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Overview
● Last week’s reflection

○ Team Project Phase 2, Live Test
○ Quiz 11

● This week’s schedule
○ Project 4.2
○ Twitter Analytics: The Team Project

■ Phase 3
● Managed Services



Machine Learning in Production
● A typical end-to-end process for Machine Learning



Machine Learning in Production
● A proliferation of tools on the Cloud



ML on Managed Services

● Machine learning training on large datasets are 
computationally intense

● An increasingly affordable option for users without 
specialized IT infrastructure is to process ML workloads 
on the cloud with Managed Services like GCP ML Engine

● Benefits:
○ No need to provision and configure virtual machines
○ Horizontal and Vertical scaling is possible
○ No need to write custom logic to orchestrate 

multiple workers and achieve parallel training
○ Deploy your model to the cloud



Taxi Fare Prediction Application

● Accepts speech queries to get the fare estimate 
to get from point to point (based on historical 
data), and returns the result as speech

I would like to get from Central Park 
Zoo to Grand Central Terminal

Your expected fare from Central Park 
Zoo to Grand Central Terminal is $29.69 



Overview of Tasks

● Task 1: Data Visualization and Feature Engineering
● Task 2: Training, parameter tuning, deploying and 

serving your model using the  Google Cloud ML 
Engine.

● Task 3: Stitch together services into a pipeline to 
build a user-facing interface for fare predictions.

● Bonus: 
○ Use Cloud Vision API to identify NYC landmarks
○ Use AutoML transfer learning to train a model that 

accepts custom landmarks as input for prediction



Task 1: Feature Engineering 
- Data Viz

● You are given a small training dataset 
containing historical data of fare prices in New 
York City.

● Steps to perform
○ Data exploration and visualization
○ Understand the data for Feature Engineering 

with regards to feature construction, data 
cleaning, etc.



Task 1: Feature Engineering 
- Data Viz



Task 1: Feature Engineering

● You are given a small training dataset 
containing historical data of fare prices in New 
York City

● Steps to perform
○ Clean data and remove outliers

■Consider what you learned from the data 
visualization task

○ Extract or construct meaningful features that 
will improve performance over the baseline 
model (which uses raw features with no 
transformations) 



Task 1: Feature Engineering

● Feature engineering = transforming domain 
knowledge into better features

● Some ideas for feature engineering
○ Calculate distance from the geo-coordinates
○ Calculate distance to landmarks
○ What are good proxies for traffic conditions?



Task 1: Feature Engineering
● Evaluating your model

○ Metric: Root Mean Squared Error (RMSE)
○ K-fold Cross Validation

■Used to assess the predictive performance of the 
model outside the training sample on unseen data

○ Plot feature importance



Task 1: Feature Engineering

● Achieve target accuracy, measured by Root 
Mean Squared Error (RMSE), to earn full 
credit.

● Grading feedback will tell you how much 
you need to improve your RMSE to get the 
next grade.



Task 2: Training, Tuning & Deploying

● Build a complete model with the training dataset, we 
will leverage ML Engine to perform model training.

● Deploy the trained model to ML Engine.
● Deploy a Flask application that accepts web requests 

and returns fare predictions
○ Transform raw features from web requests using 

the  feature engineering solution developed in 
Task 1.

○ Make API calls to the model hosted on ML Engine
○ Format and return a web response



Task 2: Tuning with GCP ML Engine

● Hyperparameter Tuning
● Parameters v/s. Hyperparameters

○ Parameters: internal, often not set by the 
practitioners

○ Hyperparameters: external, often set by the 
practitioners before training
■ Basically, configuration parameters that 

impact the training process
● Finding optimal hyperparameters with exhaustive 

Grid Search is expensive



Task 2: Tuning with GCP 
HyperTune

● Black box optimization service (does not need access 
to the underlying model)

● Need to specify a config yaml file that describes 
which parameters to tune

● Uses a method called Bayesian Optimization to 
efficiently search through different combinations of 
hyperparameters

● An example of a HyperTune configuration file: 
hptuning_config.yaml

https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/census/hptuning_config.yaml


Task 2: Deploying Models to ML Engine
● To get a full score in this task, you need to:

○ (10 points) Complete the following:
■ Enable HyperTune
■ Add at least 3 additional parameters to tune
■ Improve the model performance by at least 3% 

which is measured by RMSE score.
○ (10 points) Deploy the fare prediction application 

to Google App Engine (GAE) which can serve web 
requests correctly.

