
15-319 / 15-619
Cloud Computing

Overview 10

1

Overview
● Last week’s reflection

○ OLI Unit 4 Module 15: Case Studies: Distributed File Systems

○ OLI Unit 4 Module 16: Case Studies: NoSQL Database

○ OLI Unit 4 Module 17: Case Studies: Cloud Object Storage

○ Quiz 8

○ Online Programming Exercise for Multi-Threading

● This week’s schedule

○ Project 3.3

○ OLI Unit 5 Module 18: Introduction to Distributed
Programming for the Cloud

○ Quiz 9 due on Friday, Apr. 9th

● Team Project, Twitter Analytics

○ Phase 2 - Live test: Next Sunday, Apr. 18th
2

This Week
● OLI Unit 5 Module 18: Introduction to Distributed

Programming for the Cloud
● Quiz 9 - Friday, Apr. 9th
● Project 3.3 - Sunday, Apr. 11th

○ Task 1: Implement a Strong Consistency Model for

distributed data stores

○ Task 2: Implement a Strong Consistency Model

cross-region data stores

○ Bonus: Implement an Eventual Consistency Model

● Team Project, Twitter Analytics

○ Phase 2 - Live test: Next Sunday, Apr. 18th

3

Individual Projects

● Done

○ P3.1: Files v/s Databases

● Now

○ Introduction to multithreaded programming in Java

○ Introduction to consistency models

○ P3.3: Replication and Consistency models

4

Scale of Data is Growing

International Data Corporation predicts massive data increases:
➢ From: 33 zettabytes in 2018

➢ To: 160 zettabytes in 2025.
○ appx. 50% of which will be stored in the public cloud!

For context, 1 zettabyte is 1 trillion gigabytes. And much of this data
will be consumed in real-time.

5

Users are Global

6

~26ms

~14ms

● Information has physical limitations on speed of transfer (Speed of light)
● Inherent latencies

○ Especially for real-time data access, speed is critical!

Pittsburgh

Moscow

San
Francisco

• A client sends a request to a server

– Message takes time to physically reach the server

• (Network latency)

• Server receives the request and responds

– Server has to read incoming packets and responds

• (IO or Disk latency)

– Message takes time to physically reach the client

• (Network latency)

Typical End-To-End Latency

7

Latency with a Single Backend

8

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Min Latency: 20ms
Max Latency: 320ms

Average Latency: 126ms

Latency with a Single Backend

9

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Means only users in the
United States will use

your service!

How do you give users
the same experience

across the globe?

1
0

Option 1: Global Replication

11

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~40ms

~20ms

Min Latency: 20ms
Max Latency: 40ms

Average Latency: 26.6ms

Option 2: Proximity Replication

12

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 2:
Europe Central

~20ms

Min Latency: 20ms
Max Latency: 20ms

Average Latency: 20ms

Backend Storage 3:
USA East

~20ms

~20ms

You can’t keep replicating forever

13

Replication has scalability limitations

● Since we need to run multiple databases, we

incur the following costs:

○ (num replicas) * time * database cost
■ AWS RDS: (num replicas) * hours * $0.226

○ (num replicas) * data * cost per GB

■ AWS RDS: (num replicas) * data (per 10 GB) * $1.15

○ Cost grows quickly relative to replica count!

With database replication you have to consider cost,

but what else?

Cost can be a limiting factor

14

Data Consistency

15

Database Reads

16

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 2:
Europe Central

~20ms

Read operations are sent to
the closest replica to

minimize latency

Backend Storage 3:
USA East

~20ms

~20ms

Database Writes

17

~20ms

Clients see large amounts of
latency for writes, as the

writes need to propagate to
all replicas

~20ms

~20ms~240ms

~40ms

● Read operations are fast
○ All clients have a replica close to them to

access

● Write requests are slow
○ Write requests must update all the replicas

○ If a certain key has multiple write requests,
newer write requests may have to wait for
older requests to complete

Replication Reads and Writes

18

● Advantages
○ Low latency for reads
○ Reduce the workload of a single backend server
○ Handle failures of nodes by rerouting to

alternative backup replicas
● Disadvantages

○ Requires more storage capacity and cost
○ Updates are significantly slower
○ Changes must reflect on all datastores (using

various consistency models)

Pros and Cons of Replication

 19

Data Consistency Models

● Data consistency across replicas is important
○ Five consistency levels (explained in primers):

■ Strict

■ Strong (Linearizability)

■ Sequential

■ Causal

■ Eventual Consistency

● This week’s project!

