15-319 / 15-619 Cloud Computing

16th March, 2021

Overview

Last week's reflection

- Spark OPE
- OLI Unit 3: Modules 10, 11, 12
- Quiz 5

This week's schedule

- Project 4.1, due on <u>Sunday</u>, <u>March 21st</u>
- OLI Unit 3: Module 13
- Quiz 6, due on <u>Thursday</u>, <u>March 18th</u>
- Twitter Analytics: The Team Project
 - Query 1 Final, due on March, 21st
 - Query 2 Early bonus due on March, 21st

Modules to Read

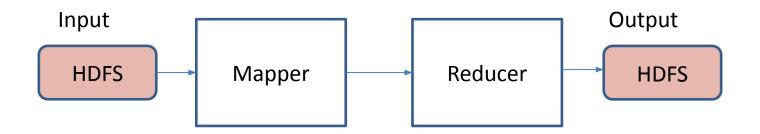
- UNIT 3: Virtualizing resources for the cloud
- Module 13: Storage and Network virtualization

Project 4, Frameworks

- Project 4.1
 - Iterative Batch Processing Using Apache
 Spark
- Project 4.2
 - Machine Learning on the Cloud
- Project 4.3
 - Stream Processing with Kafka and Samza

Typical MapReduce Batch Job

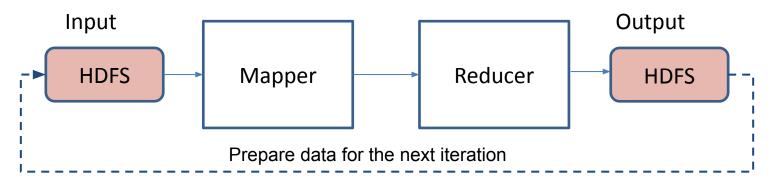
Simplistic view of a MapReduce job



- You write code to implement the following classes
 - Mapper
 - Reducer
- Inputs are read from disk and outputs are written to disk
 - Intermediate data is spilled to local disk

Iterative MapReduce Jobs

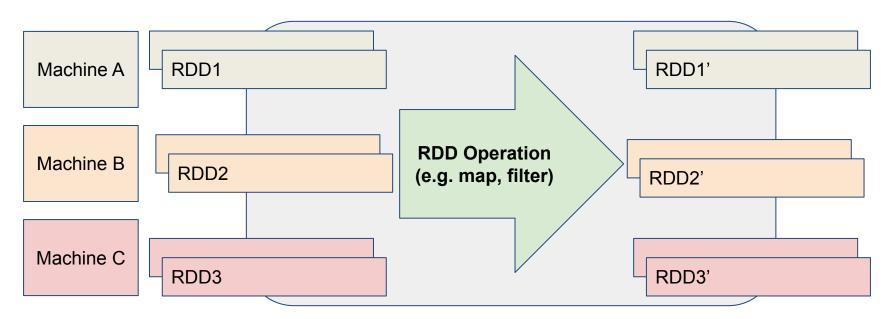
- Some applications require iterative processing
- E.g., Machine Learning



- MapReduce: Data is always written to disk
 - This leads to added overhead for each iteration
 - Can we keep data in memory? Across Iterations?
 - How do you manage this?

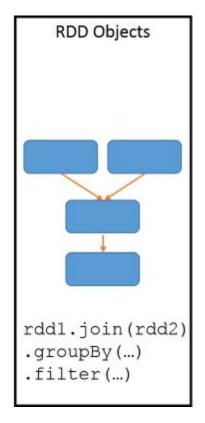
Key to Apache Spark - RDDs

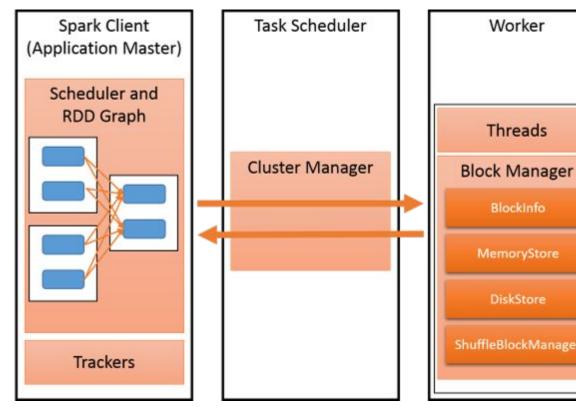
- Resilient Distributed Datasets (RDDs)
- Can be in-memory or on disk
- Read-only objects
- Partitioned across the cluster based on a range or the hash of a key in each record