○ (10 points) Predictions should achieve a target 
accuracy, measured by RMSE.



Task 3: ML Application Pipeline
● Build an end-to-end application pipeline to predict car 

fare requests using the following architecture.



Task 3: ML Application Pipeline

● Your application will include multiple APIs
○ Functional APIs to be implemented

■ /predict - Generate fare predictions for a JSON array 
of rides

■ /speechToText - Convert WAV audio to text string
■ /textToSpeech - Convert text string to WAV audio
■ /namedEntities - Identify landmarks in a given 

sentence
■ /directions - For two given NYC landmarks, 

determine the latitude / longitude for each pickup and 
drop off pair



Task 3: ML Application Pipeline

Putting it together:
● /farePrediction - Given a WAV audio ride request, determine the predicted 

fare
○ Response 

■ { "predicted_fare": "23.78", 
   “entities": ["Charging Bull", "Carnegie Hall"], 
    "text": "Your expected fare from Charging Bull to Carnegie Hall                                                                     
is $23.78", 
     "speech": <BASE64 ENCODED AUDIO> }

● General solution flow
○ Speech to text ride request (/speechToText)
○ Extract entities from text ride request (/namedEntities)
○ Get the coordinates of the pickup and drop off locations (/directions)
○ Query the ML Engine model to get the predicted fare (/predict)
○ Convert the text response to speech (/textToSpeech)



Bonus: Landmark Recognition
● (5 points) Use Cloud Vision to identify NYC landmarks
● (5 points) Add unique destinations using AutoML

● /farePredictionVision
○ Unlike /farePrediction, the ride request will not be 

sent as WAV audio
○ The API will accept the source and destination as 

images of NYC landmarks
○ Must query the Cloud Vision API and custom AutoML 

model to determine the landmark names
○ Continue with the same request as /farePrediction



Bonus: Landmark Recognition

... ... ...



Bonus: Landmark Recognition

... ... ...



Hints

● Task 1: Feature transformation

■ The exact same feature transformations must be 
applied to the training and the test set

■ Cannot share code if stateful functions are used, 
for example:
● get_dummies()
● df.qcut()

■ Store state like bin ranges and categorical values 
to apply the transformation consistently

○ Jupyter: command not found (use virtualenv)



Hints

● Task 2: HyperTune
○ Read the XGBoost parameter documentation to 

understand which parameters can help most.
○ You can change the number of workers for ML 

Engine to parallelize the training process.
○ Learn to make good estimates for the cost for 

each run
■ Cost = Consumed ML Units *  $0.49



Issues to Consider

● Overfitting
○ RMSE on training data is much lower than test data
○ You should not filter outliers just because it makes 

your cross validation scores look better, since some 
of these records may be representative of the 
patterns in the real world.

■Students who do this may have passed Task 1, 
but failed Task 2.

■You should make sure you have good features 
first, before trying to play around with filtering 
outliers.
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TEAM PROJECT
Twitter Data Analytics



Team Project Phase 2 Live Test 
Top Teams

CaptainMAL 52191.51

GodWeiheng 52052.42

CCNoLife 49864.22

GoGoPowerRanger 48483.37

BESTCC 47626.72

BESTCC 61963.9

GoGoPowerRanger 61923.21

CaptainMAL 57639.2

ShotBeforeCC 57510.9

TeamRocket 57314.96

Q1H Q1M

Congrats to CaptainMAL, GoGoPowerRanger and BESTCC for top 
performance at both HBase and MySQL tests.



Team Project Phase 2 Live Test 
Top Teams

CCHunter 21868.6

AutoScalingGroup 21415.72

GoGoPowerRanger 20454.61

nullnullnobug 18779.58

CCaaS 16084.05

GoGoPowerRanger 27552.07

CCHunter 23757.92

NtuPuzzleAndDragonLab 21597.64

LongLongName 20245.92

pigeon 19962.12

Q2H Q2M

Congrats to CCHunter and GoGoPowerRanger for top performance 
at both HBase and MySQL tests.



