15-319 / 15-619
Cloud Computing

Overview 10

Overview

e Last week’s reflection
o OLI Unit 4 Module 15: Case Studies: Distributed File Systems
o OLI Unit 4 Module 16: Case Studies: NoSQL Database
o OLI Unit 4 Module 17: Case Studies: Cloud Object Storage
o Quiz 8
o Online Programming Exercise for Multi-Threading
e This week’s schedule
o Project 3.3

o OLI Unit 5 Module 18: Introduction to Distributed
Programming for the Cloud
o Quiz 9 due on Friday, Apr. 9th

e Team Project, Twitter Analytics
o Phase 2 - Live test: Next Sunday, Apr. 18th

This Week

OLI Unit 5 Module 18: Introduction to Distributed
Programming for the Cloud

Quiz 9 - Friday, Apr. 9th

Project 3.3 - Sunday, Apr. 11t

o Task 1: Implement a Strong Consistency Model for
distributed data stores

o Task 2: Implement a Strong Consistency Model
cross-region data stores

o Bonus: Implement an Eventual Consistency Model

Team Project, Twitter Analytics

o Phase 2 - Live test: Next Sunday, Apr. 18th

Individual Projects

® Done
o P3.1: Files v/s Databases

Now

o Introduction to multithreaded programming in Java
o Introduction to consistency models

o P3.3: Replication and Consistency models

Scale of Data is Growing

International Data Corporation predicts massive data increases:
> From: 33 zettabytes in 2018

> To: 160 zettabytes in 2025.

o appx. 50% of which will be stored in the public cloud!

For context, 1 zettabyte is 1 trillion gigabytes. And much of this data
will be consumed in real-time.

Users are Global

e Information has physical limitations on speed of transfer (Speed of light)
e Inherent latencies
o Especially for real-time data access, speed is critical!

~26ms Moscow

4‘

San Pittsburgh
Francisco

Typical End-To-End Latency

e Aclient sends a request to a server
— Message takes time to physically reach the server
e (Network latency)
e Server receives the request and responds
— Server has to read incoming packets and responds
e (10 or Disk latency)
— Message takes time to physically reach the client
e (Network latency)

Latency with a Single Backend

Backend Storage

~320ms

~20m5= G

Client 1:
San Francisco

Client 2:
Pittsburgh

Client 3:
Moscow

>

\

Min Latency: 20ms
Max Latency: 320ms
Average Latency:

~

(o0}

Latency with a Single Backend

Backend Storage

~320ms

~20m5= G

Client 1:
San Francisco

Client 2:
Pittsburgh

Client 3:
Moscow

>

Means only users in the
United States will use
your service!

~

O

How do you give users
the same experience
across the globe?

Option 1: Global Replication

Backend Storage 1:
USA West

~20ms ~40ms

Client 1:
San Francisco

Client 2:
Pittsburgh

Backend Storage 2:
Europe Central

Elxz:ms

Client 3:
Moscow

-~

"

Min Latency: 20ms
Max Latency: 40ms
Average Latency: 26.6ms

~

4

11

Option 2: Proximity Replication

Backend Storage 2:
Europe Central

Backend Storage 1: ~20ms
USA West Backend Storage 3:

USA East
~20ms Client 3:
~20ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

4 N

Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

= _/

12

You can’t keep replicating forever

FI
O]
(T (L ®
O
&
OD. 7
]
QD‘
L 0
QI:I N]

Replication has scalability limitations

13

Cost can be a limiting factor

e Since we need to run multiple databases, we
incur the following costs:

o (num replicas) * time * database cost
m AWS RDS: (hum replicas) * hours * S0.226

o (num replicas) * data * cost per GB
B AWSRDS: (num replicas) * data (per 10 GB) * S1.15
o Cost grows quickly relative to replica count!

With database replication you have to consider cost,
but what else?

14

Data Consistency

15

Database Reads

Backend Storage 2:
Europe Central

Backend Storage 1: ~20ms
USA West Backend Storage 3:
~20ms

USA East
as Client 3:
~20ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

4 N

Read operations are sent to
the closest replica to
minimize latency

\ 4

16

Database Writes

~240ms

~20ms
~40ms

~20ms

~20ms

4 N

Clients see large amounts of
latency for writes, as the
writes need to propagate to
all replicas
_

Replication Reads and Writes

® Read operations are fast
o All clients have a replica close to them to
access

e Write requests are slow
o Write requests must update all the replicas

o If a certain key has multiple write requests,
newer write requests may have to wait for
older requests to complete

18

Pros and Cons of Replication

e Advantages
o Low latency for reads
o Reduce the workload of a single backend server
o Handle failures of nodes by rerouting to
alternative backup replicas

e Disadvantages
o Requires more storage capacity and cost
o Updates are significantly slower
o Changes must reflect on all datastores (using
various consistency models)

19

Data Consistency Models

e Data consistency across replicas is important
o Five consistency levels (explained in primers):
m Strict
Strong (Linearizability)
Sequential
Causal

Eventual Consistency

e This week’s project!

20

Data Consistency Example:
ConS|der a Bank

Account Balance

XXXXX-4437 $100

21

Bad Example
Allow concurrent writes
o=

Account Balance

XXXXX-4437 $100

22

Bad Example

Allow concurrent writes
':

Account Balance

XXXXX-4437 $100

Withdraw $100 Ji\::;\

23

Bad Example
AIIow concurrent writes

0

~

Both requests are
processed
concurrently, and we
Account Balance lose $100 as both are

accepted)
24

XXXXX-4437 $0 K

Withdraw $100

Global Locking

Account Balance

XXXXX-4437 $100

25

Global Locking

Withdraw $1 00

Only one write request\
can be processed per
key at a time,
Account Balance preventing double
withdrawals!)

