was also measured in terms of the speech recognition accuracy achieved

when the estimated masks are combined with missing feature compensation methods. The upper bound for

recognition performance is considered to be the accuracy attained when missing feature reconstruction is

performed using the oracle spectrographic masks. This accuracy, shown in Figure 6.2, is considered the

best possible performance. In addition, the relative importance of mask estimation accuracy in the voiced

regions and the unvoiced regions was also determined. Figure 6.2 also shows the recognition accuracy

when the oracle mask is only applied to the voiced regions and the unvoiced regions are left untouched,

and the reverse case, when compensation is applied only to the unvoiced regions. The recognition accuracy

is considerably higher when compensation is applied only to the unvoiced regions as compared to only the

voiced regions. Based on these plots, we can infer that the accuracy of the mask estimation for the

unvoiced speech regions is more important for recognition than that of the voiced speech regions. This is

logical when we consider that unvoiced speech is typically of lower energy than voiced speech, so that for

a given global SNR, the unvoiced regions of the spectrogram will be more corrupt that the voiced regions. 
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Figure 6.2 Recognition accuracy as a function of SNR on speech that has been corrupted by white noise. Missing fea-
ture compensation was applied using oracle spectrographic masks applied both the voiced and unvoiced regions, only 
the unvoiced regions and only the voiced regions. 
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6.4 Effects of Mask Estimation Error on Missing Feature Methods

Errors in the mask estimation will certainly affect the performance of the missing feature reconstruc-

tion algorithms. Because missing feature methods reconstruct the missing elements from the remaining

reliable ones, the two kinds of errors, misses and false alarms, will not have the same effect. This becomes

apparent if we consider the limiting case for both errors. If every pixel is declared reliable, there will be no

false alarms. No features will be removed from the spectrogram, and no reconstruction of missing features

is required. Speech recognition performance will be the same as that of noisy speech with no compensa-

tion. On the other hand, every pixel is labeled as unreliable, there will be no misses. All the elements in the

spectrogram will be considered missing and erased. With no features remaining in the spectrogram, both

missing feature reconstruction and recognition are impossible. The effect of false alarms and misses on the

performance of the missing feature methods is illustrated in Figures 6.3 and 6.4 (from [43]). In Figure 6.3,

random false alarms were introduced into the spectrographic masks of speech corrupted to 15 dB by white

noise. There were no misses introduced. The figure shows how recognition accuracy is affected by an

increasing percentage of false alarms. Similarly, Figure 6.4 shows the recognition accuracy as a function of

the percentage of random misses introduced into the spectrographic masks. Clearly, the performance of the

missing feature reconstruction methods, and hence, recognition accuracy, degrades much more quickly

with increasing numbers of false alarms than misses. The classifier therefore should favor misses over

false alarms. 
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Figure 6.3 Recognition accuracy derived from recon-
structed spectrograms, as a function of the fraction of 
reliable elements in the spectrogram that were errone-
ously tagged as being unreliable

Figure 6.4 Recognition accuracy derived from recon-
structed spectrograms, as a function of the fraction of 
unreliable elements in the spectrogram that were errone-
ously tagged as being reliable
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We can bias the classifier to favor misses over false alarms by incorporating a cost factor  into the

classifier.  represents the cost of choosing class i when the test vector really belongs to class j. Using

this notation, we can assign  as the cost of a false alarm,  as the cost of a miss and and  the

costs of a correct assignment. It can be shown [15] that this cost factor changes the likelihood ratio in

Equation (6.3) to: 

(6.5)

(6.6)

(6.7)

As shown in Equations (6.6) and (6.7), by incorporating decision costs into the classifier, we effec-

tively alter the prior probabilities of the two classes to favor one type of error over the other.

6.5 Experimental Results

To determine the effectiveness and accuracy of the classifier-based mask estimation, experiments were

performed on speech corrupted by noise. In the first series of experiments, we corrupt speech with Gauss-

ian white noise. To measure the performance of the classifier when the corrupting noise is non-stationary,

we perform another series of experiments on speech that has been corrupted with music. 