Apache Spark

- General-purpose cluster computing framework
- APIs in Python, Java, Scala and R
- Runs on Windows and UNIX-like systems





Spark Ecosystem

- Spark SQL
 - Process structured data
 - Run SQL-like queries against RDDs
- Spark Streaming
 - Ingest data from sources like Kafka
 - Process data with high level functions like map and reduce
 - Output data to live dashboards or databases
- MLlib
 - Machine learning algorithms such as regression
 - Utilities such as linear algebra and statistics
- GraphX
 - Graph-parallel framework
 - Support for graph algorithms and analysis

Apache Spark APIs

There exists 3 sets of APIs for handling data in Spark

Resilient Distributed Dataset (RDD)

DataFrame

Datasets

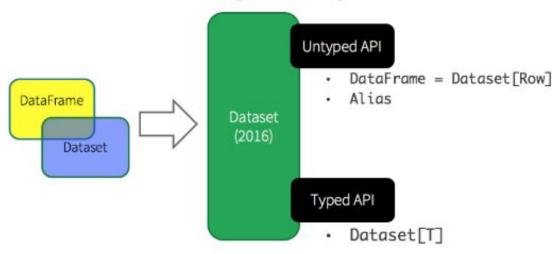
- Distributed collection of JVM objects
- Functional operators (map, filter, etc.)

- Distributed collection of Row objects
- No compile time type safety
- Fast, efficient internal representations

- Compile time type-safe
- Fast

DataFrames and Datasets

- A DataFrame is a collection of rows
 - Tabular
 - Organized into named columns, like a table in a relational DB
- A dataset is a collection of objects
 - Domain specific
 - Object oriented



Operations on RDDs

Loading data

```
>>> input_RDD = sc.textFile("text.file")
```

- Transformation
 - Applies an operation to derive a new RDD
 - Lazily evaluated -- may not be executed immediately

```
>>> transform_RDD = input_RDD.filter(lambda x: "abcd" in x)
```

- Action
 - Forces the computation on an RDD
 - Returns a single object
 >>> print "Number of "abcd": " + transform_RDD.count()
- Saving data

```
>>> output.saveAsTextFile("hdfs:///output")
```

RDDs and Fault Tolerance

- Actions create new RDDs
- Uses the notion of lineage to support fault tolerance
 - Lineage is a log of transformations
 - Stores lineage on the driver node
 - Upon node failure, Spark loads data from disk to recompute the entire sequence of operations based on lineage

Operations on DataFrames

Suppose we have a file people.json

```
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}
```

Create a DataFrame with its contents

```
val df = spark.read.json("people.json")
```

Run SQL-like queries against the data

```
val sqlDF = df.where($"age" > 20).show()
+---+
|age|name|
+---+
| 30|Andy|
+---+---+
```

Save data to file

```
df.where($"age" > 20).select("name").write.parquet("output")
```

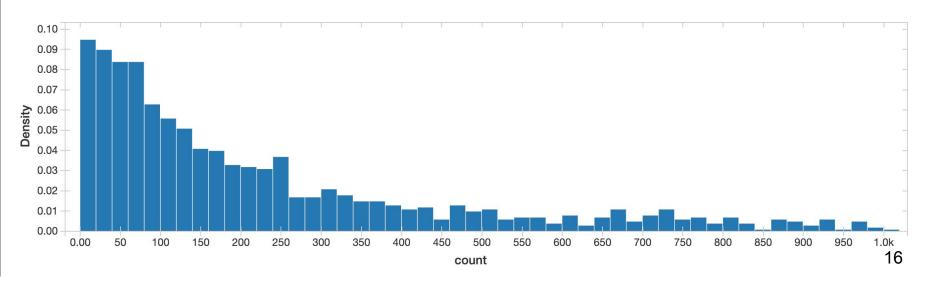
Note: Parquet is a column-based storage format for Hadoop.

