15-319 / 15-619
Cloud Computing

Overview

e Last week’s reflection
— Spark OPE
— OLI Unit 3: Modules 10, 11, 12
— Quiz5
e This week’s schedule
— Project 4.1, due on Sunday, March 21
— OLI Unit 3: Module 13

— Quiz 6, due on Thursday, March 18%
e Twitter Analytics: The Team Project
— Query 1 Final, due on March, 21
— Query 2 Early bonus due on March, 214

Modules to Read

 UNIT 3: Virtualizing resources for the cloud

- Module 13: Storage and Network virtualization «

Project 4, Frameworks

e Project4.1

— Iterative Batch Processing Using Apache
Spark

Typical MapReduce Batch Job

e Simplistic view of a MapReduce job

Input

[HDFS }——* Mapper

Reducer

Output

(o)

* You write code to implement the following classes

— Mapper
— Reducer

e |nputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk

Iterative MapReduce Jobs

 Some applications require iterative processing

* E.g., Machine Learning

->[HDFS]—' Mapper

e MapReduce: Data is always written to disk

Reducer

Prepare data for the next iteration

Output

e

— This leads to added overhead for each iteration

— Can we keep data in memory? Across Iterations?

— How do you manage this?

Key to Apache Spark - RDDs

Resilient Distributed Datasets (RDDs)
Can be in-memory or on disk

Read-only objects
Partitioned across the cluster based on a range or

the hash of a key in each record

' I
Machine A t RDD1 RDD?’

|| RDD Operation

Machine B t RDD2 (e.g. map, filter) \— RDD2’

Machine C t | L
RDD3 RDD3’

Apache Spark

e General-purpose cluster computing framework
e APIs in Python, Java, Scala and R
e Runs on Windows and UNIX-like systems

RDD Objects Spark Client Task Scheduler Worker
(Application Master)

| Scheduler and
RDD Graph
Threads
-\ Cluster Manager Block Manager
\ -

S |
" /B —

=t

+Eilteri..) Trackers

Spark Ecosystem

Spark SQL
O Process structured data

o Run SQL-like queries against RDDs
Spark Streaming

o Ingest data from sources like Kafka
o Process data with high level functions like map and reduce

o Output data to live dashboards or databases
MLlib

o Machine learning algorithms such as regression

o Utilities such as linear algebra and statistics
GraphX

o Graph-parallel framework
o Support for graph algorithms and analysis

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Apache Spark APls

® There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed

Dataset (RDD)

-

_

e Distributed

collection of
JVM objects
Functional
operators

(map, filter, etc.)

~

/

DataFrame

e

Distributed \

collection of
Row objects

No compile time
type safety
Fast, efficient
internal

Datasets

-

representations/

_

e Compile time

type-safe

e F[ast

~

/

10

DataFrames and Datasets

e A DataFrame is a collection of rows

o Tabular

o Organized into named columns, like a table in a relational DB
e A datasetis a collection of objects

o Domain specific

o Object oriented

Unified Apache Spark 2.0 API

Untyped AP

« DataFrame = Dataset[Row]
- Alias
Dataset
(2016)

Typed API

DataFrame

« Dataset[T]

11
€databricks

Operations on RDDs

Loading data
>>> input RDD = sc.textFile("text.file")

Transformation
— Applies an operation to derive a new RDD

— Lazily evaluated -- may not be executed immediately
>>> transform RDD = input RDD.filter(lambda x: "abcd" in x)

Action
— Forces the computation on an RDD

— Returns a single object
>>> print "Number of “abcd”:" + transform RDD.count()

Saving data
>>> output.saveAsTextFile(“hdfs:///output”) 12

RDDs and Fault Tolerance

® Actions create new RDDs
e Uses the notion of lineage to support fault tolerance
o Lineage is a log of transformations
o Stores lineage on the driver node
o Upon node failure, Spark loads data from disk to
recompute the entire sequence of operations
based on lineage

13

Operations on DataFrames

e Suppose we have a file people.json

{"name" :"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

e Create a DataFrame with its contents

val df = spark.read.json("people.json")

e Run SQL-like queries against the data

val sqlDF = df.where($"age" > 20).show()

e S
|age|name |
FRR R ——
| 30|Andy|

+---t----4

e Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output®)

Note: Parquet is a column-based storage format for Hadoop.