6.5.1 Mask Estimation on Speech Corrupted by White Noise

To estimate spectrographic masks for speech corrupted with white noise, the classifier was trained on

2880 utterances from the DARPA Resource Management speech corpus [38]. The speech was corrupted

with white noise to various SNRs between 0 dB and 25 dB. The pitch estimates, necessary for the pitch-

dependent features of the voiced regions, were estimated from the noise-corrupted speech using the histo-

gram-based pitch detection algorithm described in Chapter 4. Because we had access to both the clean

speech signal and the noise signal, the training vectors could be correctly labeled based on the local SNR.
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In all subbands, training vectors with a local SNR of less than -5 dB were assigned to class 0 (missing) and

training vectors with a local SNR greater than -5 dB were assigned to class 1 (reliable). Using this labeled

training data, the mean vector and covariance matrix of each class were estimated for each subband and

type of speech. 

We expect the prior probabilities of corrupt and reliable elements to vary with the global SNR. That is,

at higher noise levels, more spectrographic elements will be corrupt than at lower noise levels. However,

because we do not know the global SNR, we need to choose constant prior probabilities that yield the best

recognition accuracy over all SNRs. The appropriate values for the prior probabilities  and

 were determined through a series of experiments conducted on a cross-validation set. The cross

validation set consisted of 200 utterances from the Resource Management corpus. There is no overlap

between the cross validation set and the training or test sets. The cross validation set was corrupted by

white noise to a range of SNRs and mask estimation was performed using various values of  and

. Figures 6.5 and 6.6 show Receiver Operating Curves (ROC) for various prior probabilities for

the voiced and unvoiced classifiers. The number labeling each data point in the figures is the prior proba-

bility of a corrupt element,  used in each trial. The prior probability of a reliable element

is therefore .

The estimated masks and the log mel-spectral vectors were passed to the cluster-based missing feature
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Figure 6.5 ROC of the mask estimation for the voiced 
regions of speech corrupted with white noise. The value 
next to each data point is the prior probability of a cor-
rupt spectrographic element. 

Figure 6.6 ROC of the mask estimation for the 
unvoiced regions of speech corrupted with white noise. 
The value next to each data point is the prior probability 
of a corrupt spectrographic element.
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algorithm described in Chapter 2 and the log mel-spectral elements declared missing by the masks were

reconstructed. The twenty-dimensional reconstructed log mel-spectral vectors were transformed to thir-

teen-dimensional cepstral vectors for recognition. Speech recognition was performed using Sphinx III, an

Hidden Markov Model (HMM) based large vocabulary speech recognition system. Continuous context-

dependent HMMs with single Gaussian state distributions were trained on clean speech using the 2880

utterances from the Resource Management training set. Figure 6.7 shows the recognition accuracy

obtained using the reconstructed spectrograms. Based on the results from the cross validation data, prior

probabilities of  and  provided the best overall recognition accuracy. It is

interesting to note that although a best prior probability value can be found from the cross validation data,

the recognition accuraracies are remarkably close over the range of prior probabilities shown.

Using these values for the a priori probabilities, a series of experiments was performed on the test

data. The test set consisted of 1600 utterances from the Resource Management corpus. None of the speak-

ers in the test set appeared in the training or cross validation sets. In each experiment, the test set was cor-

rupted with white noise at a fixed SNR. 

The spectrographic masks for all utterances in the test set were estimated by the classifier. Figure 6.8

shows a typical estimated spectrographic mask generated by the classifier. The oracle mask for the same

utterance is shown in Figure 6.9. The estimated mask is quite successful at capturing the trends of the ora-

cle mask. The estimated mask does not fully capture the block nature of the corrupt regions of the spectro-

gram but most corrupt regions have been accurately identified. The estimated masks were compared to the

oracle masks to measure the performance of the classifier. The classifier accuracy is shown in Figure 6.10
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Figure 6.7 Recognition accuracy of the cross validation set vs. SNR using the classifier to estimate the spectro-
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in terms of hit probability and false alarm probability of the mask estimation for the voiced regions over a

range of SNRs. The classifier performance in the unvoiced regions is illustrated in Figure 6.11.