Project 4.1

- Spark OPE: Implement a TF-IDF inverted index
- Task 1: Exploratory Analysis on a graph based dataset
- Task 2: Create an efficient Spark program to calculate user influence
- Bonus: Use Azure Databricks to run Task 2

Twitter Social Graph Dataset

- tsv format
- Appx. 10GB of data (do not download)
- Edge list of (follower, followee) pairs
 - Directed
- # of followers distribution → power tail

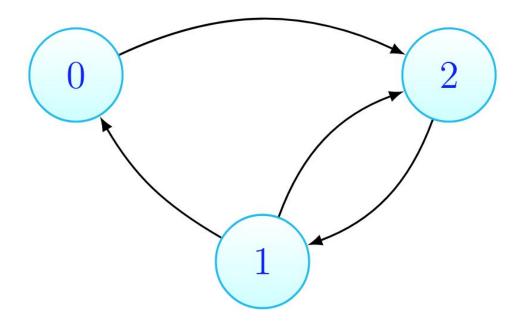


Task 1 Exploratory Data Analysis

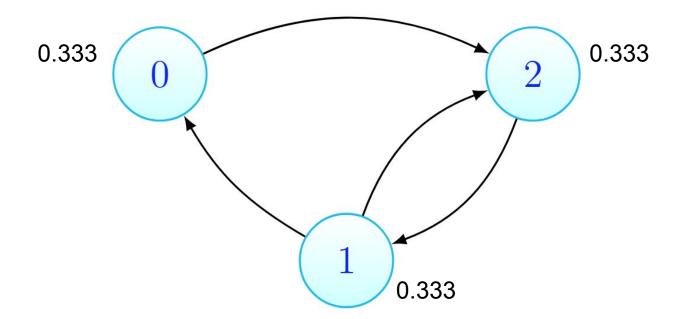
- Two parts to Task 1
 - a. Counting using Zeppelin notebook
 - Find the number of edges
 - Find the number of vertices
 - b. Find top 100 most-popular users
 - RDD API
 - Spark DataFrame API

- Started as an algorithm to rank websites in search engine results
- Assign ranks based on the number of links pointing to them
- A page that has links from
 - Many nodes ⇒ high rank
 - A high-ranking node ⇒ (slightly less) high rank
- In Task 2, we will implement pagerank to find the rank of each user

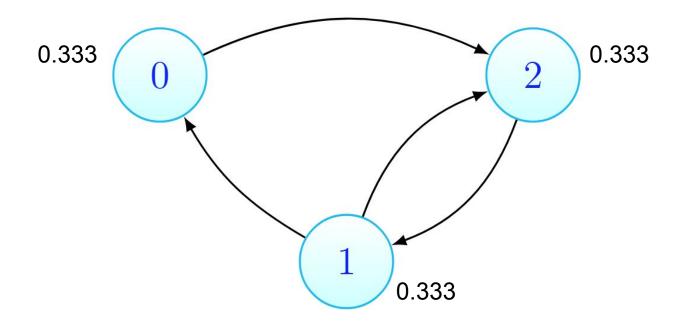
- How do we measure influence?
 - Intuitively, it should be the node with the most followers