14

Project 4.1

Spark OPE: Implement a TF-IDF inverted index

Task 1: Exploratory Analysis on a graph based
dataset

Task 2: Create an efficient Spark program to
calculate user influence

Bonus: Use Azure Databricks to run Task 2

15

Twitter Social Graph Dataset

e tsv format
® Appx. 10GB of data (do not download)
e Edge list of (follower, followee) pairs
o Directed
e i of followers distribution — power tail

0.10
0.09
0.08
0.07
2 006
2
8 0.05
0.04
0.03
0.02
i IIIIII... [] L=rl]
0.0 nillsnn_N_nlsllinE._S. S=_= =
0.00 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1.0k
count 16

Task 1 Exploratory Data Analysis

® Two parts to Task 1
a. Counting using Zeppelin notebook
m Find the number of edges
m Find the number of vertices
b. Find top 100 most-popular users
m RDD API
m Spark DataFrame API

17

Task 2: PageRank

e Started as an algorithm to rank websites in search
engine results

® Assign ranks based on the number of links
pointing to them

® A page that has links from
o Many nodes = high rank
o A high-ranking node = (slightly less) high rank

e |n Task 2, we will implement pagerank to find the
rank of each user

18

Basic PageRank

e How do we measure influence?
o Intuitively, it should be the node with the most followers

4 1//

19

Basic PageRank

e Influence scores are initializedto 1.0 / # of vertices

0.333 0.333

0/—\2

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

0.333 0.333

4 1//

0.333

21

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

From Node 0 From Node 1
0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 29

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

PageRank is guaranteed to converge

From Node 0 From Node 1

0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 23

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

PageRank is guaranteed to converge

L 1//

0.396

0.208 0.396

24

PageRank Terminology

e Dangling or sink vertex
o No outgoing edges
o Redistribute contribution equally among all vertices
e |solated vertex
o No incoming and outgoing edges
o No isolated nodes in Project 4.1 dataset
e Damping factor d
o Represents the probability that a user clicking on links
will continue clicking on them, traveling down an edge
o Used=0.85

Y .

f /Y/—\\ 7 -
[\ (
. 0) il)

/ < / o
Dangling vertex \ /

/ N
\ (\
| 1) \ 3 /} «— Isolated vertex

. s 2 5

Basic PageRank Pseudocode

(Note: This does not meet the requirements of Task 2)

val links = spark.textFile(...).map(...) .cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{
case (url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey(+)

.mapValues (sum => a/N + (1-a)*sum)

}

Reference: https://qithub.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 26

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

Visualizing Transitions

e Adjacency matrix:
0 0 0 0

G =

IOO»—\
o=
i

IOOO

e Transition matrix: (rows sumto 1)

(0.25 0.25 0.25 0.25] @
0o 0 05 O
M= 0 1 0 0

025 025 0.25 0.25

Mij Gij (when Z sz 7é O) @
k=1

; ZZ:1 Gk

27

Task 2: PageRank

Formula for Calculating rank
k—l—l)_d Z 'r d)rio)

’UJEN v;)
@ d=0.85

(0) (0) (0)

T ' r 1
r(()l):d(lz Z + Z)+(1—d);
(0) (0) (0)
i
) =d(Z+ 2+ 2+ (1-d)-
(0) (0) (0)
r r r 1
rg”_al(l2 +)+ (-d)-
9 a5+ 0-a) '

Task 2: PageRank

@ Formula for Calculating rank
kH) =d Z fr d)frgo)
’UJEN v;)

d=0.85
@ Note: contributions from isolated and

dangling vertices are constant in an
iteration

Let

29

Task 2: PageRank

(8

. D)
r{) = d——l—e+(1—d)

: (0)
rg)_d 2 4et(1—d)

(0)
r! —d—+e+(1—d)

ri) = e+ (1—d)

S|P3l 3|l 3+

&

This simplifies the formula to

Formula for calculating rank
k—i—l)_d Z T d)?“go)

Vj EN vZ

d=0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

30

Task 2: PageRank

@ Formula for calculating rank
rF) — g Z it — d)r?
’UJEN

@ d=0.85

e = 0.85 x (0.25/4 + 0.25/4) = 0.106

ri) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
rit = 0.85 x 0.25 + 0.106 + 0.15 x 0.25 = 0.356
(1) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
ri =0.106 + 0.15 x 0.25 = 0.144

31

Task 2: PageRank

Formula for calculating rank
k—i—l) —d Z 7“ —d)r (0)

v; EN (v;
@ d=0.85

r = 0.2656
ri¥) = 0.3487
r{¥) = 0.2656
r =0.1199

32

What you need to do for Task 2

® Run your page rank application on a 10GB
graph data for 10 iterations.

e Using HDInsight cluster on Azure:
o Use the Terraform template provided
o Very expensive - 2.6USD per hour

® Scoring for Task 2 has 2 components:
o 100% correctness for page rank - 30 points
o Performance optimization (runtime within
30 minutes) - 30 points

33

General Hints

Starter code:

O

SparkUtils.scala - Use this for creating SparkSession objects.