As before, missing feature reconstruction was performed on the elements declared corrupt by the esti-

mated masks and the reconstructed vectors were converted to cepstra for recognition. Figure 6.12 shows

the recognition accuracy as a function of global SNR for speech corrupted with white noise when the esti-

mated masks are used with the cluster-based missing feature reconstruction method. For comparison, the

figure also shows the recognition accuracy obtained when spectral subtraction is used for noise compensa-

tion and when cluster-based reconstruction is performed using VTS-based masks. Figure 6.13 shows the

Figure 6.8 Estimated mask for an utterance corrupted 
with white noise to 10dB. The horizontal axis is frame 
number and the vertical axis is Mel filter number. The 
black pixels indicate corrupt or “missing” features. The 
white pixels indicate reliable features.

Figure 6.9 Oracle mask for an utterance corrupted wit
white noise to 10dB. The horizontal axis is frame num
ber and the vertical axis is Mel filter number. The blac
pixels indicate corrupt or “missing” features. The white
pixels indicate reliable features.
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Figure 6.10 Mask accuracy for the voiced speech 
regions as a function of SNR for speech corrupted with 
white noise. The prior probabilities were constant over 
all SNRs and subbands. Corrupts elements labeled cor-
rectly are “hits”. Reliable elements labeled as corrupt 
are “false alarms”.

Figure 6.11 Mask accuracy for the unvoiced speech 
regions as a function of SNR for speech corrupted wi
white noise. The prior probabilities were constant ove
all SNRs and subbands. Corrupts elements labeled c
rectly are “hits”. Reliable elements labeled as corrupt 
are “false alarms”.
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same plots when the correlation-based method is used for missing feature reconstruction. All of the mask/

missing feature compensation methods clearly outperform spectral subtraction for noise compensation.

The performance of the classifier-based masks is almost identical to, but not better than VTS-based mask

estimation, the best mask estimation technique reported in the literature [43]. Both mask estimation tech-

niques are close to the oracle mask performance, especially at high SNRs. These results are very encourag-

ing, as classifier-based mask estimation has achieved comparable performance to the best reported mask

estimation method, yet requires none of the stationarity assumptions about the noise used by other meth-

ods.

6.5.2 Mask Estimation on Speech Corrupted by Music

Similar experiments were performed on speech corrupted with music. The training and test set utter-

ances from Resource Management were corrupted with music from the “Marketplace” radio show

music is highly non-stationary. Because music also has a strong harmonic structure, the performan

pitch detection algorithm was poor on speech corrupted with music. Therefore, for the purposes o

experiments, pitch estimates extracted from clean speech were used to derive the pitch-dependen

to train and test the classifier. Again, a cross validation set also corrupted with music was used t

mine the optimal prior probabilities of the two classes. As in the white noise case, mask estimati

performed using several different prior probability values, followed by cluster-based missing fe

reconstruction and recognition. Figure 6.14 shows the recognition accuracy over three different SN

various prior probabilities. In this case, the prior probabilities that gave the best recognition perfor
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Figure 6.12 Recognition accuracy using cluster-based 
reconstruction vs. SNR for speech corrupted by white 
noise. 

Figure 6.13 Recognition accuracy using correlation-
based reconstruction vs. SNR for speech corrupted by 
white noise. 
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th 
were  for corrupt elements and  for reliable elements.