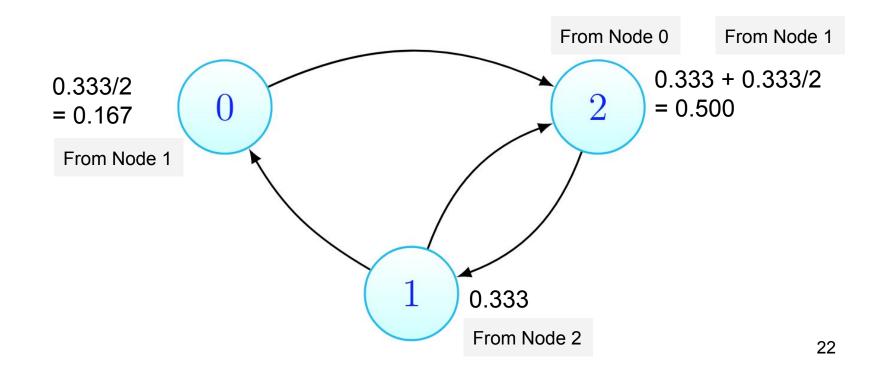
• Influence scores are initialized to 1.0 / # of vertices



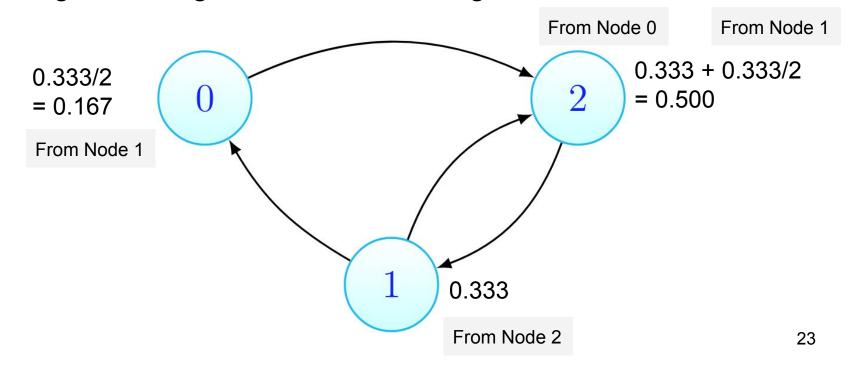
- Influence scores are initialized to 1.0 / # of vertices
- In each iteration of the algorithm, scores of each user are redistributed between the users they are following



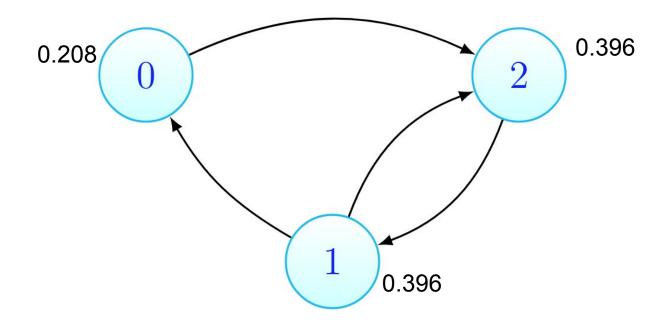
- Influence scores are initialized to 1.0 / # of vertices
- In each iteration of the algorithm, scores of each user are redistributed between the users they are following



- Influence scores are initialized to 1.0 / # of vertices
- In each iteration of the algorithm, scores of each user are redistributed between the users they are following
- Convergence is achieved when the scores of nodes do not change between iterations
- PageRank is guaranteed to converge



- Influence scores are initialized to 1.0 / # of vertices
- In each iteration of the algorithm, scores of each user are redistributed between the users they are following
- Convergence is achieved when the scores of nodes do not change between iterations
- PageRank is guaranteed to converge



PageRank Terminology

Dangling or sink vertex

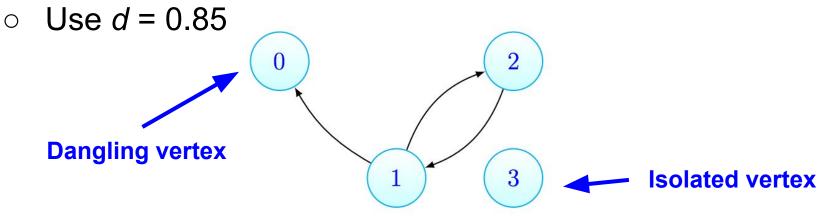
- No outgoing edges
- Redistribute contribution equally among all vertices

Isolated vertex

- No incoming and outgoing edges
- No isolated nodes in Project 4.1 dataset

Damping factor d

 Represents the probability that a user clicking on links will continue clicking on them, traveling down an edge