Team Project Phase 2 Live Test 
Top Teams

GodWeiheng 5357.58

nullnullnobug 5069.03

NtuPuzzleAndDragonLab 4736.36

CCHunter 4592.7

oboboboboboboob 4375.31

LongLongName 8913.7

Could Compute 7225.1

SimpleNaive 7107.97

R3-D3 7077.07

NtuPuzzleAndDragonLab 6736.8

Q3H Q3M

Congrats to NtuPuzzleAndDragonLab for top performance at both 
HBase and MySQL tests.



Team Project Phase 2 Live Test 
Top Teams

Congrats to:
LongLongName, 
NtuPuzzleAndDragonLab, 
nullnullnobug and 
CCaaS 

for achieving a full score for the live test!



● Use only AWS managed services for all queries.

● Development budget: $100

○ Penalty for lavishness: >$150

● Live test:

○ Per-hour-budget: $1.28 (included in $100)

● Perform ETL on your beloved GCP and Azure

Team Project - Phase 3



Cloud Managed Services

● Managed services remove the burden from 
having to operate the provisioned cloud 
infrastructure.

● Management of the tools such as monitoring, 
patching, security, backup are offered as part of 
the service.



● RPS targets have been changed → 
○ Q1: 30000
○ Q2: 12000
○ Q3: 5000

● Teams should NOT use any EC2 VMs or EBS volumes.
● Rule of thumb: 

○ If you see anything in EC2 dashboard, stop.
○ If you are doing sudo apt install mysql-server, stop.

● Teams should explore the managed services provided by AWS 
to come up with a solution.

● Teams are required to use Terraform (unless Terraform does 
not have support for your particular managed service)

Team Project - Phase 3



● No EC2 VMs and EBS volumes in the live test!  
○ Nonetheless, you can use those to do verification or 

comparison to the hosted service you built before in the 
development process.

● You can check the EC2 web console after launching the 
managed service to verify if the managed service is allowed
○ Example 1: Lambda is allowed since it there will be no 

EC2 instances visible in the web console while using.
○ Example 2:  EMR is not allowed because there are master 

and slave machines in the web console.

Team Project General Hints



● One option would be to split the services into web-tier and 
storage-tier and choose different managed services.
○ If so, the compatibility of these two services should be 

taken into account.

● Consider the different characteristics of queries to decide what 
kind of managed services to use.

● High performance/cost ratio is valued.
○ Try your best to achieve the highest possible ratio.

Team Project General Hints



Team Project Time Table
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Phase (and query due) Start Deadlines Code and Report Due

Phase 1
● Q1, Q2

Monday 02/25/2019
00:00:00 ET

Checkpoint 1, Report: 
Sunday 03/11/2019 
23:59:59 ET
Checkpoint 2, Q1: Sunday 
03/25/2019 23:59:59 ET
Phase 1, Q2: Sunday 
03/31/2019 23:59:59 ET

Phase 1: Tuesday 
04/02/2019 23:59:59 ET

Phase 2
● Q1, Q2,Q3

Monday 04/01/2019
00:00:00 ET

Sunday 04/14/2019
15:59:59 ET

Phase 2 Live Test (Hbase 
AND MySQL)

● Q1, Q2, Q3

Sunday 04/14/2019
17:00:00 ET

Sunday 04/14/2019
23:59:59 ET

Tuesday 04/16/2019
23:59:59 ET

Phase 3
● Q1, Q2, Q3 (Managed 

services)

Monday 04/16/2019
00:00:00 ET

Sunday 04/28/2019
15:59:59 ET

Phase 3 Live Test
● Q1, Q2, Q3 (Managed 

services)

Sunday 04/28/2019
17:00:00 ET

Sunday 04/28/2019
23:59:59 ET

Tuesday 04/30/2019
23:59:59 ET



Upcoming Deadlines

● Project 4.2: Machine Learning on the Cloud

○ Due Sunday, April 21, 2019, 11:59 PM ET

● Team Project : Phase 3

○ Live-test at: Sunday April 28, 2019 3:59 PM ET

○ Code and report due: Tuesday April 30, 2019 11:59 PM 

ET



Questions?