Using these values for the prior probabilities, mask estimation was performed on the test set of music-

corrupted speech. The accuracy of the mask estimation for the voiced and unvoiced speech regions is

shown in Figure 6.15 and Figure 6.16, respectively.  Masks generated by the classifier were passed to the

missing feature algorithms and the spectrograms of the music-corrupted speech were reconstructed. The

reconstructed log spectra were converted to cepstra and recognition was performed. Figure 6.17 shows the

recognition accuracy as a function of SNR for speech corrupted with music when the cluster-based recon-

struction method is used. Again, the recognition results obtained using spectral subtraction for noise com-

pensation and using VTS-based masks with cluster based reconstruction are shown for comparison. Figure
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Figure 6.14 Recognition accuracy of the cross validation set vs. SNR for speech corrupted with music, using variou
prior probabilities in the classifier to estimate the spectrographic masks and then applying cluster-based missing fea
ture compensation.
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Figure 6.15 Mask accuracy for the voiced speech 
regions as a function of SNR for speech corrupted with 
music. The prior probabilities were constant over all 
SNRs and subbands. Corrupts elements labeled cor-
rectly are “hits”. Reliable elements labeled as corrupt 
are “false alarms”.

Figure 6.16 Mask accuracy for the unvoiced speech 
regions as a function of SNR for speech corrupted wi
music. The prior probabilities were constant over all 
SNRs and subbands. Corrupts elements labeled cor-
rectly are “hits”. Reliable elements labeled as corrupt 
are “false alarms”.
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6.18 shows the same results when correlation-based methods are used for reconstruction. In these experi-

ments, spectral subtraction compensation fails because the corrupting noise (music in this case) is highly

non-stationary. For the same reason, VTS-based mask estimation also fails. In fact, the VTS-based masks

results in recognition accuracy that is worse than the baseline performance with no compensation. How-

ever, the classifier-based masks give a consistent improvement over all SNRs with both missing feature

reconstruction techniques. This is a very significant result, as we have now shown that a single classifica-

tion-based mask estimation method can successfully generate spectrographic masks for speech that is cor-

rupted with both stationary and non-stationary noise. No other previously reported method has been able to

do so. 

6.5.3 Extensions to the Classification Strategy

These experiments show that classifier-based mask estimation can successfully generate spectrographic

masks for speech corrupted by both stationary and non-stationary noises. This is a significant improvement

over previous methods which fail in the presence of non-stationary noise. However, the recognition accu-

racy is still below the upper bound attainable with oracle masks. In this section, we will explore extensions

to the multivariate Gaussian Bayesian classification scheme to improve the performance of the classifier

and ultimately the recognition accuracy. In any pattern recognition task, changes can be made to the classi-

fication strategy in one of three areas: the feature set, the classifier output, and/or the models of the class

distributions. Experiments were performed using the original classifier modified in each of these three

areas.
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Figure 6.17 Recognition accuracy using cluster-based 
reconstruction vs. SNR for speech corrupted by music. 

Figure 6.18 Recognition accuracy using correlation-
based reconstruction vs. SNR for speech corrupted by 
music. 
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6.5.3.1 Incorporating Neighboring Features

In the basic multivariate Gaussian classification used, each spectrographic element was treated as an

independent entity. Clearly though, there is some correlation between the reliability of a given pixel and

that of its neighbors. This accounts for the “block” nature of the oracle spectrographic masks. W

incorporate the information contained in the neighborhood around a spectrographic element in 

ways. One method is to extend the feature vector of each element to include the feature of the surr

pixels. We can concatenate the features for any or all of the nine surrounding pixels to the feature v

the target location. There is a computational cost associated with elongating the feature vector a N-

dimensional multivariate Gaussian classifier becomes an (L+1)*N-dimensional classifier, where L is the

total number of neighboring pixels. 

To strike a balance between additional neighboring information and computational cost, we ch

add the features of the neighboring left, right, top, and bottom neighbors to the feature vector of eve

tion, making each feature vector 5*N elements long.