Basic PageRank Pseudocode

(Note: This does not meet the requirements of Task 2)

```
val links = spark.textFile(...).map(...).cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
   // Build an RDD of (targetURL, float) pairs
   // with the contributions sent by each page
   val contribs = links.join(ranks).flatMap
      case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
   }
   // Sum contributions by URL and get new ranks
   ranks = contribs.reduceByKey( + )
                    .mapValues(sum => a/N + (1-a)*sum)
```

Visualizing Transitions

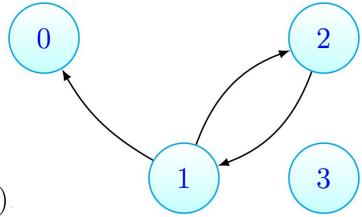
Adjacency matrix:

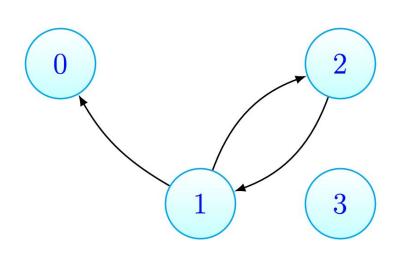
$$\mathbf{G} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Transition matrix: (rows sum to 1)

$$\mathbf{M} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}$$

$$M_{ij} = \frac{G_{ij}}{\sum_{k=1}^{n} G_{ik}} (\text{ when } \sum_{k=1}^{n} G_{ik} \neq 0).$$





Formula for calculating rank

$$r_i^{(k+1)} = d \sum_{v_j \in \mathcal{N}(v_i)} r_j^{(k)} M_{ji} + (1-d) r_i^{(0)}$$

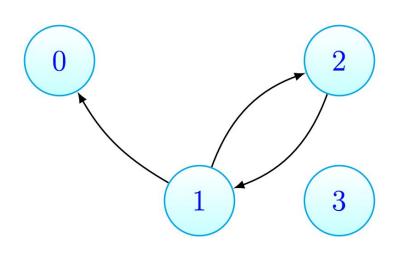
$$d = 0.85$$

$$r_0^{(1)} = d\left(\frac{r_1^{(0)}}{2} + \frac{r_0^{(0)}}{4} + \frac{r_3^{(0)}}{4}\right) + (1 - d)\frac{1}{n}$$

$$r_1^{(1)} = d\left(\frac{r_2^{(0)}}{1} + \frac{r_0^{(0)}}{4} + \frac{r_3^{(0)}}{4}\right) + (1 - d)\frac{1}{n}$$

$$r_2^{(1)} = d\left(\frac{r_1^{(0)}}{2} + \frac{r_0^{(0)}}{4} + \frac{r_3^{(0)}}{4}\right) + (1 - d)\frac{1}{n}$$

$$r_3^{(1)} = d\left(\frac{r_0^{(1)}}{4} + \frac{r_3^{(1)}}{4}\right) + (1 - d)\frac{1}{n}$$



Formula for calculating rank

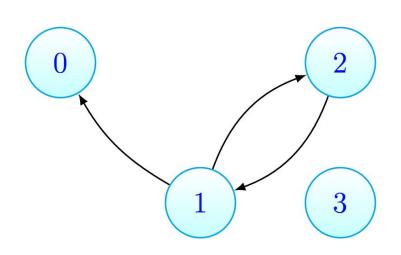
$$r_i^{(k+1)} = d \sum_{v_j \in \mathcal{N}(v_i)} r_j^{(k)} M_{ji} + (1-d) r_i^{(0)}$$

$$d = 0.85$$

Note: contributions from isolated and dangling vertices are constant in an iteration

