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Overview
● Last week’s reflection

○ OLI Unit 4 Module 15: Case Studies: Distributed File Systems

○ OLI Unit 4 Module 16: Case Studies: NoSQL Database

○ OLI Unit 4 Module 17: Case Studies: Cloud Object Storage

○ Quiz 8

○ Online Programming Exercise for Multi-Threading 

● This week’s schedule

○ Project 3.3

○ OLI Unit 5 Module 18: Introduction to Distributed 
Programming for the Cloud

○ Quiz 9 due on Friday, Apr. 9th

● Team Project, Twitter Analytics

○ Phase 2  - Live test: Next Sunday, Apr. 18th
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This Week
● OLI Unit 5 Module 18: Introduction to Distributed 

Programming for the Cloud
● Quiz 9 - Friday, Apr. 9th
● Project 3.3 - Sunday, Apr. 11th

○ Task 1: Implement a Strong Consistency Model for 

distributed data stores

○ Task 2: Implement a Strong Consistency Model 

cross-region data stores

○ Bonus: Implement an Eventual Consistency Model

● Team Project, Twitter Analytics

○ Phase 2  - Live test: Next Sunday, Apr. 18th
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Individual Projects

● Done

○ P3.1: Files v/s Databases

● Now

○ Introduction to multithreaded programming in Java

○ Introduction to consistency models

○ P3.3: Replication and Consistency models
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Scale of Data is Growing

International Data Corporation predicts massive data increases:
➢ From: 33 zettabytes in 2018

➢ To: 160 zettabytes in 2025.
○ appx. 50% of which will be stored in the public cloud!

For context, 1 zettabyte is 1 trillion gigabytes. And much of this data 
will be consumed in real-time.
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Users are Global
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~26ms

~14ms

● Information has physical limitations on speed of transfer (Speed of light)
● Inherent latencies

○ Especially for real-time data access, speed is critical!

Pittsburgh

Moscow

San 
Francisco



• A client sends a request to a server

– Message takes time to physically reach the server 

• (Network latency)

• Server receives the request and responds

– Server has to read incoming packets and responds

• (IO or Disk latency)

– Message takes time to physically reach the client 

• (Network latency)

Typical End-To-End Latency
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Latency with a Single Backend
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Client 2:
Pittsburgh

Client 3:
Moscow

Client 1: 
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Min Latency: 20ms
Max Latency: 320ms

Average Latency: 126ms



Latency with a Single Backend
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Client 2:
Pittsburgh

Client 3:
Moscow

Client 1: 
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Means only users in the 
United States will use 

your service!



How do you give users 
the same experience 

across the globe?

1
0



Option 1: Global Replication
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Client 2:
Pittsburgh

Client 3:
Moscow

Client 1: 
San Francisco

Backend Storage 1: 
USA West

~20ms

Backend Storage 2: 
Europe Central

~40ms

~20ms

Min Latency: 20ms
Max Latency: 40ms

Average Latency: 26.6ms



Option 2: Proximity Replication
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Client 2:
Pittsburgh

Client 3:
Moscow

Client 1: 
San Francisco

Backend Storage 1: 
USA West

Backend Storage 2: 
Europe Central

~20ms

Min Latency: 20ms
Max Latency: 20ms

Average Latency: 20ms

Backend Storage 3: 
USA East

~20ms

~20ms



You can’t keep replicating forever
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Replication has scalability limitations



● Since we need to run multiple databases, we 

incur the following costs:

○ (num replicas) * time * database cost
■ AWS RDS: (num replicas) * hours * $0.226

○ (num replicas) * data * cost per GB

■ AWS RDS: (num replicas) * data (per 10 GB) * $1.15

○ Cost grows quickly relative to replica count!

With database replication you have to consider cost, 

but what else?

Cost can be a limiting factor
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Data Consistency
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Database Reads
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Client 2:
Pittsburgh

Client 3:
Moscow

Client 1: 
San Francisco

Backend Storage 1: 
USA West

Backend Storage 2: 
Europe Central

~20ms

Read operations are sent to 
the closest replica to 

minimize latency

Backend Storage 3: 
USA East

~20ms

~20ms



Database Writes
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~20ms

Clients see large amounts of 
latency for writes, as the 

writes need to propagate to 
all replicas

~20ms

~20ms~240ms

~40ms



● Read operations are fast
○ All clients have a replica close to them to 

access

● Write requests are slow
○ Write requests must update all the replicas

○ If a certain key has multiple write requests, 
newer write requests may have to wait for 
older requests to complete

Replication Reads and Writes
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● Advantages
○ Low latency for reads
○ Reduce the workload of a single backend server
○ Handle failures of nodes by rerouting to 

alternative backup replicas
● Disadvantages

○ Requires more storage capacity and cost
○ Updates are significantly slower
○ Changes must reflect on all datastores (using 

various consistency models)

Pros and Cons of Replication
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Data Consistency Models

● Data consistency across replicas is important
○ Five consistency levels (explained in primers): 

■ Strict

■ Strong (Linearizability)

■ Sequential

■ Causal 

■ Eventual Consistency

● This week’s project!
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Data Consistency Example:
 Consider a Bank
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Account Balance

xxxxx-4437 $100



Bad Example 
Allow concurrent writes
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Account Balance

xxxxx-4437 $100



Bad Example 
Allow concurrent writes
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Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100



Bad Example 
Allow concurrent writes
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Account Balance

xxxxx-4437 $0

$100

$100

Both requests are 
processed 

concurrently, and we 
lose $100 as both are 

accepted



Good Example 
Global Locking
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Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100



Good Example 
Global Locking
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Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Only one write request 
can be processed per 

key at a time, 
preventing double 

withdrawals!