The classifier was retrained using these extended feature vectors. A full covariance matrix was

tained. Everything else was identical to the original classification setup. The recognition results for 

corrupted with white noise are shown in Figures 6.19a and 6.19b, for the cluster-based and corr

based reconstruction methods, respectively. Compared to the original classifier, there was no impro

using the cluster-based method and a slight improvement in the correlation based method. The re

speech corrupted with music are shown in Figures 6.19c and 6.19d. Again, there is no improvemen

ognition accuracy with the cluster-based method, but a small improvement when the correlation

method is used.

It is somewhat surprising that using these extended feature vectors did not improve the reco

accuracy at all for the cluster-based method and only marginally with the correlation-based method

ever, it is possible that the classifier using these elongated feature vectors has a different bias than

inal classifier. If this is the case, the prior probabilities established by the cross-validation data may

optimal for the extended feature vector case, and that further improvements may be seen if cross v

is repeated for this classifier. 
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6.5.3.2 Median Filtering the Mask

Another simple way to capture the “block” nature of the spectrographic masks is through post p

ing. Two-dimensional median filtering is used in image processing to reduce impulsive noise and sa

pepper noise [26]. It also preserves edges in an image while reducing random noise. In median filt

window is moved around the image and the pixel in the center of the window is replaced the media

of the pixels contained within the window. The estimated spectrographic masks generated by the 

classifier were median-filtered using a 3x3 pixel window. Figure 6.20 shows the oracle mask, the o

estimated mask, and the mask after median smoothing. The filter is very effective at “solidifying” th

mated unreliable regions. 

Reconstruction using the missing feature methods was performed using the masks that were g
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Figure 6.19 Recognition accuracy vs. SNR when features of neighboring pixels are included in the feature vector. (a) 
speech corrupted by white noise, cluster-based reconstruction, (b) speech corrupted by white noise, correlation-based 
reconstruction, (c) speech corrupted by music, cluster-based reconstruction, (d) speech corrupted by music, correla-
tion-based reconstruction.
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by the original classifier and then median filtered.The recognition results for speech corrupted with white

noise are shown in Figures 6.21a and 6.21b, for the cluster-based and correlation-based reconstruction

methods, respectively. There was no improvement for the cluster-based method, but median filtering the

masks did improve the recognition accuracy slightly when correlation-based reconstruction methods were

applied. Improvements were also only seen using the correlation-based methods when the speech was cor-

rupted with music, as shown in Figures 6.21c and 6.21d. No improvement was achieved with the cluster-

based method.

Here too, the results are somewhat disappointing. Median-filtering smooths the masks, effectively

reducing transients and random “noise”. If the masks are accurate to begin with and classifier is re

free of bias, median filtering will properly smooth the mask as expected. However, both high estim

error and classifier bias can cause the median filter to “incorrectly” smooth the mask. For examp

region of the spectrogram that is corrupt, median filtering a correctly labeled pixel that is surround

pixels that have been incorrectly labeled as reliable will result in the properly identified corrupt pixe

ting relabeled as reliable. Furthermore, in situations where the noise is very transient, the smoothin

of median filtering may actaully reduce the mask accuracy.

6.5.3.3 Classifier Adaptation

The goal of classifier adaptation is to use the test data itself to improve the models of the class d

tions that were derived from training data. We implemented a very basic adaptation scheme in our 

(a) (b) (c)

Figure 6.20 A comparison of the estimated mask to the oracle mask: (a) the original estimated mask (b) the estimated 
mask after median smoothing (c) the oracle mask
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cation system. Classification was performed as described in Chapter 6. Now each spectrographic element

was initially labelled as corrupt or reliable. Using this initial class assignment, the means of the distribu-

tions of each feature in each class were re-estimated. If any feature in any class in any subband had no sam-

ples in the utterance, the original mean of that distribution was retained. Otherwise, the new means

replaced those derived from the training data. Then, a second pass through the utterance was performed,

re-estimating the spectrographic mask using the newly adapted means. This was done separately for each

utterance. That is, for a given utterance, the first pass of mask estimation was performed using the class

distributions of the features derived from the training data. The means were adapted based on the initial

mask estimate. A second pass of mask estimation was then performed using the adapted means. This was

repeated for every utterance. Because the accuracy of the initial mask was not verified, corrected or

adjusted in any way, this is an unsupervised adaptation scheme. The recognition results for speech cor-