Let

$$\epsilon = d(\frac{r_0^{(0)}}{4} + \frac{r_3^{(0)}}{4})$$



This simplifies the formula to

$$r_0^{(1)} = d\frac{r_1^{(0)}}{2} + \epsilon + (1 - d)\frac{1}{n}$$

$$r_1^{(1)} = d\frac{r_2^{(0)}}{1} + \epsilon + (1 - d)\frac{1}{n}$$

$$r_2^{(1)} = d\frac{r_1^{(0)}}{2} + \epsilon + (1 - d)\frac{1}{n}$$

$$r_3^{(1)} = \epsilon + (1 - d)\frac{1}{n}$$

Formula for calculating rank

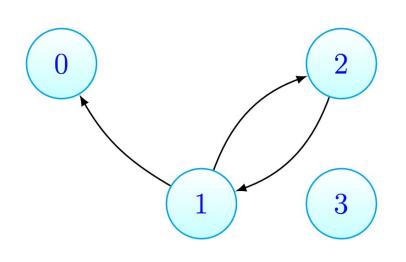
$$r_i^{(k+1)} = d \sum_{v_j \in \mathcal{N}(v_i)} r_j^{(k)} M_{ji} + (1-d) r_i^{(0)}$$

$$d = 0.85$$

Note: contributions from isolated and dangling vertices are constant in an iteration

Let

$$\epsilon = d(\frac{r_0^{(0)}}{4} + \frac{r_3^{(0)}}{4})$$



Formula for calculating rank

$$r_i^{(k+1)} = d \sum_{v_j \in \mathcal{N}(v_i)} r_j^{(k)} M_{ji} + (1-d) r_i^{(0)}$$

$$d = 0.85$$

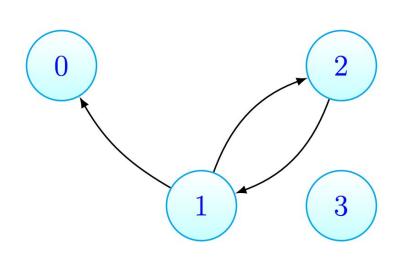
$$\epsilon = 0.85 \times (0.25/4 + 0.25/4) = 0.106$$

$$r_0^{(1)} = 0.85 \times 0.25/2 + 0.106 + 0.15 \times 0.25 = 0.25$$

$$r_1^{(1)} = 0.85 \times 0.25 + 0.106 + 0.15 \times 0.25 = 0.356$$

$$r_2^{(1)} = 0.85 \times 0.25/2 + 0.106 + 0.15 \times 0.25 = 0.25$$

$$r_3^{(1)} = 0.106 + 0.15 \times 0.25 = 0.144$$



Formula for calculating rank

$$r_i^{(k+1)} = d \sum_{v_j \in \mathcal{N}(v_i)} r_j^{(k)} M_{ji} + (1-d) r_i^{(0)}$$

$$d = 0.85$$

$$r_0^{(k)} = 0.2656$$
 $r_1^{(k)} = 0.3487$
 $r_2^{(k)} = 0.2656$
 $r_3^{(k)} = 0.1199$

What you need to do for Task 2

- Run your page rank application on a 10GB graph data for 10 iterations.
- Using HDInsight cluster on Azure:
 - Use the Terraform template provided
 - Very expensive 2.6USD per hour
- Scoring for Task 2 has 2 components:
 - 100% correctness for page rank 30 points
 - Performance optimization (runtime within 30 minutes) - 30 points

General Hints

- Starter code:
 - SparkUtils.scala Use this for creating SparkSession objects.
- Test out commands on a Zeppelin notebook (refer to the Zeppelin primer)
- Test Driven Development (TDD):
 - Starter code contains a small graph test.
 - Develop and test locally first!
 - Develop and test locally first!
 - Develop and test locally first! HDInsight clusters are expensive
 - Add more test cases to check robustness.
 - Each submission can take anywhere from 6 min to an hour to run on the cluster.
- When in doubt, read the docs!
 - SparkSQL
 - o <u>RDD</u>
- Don't forget to include in your submission
 - Updated references file
- Arguably the hardest P4 project. Start early!