20

Data Consistency Example:
 Consider a Bank

21

Account Balance

xxxxx-4437 $100

Bad Example
Allow concurrent writes

22

Account Balance

xxxxx-4437 $100

Bad Example
Allow concurrent writes

23

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Bad Example
Allow concurrent writes

24

Account Balance

xxxxx-4437 $0

$100

$100

Both requests are
processed

concurrently, and we
lose $100 as both are

accepted

Good Example
Global Locking

25

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Good Example
Global Locking

26

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Only one write request
can be processed per

key at a time,
preventing double

withdrawals!

Good Example
Global Locking

27

Account Balance

xxxxx-4437 $0

$100

$0

The balance is set to 0
as soon as the money
is withdrawn, and the

second request is
denied

P3.3: Consistency Models

28

Tradeoff: Consistency vs. Latency
● Strict
● Strong
● Sequential
● Causal
● Eventual

Please read the primers to ensure you know what
each of these models mean!

vs.

P3.3 Tasks 1 & 2: Strong Consistency

29

● Every request has a global timestamp order

where a timestamp is issued by a Truetime Server.

● Operations must be ordered by these timestamps

Requirement: At any given point of time, all clients

should read the same data from any datacenter

replica

P3.3 Task 1: Strong Consistency

30

Coordinator:

● A request router that

routes the web requests

from the clients to each

datastore

● Preserves the order of

both read and write

requests

Datastore:

● The actual backend

storage that persists

collections of data

P3.3 Task 1: Strong Consistency

31

Single PUT request for key ‘X’

● Block all GETs for key ‘X’

until all datastores are

updated

● GET requests for a

different key ‘Y’ should

not be blocked

Multiple PUT requests for ‘X’

● Resolved in order of their

timestamp received from

the Truetime Server.

● GET requests must return

the most recent value to

the request timestamp

P3.3 Task 2:
Global Coordinators and Data Stores

us-west
us-east

singapore

DCI

coordinator datacenter

DCI

coordinator datacenterDCI

coordinator datacenter

32

P3.3 Task 2: Architecture

32

P3.3 Task 2: Global Replication

34

Operates similarly to Task 1,

although it requires you to

have both coordinator and

data centers in all 3 regions

rather than just one.

Users will be spread out

globally.

Task 2 Workflow and Example

● Launch a total of 8 machines (3 data centers, 3 coordinators,

1 truetime server and 1 client) in US East!

● We will simulate global latencies for you.

○ Do not actually create instances across

the globe!

● Finish the code for the

Coordinators and Datastores

35

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:

Complete KeyValueStore.java and Coordinator.java

 36

TrueTime Server

put?key=X&value=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 37

TrueTime Server

put?key=X&value=1

KeyValueLib.getTime()

PRECOMMIT

38

Contacts the Data Center of a given
region and notifies it that a PUT request

is being serviced for the specified key
with the corresponding timestamp.

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 39

TrueTime Server

put?key=X&value=1

precommit?key=X×tamp=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 40

TrueTime Server

put?key=X&value=1

PUT(REGIONAL-DNS, "X", "1",
1, "strong")

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 41

TrueTime Server

put?key=X&value=1

Response back

Hints
● In strong consistency, “PRECOMMIT” should be

useful to help you lock requests because they are

able to communicate with Data Center instances.

● In strong consistency, lock by key across all the

Data Center instances.

 42

P3.3: Eventual Consistency (Bonus)

43

● Write requests are performed in the order
received by the local coordinator
○ Operations may not be blocked for replica

consensus (no communication between
servers across region)

● Clients that request data may receive multiple
versions of the data, or stale data
○ Problems left for the application owner to

resolve

● Read the two primers

● Consider the differences between the 2

consistency models before writing code

● Think about possible race conditions

● Read the hints in the writeup and skeleton

code carefully

● Only modify the following classes:

○ Coordinator.java and KeyValueStore.java

Suggestions

 44

Start early!

 45

Deadlines
● OLI Unit 5 Module 18: Introduction to Distributed

Programming for the Cloud
● Quiz 9 - Friday, Apr. 9th
● Project 3.3 - Sunday, Apr. 11th

● Team Project, Twitter Analytics

○ Phase 2 - Live test: Next Sunday, Apr. 18th

46