SNR (dB)
5 10 15 20 25

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

20.0

40.0

60.0

80.0

100.0

0.0
0

oracle mask + correlation method
orig mask + correlation method
medfilt mask + correlation method
baseline

SNR (dB)
5 10 15 20 25

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

20.0

40.0

60.0

80.0

100.0

0.0
0

oracle mask + cluster method
orig mask + cluster method
medfilt mask + cluster method
baseline

SNR (dB)
5 10 15 20 25

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

20.0

40.0

60.0

80.0

100.0

0.0
0

oracle mask + cluster method
orig mask + cluster method
medfilt mask + cluster method
baseline

SNR (dB)
5 10 15 20 25

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

20.0

40.0

60.0

80.0

100.0

0.0
0

oracle mask + correlation method
orig mask + correlation method
medfilt mask + correlation method
baseline

(a) (b)

(c) (d)

Figure 6.21 Recognition accuracy vs. SNR when the original masks are median filteried. (a) speech corrupted by 
white noise, cluster-based reconstruction, (b) speech corrupted by white noise, correlation-based reconstruction, (c) 
speech corrupted by music, cluster-based reconstruction, (d) speech corrupted by music, correlation-based recon-
struction.
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rupted with white noise are shown in Figures 6.22a and 6.22b, and in Figures 6.22c and 6.22d for speech

corrupted with music. No improvement was seen with this adaptation scheme. 

Adaptation requires that the initial estimate used to adapt the model parameters be accurate. If the first

pass of mask estimation is poor and there is non-negligible estimation error, adaptation will actually move

the means of the two classes toward each other resulting in less separable distributions and poor classifica-

tion. Because the mask estimates in the original classifier contained significant estimation error, as seen in

Figures 6.10, 6.11, 6.15, and 6.16, adaptation did not improve mask estimation performance or recognition

accuracy.
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Figure 6.22 Recognition accuracy vs. SNR when unsupervised adaptation is performed. (a) speech corrupted by 
white noise, cluster-based reconstruction, (b) speech corrupted by white noise, correlation-based reconstruction, (c) 
speech corrupted by music, cluster-based reconstruction, (d) speech corrupted by music, correlation-based recon-
struction.
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6.6 Summary and Conclusions

In this chapter we have described the classification scheme that uses the features extracted from the

noisy speech and the distributions of these features estimated from the training data to determine whether a

spectrographic element is more likely to be reliable or corrupt. We have demonstrated how we can choose

the class prior probabilities to bias the classifier to favor misses over false alarms. Finally, we have shown

how these estimated masks, in conjunction with the missing feature methods, can increase the speech rec-

ognition accuracy on noise-corrupted speech. The recognition performance obtained using these masks is

comparable that obtained using the best mask estimation technique reported in the literature for speech cor-

rupted by white noise. However, the recognition performance for speech corrupted by music using these

classifier based-spectrographic masks is better than that obtained using other reported methods. In fact,

other reported methods produced no improvement in recognition accuracy for speech corrupted by music.

Because no assumptions about the noise itself were made in the design of the classifier and the feature set,

the classifier can estimate spectrographic masks when speech has been corrupted by both stationary and

non-stationary noises. 

Extensions to the original classification scheme were also implemented. Experiments were performed

in which the feature vector was elongated by incorporating the features of neighboring spectrographic

locations, the masks were post processed using a median filter, and the class distributions were adapted in

an unsupervised manner. Using the features of the neighboring pixels and median filtering resulted in small

improvements in recognition accuracy when the correlation-based missing feature method was used to

reconstruct the spectrograms. Adaptation did not result in any improvements in the recognition accuracy

with either missing feature method.