Good Example 
Global Locking
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Account Balance

xxxxx-4437 $0

$100

$0

The balance is set to 0 
as soon as the money 
is withdrawn, and the 

second request is 
denied



P3.3: Consistency Models

28

Tradeoff:                     Consistency vs. Latency
● Strict
● Strong
● Sequential
● Causal
● Eventual

Please read the primers to ensure you know what 
each of these models mean!

vs.



P3.3 Tasks 1 & 2: Strong Consistency
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● Every request has a global timestamp order

where a timestamp is issued by a Truetime Server.

● Operations must be ordered by these timestamps

Requirement: At any given point of time, all clients 

should read the same data from any datacenter 

replica



P3.3 Task 1: Strong Consistency
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Coordinator:

● A request router that 

routes the web requests 

from the clients to each 

datastore

● Preserves the order of 

both read and write 

requests

Datastore:

● The actual backend 

storage that persists 

collections of data



P3.3 Task 1: Strong Consistency
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Single PUT request for key ‘X’

● Block all GETs for key ‘X’ 

until all datastores are 

updated

● GET requests for a 

different key ‘Y’ should 

not be blocked

Multiple PUT requests for ‘X’ 

● Resolved in order of their 

timestamp received from 

the Truetime Server. 

● GET requests must return 

the most recent value to 

the request timestamp



P3.3 Task 2:
Global Coordinators and Data Stores

us-west
us-east

singapore

DCI

coordinator datacenter

DCI

coordinator datacenterDCI

coordinator datacenter
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P3.3 Task 2: Architecture
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P3.3 Task 2: Global Replication

34

Operates similarly to Task 1, 

although it requires you to 

have both coordinator and 

data centers in all 3 regions 

rather than just one. 

Users will be spread out 

globally. 



Task 2 Workflow and Example

● Launch a total of 8 machines (3 data centers, 3 coordinators, 

1 truetime server and 1 client) in US East!

● We will simulate global latencies for you.

○ Do not actually create instances across

the globe!

● Finish the code for the 

Coordinators and Datastores
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US-EAST 
DC

US-WEST 
DC

SINGAPORE 
DC

US-EAST 
COORDINATOR

US-WEST 
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2: 

Complete KeyValueStore.java and Coordinator.java

                                 36

TrueTime Server

put?key=X&value=1



US-EAST 
DC

US-WEST 
DC

SINGAPORE 
DC

US-EAST 
COORDINATOR

US-WEST 
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2: 
Complete KeyValueStore.java (in DCs) and Coordinator.java (in 
Coordinators)
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TrueTime Server

put?key=X&value=1

KeyValueLib.getTime()



PRECOMMIT
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Contacts the Data Center of a given 
region and notifies it that a PUT request 

is being serviced for the specified key 
with the corresponding timestamp.



US-EAST 
DC

US-WEST 
DC

SINGAPORE 
DC

US-EAST 
COORDINATOR

US-WEST 
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2: 
Complete KeyValueStore.java (in DCs) and Coordinator.java (in 
Coordinators)
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TrueTime Server

put?key=X&value=1

precommit?key=X&timestamp=1



US-EAST 
DC

US-WEST 
DC

SINGAPORE 
DC

US-EAST 
COORDINATOR

US-WEST 
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2: 
Complete KeyValueStore.java (in DCs) and Coordinator.java (in 
Coordinators)
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TrueTime Server

put?key=X&value=1

PUT(REGIONAL-DNS, "X", "1", 
1, "strong")



US-EAST 
DC

US-WEST 
DC

SINGAPORE 
DC

US-EAST 
COORDINATOR

US-WEST 
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2: 
Complete KeyValueStore.java (in DCs) and Coordinator.java (in 
Coordinators)

                                 41

TrueTime Server

put?key=X&value=1

Response back



Hints 
● In strong consistency, “PRECOMMIT” should be 

useful to help you lock requests because they are 

able to communicate with Data Center instances.

● In strong consistency, lock by key across all the 

Data Center instances.
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P3.3: Eventual Consistency (Bonus)
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● Write requests are performed in the order 
received by the local coordinator
○ Operations may not be blocked for replica 

consensus (no communication between 
servers across region)

● Clients that request data may receive multiple 
versions of the data, or stale data
○ Problems left for the application owner to 

resolve



● Read the two primers

● Consider the differences between the 2 

consistency models before writing code

● Think about possible race conditions

● Read the hints in the writeup and skeleton 

code carefully

● Only modify the following classes:

○ Coordinator.java and KeyValueStore.java

Suggestions
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Start early!
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Deadlines
● OLI Unit 5 Module 18: Introduction to Distributed 

Programming for the Cloud
● Quiz 9 - Friday, Apr. 9th
● Project 3.3 - Sunday, Apr. 11th

● Team Project, Twitter Analytics

○ Phase 2 - Live test: Next Sunday, Apr. 18th
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