XXXXX-4437 $100 K

26

Global Locking

/The balance is set to O\
as soon as the money
Is withdrawn, and the

Account Balance second request is

denied)

XXXXX-4437 $0 \

27

P3.3: Consistency Models

Tradeoff: gw® Consistency vs. Latency

® Strict
® Strong

e Sequential
e Causal

e Eventual

Please read the primers to ensure you know what
each of these models mean!

28

P3.3 Tasks 1 & 2: Strong Consistency

e Every request has a global timestamp order
where a timestamp is issued by a Truetime Server.

e Operations must be ordered by these timestamps

Requirement: At any given point of time, all clients
should read the same data from any datacenter
replica

29

P3.3 Task 1: Strong Consistency

Coordinator:
DATA STORE 1 DATA STORE 2 DATA STORE 3
® A request router that

routes the web requests
from the clients to each
datastore /

® Preserves the order of Write Latency: ~20ms e e Wrte Latency: ~20ms
rite Latency: ~2Ums
both read and write
requests
TRUETIME
DataStOI‘e. COORDINATOR Timestamp SERVER
® The actual backend ﬁ
PUT/GET Requests
storage that persists
collections of data @@

Client

30

P3.3 Task 1: Strong Consistency

Single PUT request for key ‘X’

Block all GETs for key ‘X’
until all datastores are
updated

GET requests for a
different key ‘Y’ should
not be blocked

Multiple PUT requests for ‘X’

Resolved in order of their
timestamp received from
the Truetime Server.

GET requests must return
the most recent value to
the request timestamp

DATA STORE 1

Write Latency: ~20ms

DATA STORE 2

_

Write Latency: ~20ms

DATA STORE 3

.

Write Latency: ~20ms

COORDINATOR

TRUETIME
Timestamp SERVER

PUT/GET Requests

U

Client

31

P3.3 Task 2:
Global Coordinators and Data Stores

& o

coordinator datacenter

32

P3.3 Task 2: Architecture

US-West Datacenter

US-West Coordinator

<

US-East Datacenter

The
Truetime server

US-East Coordinator

e

Client

SING Datacenter

No delay
across region

Singapore Coordinator

32

P3.3 Task 2: Global Replication

Operates similarly to Task 1,

although it requires you to
have both coordinator and
data centers in all 3 regions
rather than just one.

Users will be spread out
globally.

@i

coordinator datacenter

us-east

us-west | [=

1{} oo

coordinator datacenter

coordinator datacenter

<{E~u’> DCI
]\/L

smgapore

34

Task 2 Workflow and Example

Launch a total of 8 machines (3 data centers, 3 coordinators,
1 truetime server and 1 client) in US East!

We will simulate global latencies for you. IS Eaat (1 g
o Do not actually create instances across US East (Ohio)
the globel US West (N. California)

US West (Oregon)

Asia Pacific (Mumbai)

Finish the code for the
Coordinators and Datastores Asia Bacific @ingapore)

Asia Pacific (Sydney)

Asia Pacific (Seoul)

Asia Pacific (Tokyo)

35

P3.3 Task 2:

Complete KeyValueStore.java and Coordinator.java

US-EAST US-WEST
DC DC
[TrueTime Server
US-EAST US-WEST
COORDINATOR COORDINATOR

put?key=X&value=1

C Client)

SINGAPORE
DC

SINGAPORE
COORDINATOR

36

P3.3 Task 2:

Complete KeyValueStore.java (in DCs) and Coordinator.java (in

Coordinators)

US-EAST US-WEST
DC DC

TrueTime Server

KeyValueLib.getTime()

/
US-EAST US-WEST
COORDINATOR COORDINATOR

put?key=X&value=1

C Client)

SINGAPORE
DC

SINGAPORE
COORDINATOR

37

PRECOMMIT

Contacts the Data Center of a given
region and notifies it that a PUT request
is being serviced for the specified key
with the corresponding timestamp.

38

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

US-EAST US- WEST SINGAPORE
DC DC
A /
precommit?key=X×tamp=1
[TW]
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

put?key=X&value=1

C Client)

39

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

US-EAST UsS- WEST SINGAPORE
DC DC
A /
PUT(REGIONAL-DNS, "Xx", "1",
1, "strong"
[TW] ’ &)
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

put?key=X&value=1

C Client)

40

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

US-EAST US- WEST SINGAPORE
DC DC
Response back
[TW]
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

put?key=X&value=1

C Client)

41

Hints

® In strong consistency, “PRECOMMIT” should be
useful to help you lock requests because they are
able to communicate with Data Center instances.

® |n strong consistency, lock by key across all the
Data Center instances.

42

P3.3: Eventual Consistency (Bonus)

e \Write requests are performed in the order
received by the local coordinator
o Operations may not be blocked for replica
consensus (no communication between
Servers across region)

e Clients that request data may receive multiple
versions of the data, or stale data
o Problems left for the application owner to
resolve

43

Suggestions

Read the two primers

Consider the differences between the 2
consistency models before writing code
Think about possible race conditions

Read the hints in the writeup and skeleton
code carefully

Only modify the following classes:

o Coordinator.java and KeyValueStore.java

44

Start early!

Deadlines

OLI Unit 5 Module 18: Introduction to Distributed
Programming for the Cloud

Quiz 9 - Friday, Apr. 9th

Project 3.3 - Sunday, Apr. 11%

Team Project, Twitter Analytics
o Phase 2 - Live test: Next Sunday, Apr. 18th

46