In the next chapter, the major findings of this thesis are summarized and discussed. 
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Chapter 7
Summary and Conclusion

7.1 Summary and Conclusions

The missing feature noise compensation paradigm operates on the principle that noise affects different

regions of a spectrographic display of speech differently depending on the relative energies of the speech

and the noise at each time-frequency location. The regions of low SNR will be more corrupt that those of

high SNR. Noise-corrupted regions of a spectrogram are deleted to minimize the effect of the noise on the

speech resulting in incomplete spectrograms. Recognition is then either performed directly on the incom-

plete spectrograms or the missing regions are reconstructed prior to recognition. Missing feature methods

make no assumptions about the stationarity of the corrupting noise. This is a significant advantage over

previous noise compensation methods that require that the noise be stationary. However, missing feature

methods require a mask that labels every spectrographic element as either corrupt or reliable.

Previous methods of mask estimation rely on the same stationarity assumption that plague earlier noise

compensation methods. As a result, they can successfully estimate spectrographic masks when the speech

is corrupted by stationary noise, but fail completely when the noise is non-stationary. This is a sizable lim-

itation, as the key benefit of missing feature methods is their successful compensation of speech corrupted

stationary or non-stationary noise if the spectrographic masks are known. 

In this thesis we have designed a classifier to automatically generate spectrographic masks for noise

corrupted speech. We have shown that classifier-based mask estimation is a consistent and reliable method

of estimating spectrographic masks for noisy speech, and because no assumptions about the noise itself

were made in the design of the classifier and the feature set, it performs well on both stationary and non-

stationary noises. 

The experiments performed with speech corrupted by white noise showed that the use of masks esti-

mated by the classifier results in recognition accuracy that is close to the accuracy possible when oracle

masks that assume perfect knowledge of the noise are used. The recognition accuracy achieved using VTS-

based mask estimation techniques described in [43] is marginally better than when the classifier-based
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mask are used. While experiments with stationary noise were only conducted with white noise, similar per-

formance can be expected on other stationary or quasi-stationary noise signals, such as automobile or

cockpit noise.

The classifier-based mask estimation method also resulted in a consistent improvement in recognition

accuracy when the speech was corrupted by music. While the recognition accuracy was not as close to the

oracle mask recognition accuracy as in the white noise case, the improvement was consistent across all

SNRs and both missing-feature reconstruction methods. In addition, it was the only mask estimation tech-

nique that yielded any improvement in recognition accuracy. Using VTS-based masks actually resulted in

accuracies that were worse for background music than baseline performance when no compensation is

applied. 

Three extensions to the basic classification scheme were tried in an effort to further improve the mask

estimation performance. Elongating the feature vector by incorporating the features of neighboring pixels,

and post-processing the masks with a median filter both resulted in small improvements in recognition

accuracy when the correlation method of missing feature compensation was applied. It is interesting to

note that none of these extensions to the classification strategy improved the recognition accuracy when

the cluster-based method was used for spectrogram reconstruction. This is perhaps because both median

filtering and elongating the feature vector attempt to capture information about the pixels surrounding a

given pixel across both the time and frequency dimensions, much in the same way that the correlation-

based reconstruction method uses the neighboring pixels across time and frequency to estimate the value of

a missing pixel. The cluster-based reconstruction method, on the other hand, uses only information along

the frequency axis. 

The features used by the classifier for voiced regions of speech depend on an accurate pitch estimate to

assess the reliability of each spectrographic location. The classification scheme also required an accurate

labeling of voiced and unvoiced frames as distinct classifiers were used for each. These requirements were

addressed by the histogram-based pitch detection algorithm presented in this work. A new multi-band

approach to pitch detection was presented. This method was shown to be generate more reliable pitch esti-

mates that the widely used RAPT pitch detection algorithm for both clean and noise-corrupted speech. 