Pagerank Hints

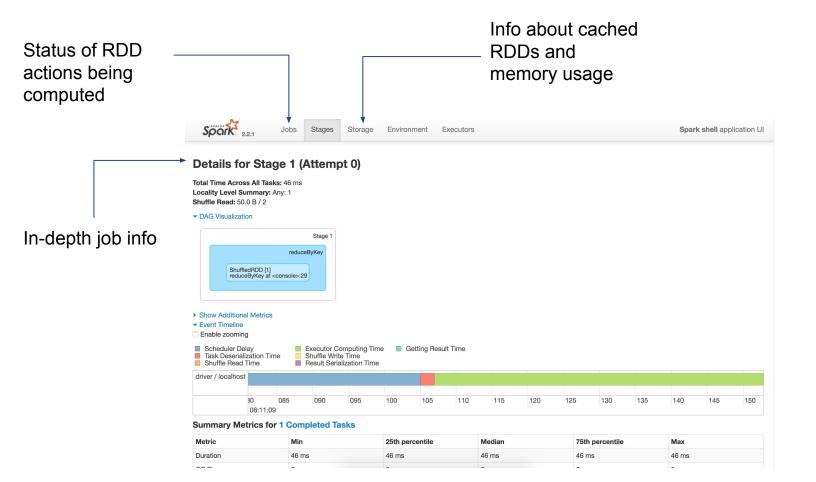
- Ensuring correctness
 - Make sure total scores sum to 1.0 in every iteration
 - Understand closures in Spark
 - Do not do something like this

```
val data = Array(1,2,3,4,5)
var counter = 0
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += x)
println("Counter value: " + counter)
```

- Graph representation
 - Adjacency lists use less memory than matrices
- More detailed walkthroughs and sample calculations can be found <u>here</u>

Spark UI

- Provides useful information on your Spark programs
- You can learn about resource utilization of your cluster
- Is a stepping stone to optimize your jobs



Optimization Hints

- Understand RDD manipulations
 - Actions vs Transformations
 - Lazy transformations
- Use the Ambari UI
 - Are you utilizing your cluster completely? How can you change that? Refer optimization hints in the writeup.
- Use the Spark UI
 - Are your RDDs cached as expected?
 - Memory errors check container logs
 - Parameter tuning applied successfully?
 - Exponential increase in partitions?
- How do you represent the node IDs? Int/String/Long?
- Many more optimization hints in the writeup!

Bonus Task - Databricks

- Databricks is an Apache Spark-based unified analytics platform.
- Azure Databricks is optimized for Azure
 - Software-as-a-Service
- One-click setup, an interactive workspace, and an optimized Databricks runtime
- Optimized connectors to Azure storage platforms for fast data access
- Run the same PageRank application (in Task 2) on Azure Databricks to compare the differences with Azure HDInsight

What you need to do for bonus?

- You can only get bonus (10 points) when:
 - 100% correctness
 - Runtime under 30 minutes on Databricks
- Copy your code to a Databricks notebook:
 - Do not create or destroy SparkSession objects
 - Change the output to DBFS instead of WASB
- Create a cluster and job using databricks-setup.sh
- Submitter takes in a job ID
- Don't forget to destroy resources after you are done!

How to change your code?

```
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
  val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
  val sc = spark.sparkContext
  ... Your implementation goes here ...
  graphRDD = sc.textFile(inputGraphPath)
  graphRDD.map(...)
  spark.close()
 def main(args: Array[String]): Unit = {
  val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
  val outputPath = "wasb:///pagerank-output"
  val iterations = 10
  calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
```

How to change your code?

```
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
  val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
  val sc = spark.sparkContext
  val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
  val outputPath = "dbfs:/pagerank-output"
  val iterations = 10
  ... Your implementation goes here ...
  graphRDD = sc.textFile(inputGraphPath)
  graphRDD.map(...)
  spark.close()
 def main(args: Array[String]): Unit = {
  calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
```

Deadlines

This week's schedule

- Project 4.1, due on <u>Sunday</u>, <u>March 21st</u>
- OLI Unit 3: Module 13
- Quiz 6, due on <u>Thursday</u>, <u>March 18th</u>

Twitter Analytics: The Team Project

- Query 1 Final, due on March, 21st
- Query 2 Early bonus due on March, 21st

Questions?