Test out commands on a Zeppelin notebook (refer to the Zeppelin primer)
Test Driven Development (TDD):

O

O O O O O

Starter code contains a small graph test.

Develop and test locally first!

Develop and test locally first!

Develop and test locally first! HDInsight clusters are expensive

Add more test cases to check robustness.

Each submission can take anywhere from 6 min to an hour to run on
the cluster.

When in doubt, read the docs!

©)
©)

SparkSQL
RDD

Don’t forget to include in your submission

O

Updated references file

Arguably the hardest P4 project. Start early!

34

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Pagerank Hints

e Ensuring correctness

O Make sure total scores sum to 1.0 in every iteration

o Understand closures in Spark

m Do not do something like this
val data = Array(1,2,3,4,5)
var counter = 0
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += Xx)
println("Counter value: " + counter)

o Graph representation
m Adjacency lists use less memory than matrices

o More detailed walkthroughs and sample calculations
can be found here

35

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Status of RDD
actions being
computed

In-depth job info

Spark Ul

Provides useful information on your Spark programs
You can learn about resource utilization of your cluster
e |s astepping stone to optimize your jobs

Info about cached

RDDs and

Spoff\z] Jobs Stages

Storage Environment Executors

Details for Stage 1 (Attempt 0)

Total Time Across All Tasks: 46 ms
Locality Level Summary: Any: 1
Shuffle Read: 50.0 B/ 2

v DAG Visualization

Stage 1

reduceByKey

ShuffledRDD [1]
reduceByKey at <console>:29

» Show Additional Metrics
~ Event Timeline

Enable zooming
[l Scheduler Delay

[l Task Deserialization Time
Shuffle Read Time

Executor Computing Time
Shuffle Write Time
[l Result Serialization Time

Getting Result Time

driver / localhost

30 085 090 095 100 105 110
08:11:09

Summary Metrics for 1 Completed Tasks

Metric Min 25th percentile

Duration 46 ms 46 ms

memory usage

115 120 125 130

Median 75th percentile

46 ms 46 ms

Spark shell application Ul

135 140 145 150

46 ms

36

Optimization Hints

Understand RDD manipulations

o Actions vs Transformations

o Lazy transformations

Use the Ambari Ul

o Are you utilizing your cluster completely? How can you
change that? Refer optimization hints in the writeup.

Use the Spark Ul

o Are your RDDs cached as expected?

o Memory errors - check container logs

o Parameter tuning applied successfully?

o Exponential increase in partitions?

How do you represent the node IDs? Int/String/Long?

Many more optimization hints in the writeup!

37

Bonus Task - Databricks

Databricks is an Apache Spark-based unified analytics
platform.

Azure Databricks is optimized for Azure

o Software-as-a-Service

One-click setup, an interactive workspace, and an
optimized Databricks runtime

Optimized connectors to Azure storage platforms for
fast data access

Run the same PageRank application (in Task 2) on
Azure Databricks to compare the differences with
Azure HDInsight

38

What you need to do for bonus?

You can only get bonus (10 points) when:

o 100% correctness

o Runtime under 30 minutes on Databricks

Copy your code to a Databricks notebook:

o Do not create or destroy SparkSession objects

o Change the output to DBFS instead of WASB
Create a cluster and job using databricks-setup.sh
Submitter takes in a job ID

Don’t forget to destroy resources after you are done!

39

How to change your code?

object PageRank {
def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

... Your implementation goes here ...
graphRDD = sc.textFile(inputGraphPath)
graphRDD.map(...)

spark.close()

}

def main(args: Array[String]): Unit = {
val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "wasb:///pagerank-output"
val iterations = 10

calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)

}
}

40

How to change your code?

val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "dbfs:/pagerank-output"

val iterations = 10

... Your implementation goes here ...

graphRDD = sc.textFile(inputGraphPath)

graphRDD.map(...)

spark.close()

41

Deadlines

¢ This week’s schedule
— Project 4.1, due on Sunday, March 21

— OLI Unit 3: Module 13
— Quiz 6, due on Thursday, March 18%
e Twitter Analytics: The Team Project

— Query 1 Final, due on March, 21
— Query 2 Early bonus due on March, 21

42

Questions?

43