It should be noted that the pitch estimates used in these experiments when speech was corrupted with
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music were extracted from clean speech, rather than from the music-corrupted speech. Of course, this

would not be possible in a real situation. However, the pitch extraction failed not because of any stationar-

ity (or lack thereof) assumption about the noise, but rather because the corrupting signal (music) had a har-

monic structure similar to speech which causes false pitch estimates. However, there are few “real

situations, such as television and radio news broadcasts, where speech is corrupted by music. It

common for the noise to be both non-stationary and non-musical, such as transients, street noise,

tory noise. As long as the noise is non-musical (or non-harmonic), we expect that the pitch detectio

rithm will provide accurate pitch estimates in the presence of non-stationary noise and the classifie

masks will produce improvements in recognition that are comparable or better to those seen in thi

when speech was corrupted by music.

Because a classifier is used to estimate the spectrographic masks, we need to have enough

examples of the noise to adequately determine the distributions of the features for each class. This 

be readily available. However, the VTS-based mask estimation method requires training examples 

For stationary noises, there are other mask estimation methods that do not require any training data

those described in [8] which use spectral subtraction to obtain a running estimate of the noise. Ho

the recognition accuracy obtained with these methods is significantly worse than that achieved by

classifier-based masks or VTS-based masks. And again, spectral subtraction mask estimation com

fails for non-stationary corrupting noises. 

Missing-feature methods for noise compensation in speech recognition are gaining popularit

because of the significant improvements in recognition accuracy they are capable of and because 

cept makes logical sense based on our knowledge of the human auditory system. Similarly, building

sifier that uses features that are based on the intrinsic characteristics of the speech signal itsel

intuitively satisfying. Because no assumptions about the noise are made, it is logical that the classi

be able to estimate spectrographic masks for many, if not all, noise types. This is a significant impro

over previous mask estimation methods. While they performed will in some situations, they perf

very poorly in others. The classifier-based mask estimation method presented here is a much more

purpose solution. 

7.2 Suggestions for Future Work
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While the methods presented in this thesis produce effective spectrographic masks that significantly

improve recognition accuracy when speech has been corrupted by noise, there is much additional work that

can be done to improve the mask estimation.

The pitch estimation algorithm is very accurate at estimating the pitch contour of a utterance in both

clean and noisy conditions. However, it is quite slow. There is room for efficiency and optimization in both

the algorithm and the implementation. For example, an interesting question is whether the Seneff filter-

bank actually play a part in the success of the algorithm, or if any other, perhaps simpler bank of band-pass

filters would be as effective and computationally simpler. Also, pitch estimation in the presence of musical

or otherwise harmonic noise is a large on-going research problem. The histogram-based pitch detection

algorithm was not able to reliably estimate the pitch when speech was corrupted by such noise. The pitch

detection algorithm and the classification scheme share some operations. However, currently they are two

independent entities. Efficient integration of the pitch detection algorithm into the feature extraction would

also dramatically reduce the computational load. For example, the autocorrelations that are used to esti-

mate the pitch could also be used to extract the autocorrelation peak ratio feature for the classifier. How-

ever, currently there is a disparity in the band-pass filtering. The pitch detection algorithm uses forty Seneff

filters and the classifier estimates masks using twenty Mel filters. These inconsistencies would need to be

resolved to smoothly integrate the pitch detection and the feature extraction.

In this thesis, we have presented experiment using speech corrupted by white noise and by music. How-

ever, these are probably the two extreme cases of stationarity and non-stationarity. The performance of the

classifier when the speech is corrupted by other more realistic noises, such as automobile or cockpit noise,

or by transients, such as door slams or factory noise, needs to be determined. Additionally, in these other

noise cases, other features might be useful. For example, derivative based features would be helpful at esti-

mating sudden changes in energy or noise level across time. They could detect the onset or offset of tran-

sient noise. 

Finally, the classification strategy in this work centered around a multivariate Gaussian classifier. How-

ever, a more complex classifier based on a higher order Hidden Markov Model or two-dimensional

Markov field would enable us to model both the feature distributions of the two classes and the relation-

ships between neighboring spectrographic elements. 
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