15-319 / 15-619 Cloud Computing

Recitation 12 Tuesday, April 9, 2019

Overview

Last week's reflection

- Project 4.1
- Unit 5 Modules 19 & 20
- Quiz 10
- Team Project Phase 2 released

This week's schedule

- Unit 5 Modules 21 and 22
 - Quiz 11 (last quiz)
- Team Project, Phase 2, Queries, 1, 2, 3
- Team Project, live test
 - HBase
 - MySQL

P4.1 Reflection

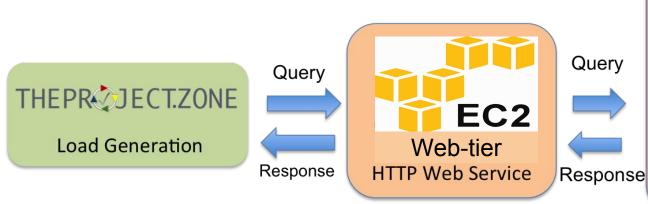
- Programming in Scala and Spark
- Understanding the differences between processing data with MapReduce and Spark
- Exploring Twitter social data with RDD and SparkSQL APIs
- Implementing an iterative processing algorithm pagerank - on a large dataset
- Utilizing the Spark Web UI to monitor a Spark job and identify performance bottlenecks
- Tuning a Spark program to optimize for time
- Running the PageRank application on Azure Databricks to compare performance

P4.1 Reflection

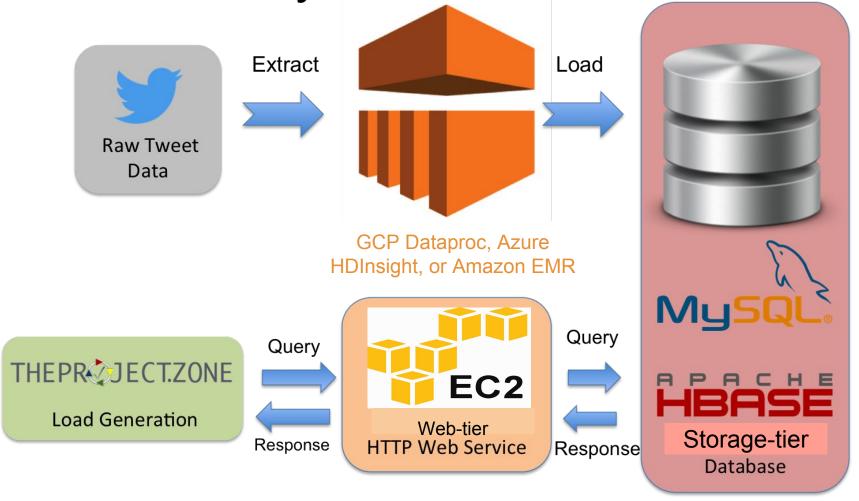
- Common Issues
 - Handling dangling nodes in the graph
 - Tuning the cluster for better performance.
 - Long running jobs
 - Reduce the amount of data shuffling
- Takeaways
 - Some approaches to implementing pagerank are more efficient than others
 - The Spark Web UI is a useful visualization tool
 - Databricks offers optimized version of Spark providing better performance than HDInsight.

Modules to Read

- UNIT 5: Distributed Programming and Analytics Engines for the Cloud
 - Module 18: Introduction to Distributed Programming for the Cloud
 - Module 19: Distributed Analytics Engines for the Cloud: MapReduce
 - Module 20: Distributed Analytics Engines for the Cloud: Spark
 - Module 21: Distributed Analytics Engines for the Cloud: GraphLab
 - Module 22: Message Queues and Stream Processing


TEAM PROJECT Twitter Data Analytics

Team Project


Twitter Analytics Web Service

- Given ~1TB of Twitter data
- Build a performant web service to analyze tweets
- Explore web frameworks
- Explore and optimize database systems

Twitter Analytics System Architecture

- Web server architectures
- Dealing with large scale real world tweet data
- HBase and MySQL optimization

Team Project

- Phase 1:
 - o Q1
 - Q2 (MySQL <u>AND</u> HBase)
- Phase 2
 - Q1
 - Q2 & Q3 (MySQL <u>AND</u> HBase)

- o Q1
- Q2 & Q3 (MySQL <u>OR</u> HBase)

Team Project Deadlines

- Phase 2 milestones:
 - Phase 2, Live test: on Sunday, April 14
 - HBase:
 - Q1/Q2/Q3/mixed
 - MySQL:
 - Q1/Q2/Q3/mixed
 - Phase 2, code, scripts and report:
 - due on Tuesday, April 16

Team Project Time Table

Lŧ	[*****				
					П
			X		
\square					Ц
빝					\mathbf{X}

Phase (and query due)	Start	Deadlines	Code and Report Due
Phase 1 ■ Q1, Q2	Monday 02/25/2019 00:00:00 ET	Checkpoint 1, Report: Sunday 03/11/2019 23:59:59 ET Checkpoint 2, Q1: Sunday 03/25/2019 23:59:59 ET Phase 1, Q2: Sunday 03/31/2019 23:59:59 ET	Phase 1: Tuesday 04/02/2019 23:59:59 ET
Phase 2 ● Q1, Q2,Q3	Monday 04/01/2019 00:00:00 ET	Sunday 04/14/2019 15:59:59 ET	
Phase 2 Live Test (Hbase AND MySQL) • Q1, Q2, Q3	Sunday 04/14/2019 17:00:00 ET	Sunday 04/14/2019 23:59:59 ET	Tuesday 04/16/2019 23:59:59 ET
Phase 3 ■ Q1, Q2, Q3 (Managed services)	Monday 04/16/2019 00:00:00 ET	Sunday 04/28/2019 15:59:59 ET	
Phase 3 Live Test ■ Q1, Q2, Q3 (Managed services)	Sunday 04/28/2019 17:00:00 ET	Sunday 04/28/2019 23:59:59 ET	Tuesday 04/30/2019 23:59:59 ET

11

Live Test Schedule - setup

Submit DNS for Live Test

Time	Task	Description
4:00 pm	HBase	Submit your DNS for the HBase Live Test before the deadline
4:00 pm	MySQL	Submit your DNS for the MySQL Live Test before the deadline
5:30 pm - 5:31 pm	HBase DNS Validation	Validate your HBase DNS. Last chance to update your DNS for the HBase Live Test
5:33 pm - 5:34 pm	MySQL DNS Validation	Validate your MySQL DNS. Last chance to update your DNS for the MySQL Live Test

Live Test Schedule - HBase

HBase Live Test

Time	Value	Target	Weight
6:00 pm - 6:25 pm	Warm-up (Q1 only)	0	0%
6:25 pm - 6:50 pm	Q1	30000	6%
6:50 pm - 7:15 pm	Q2	12000	10%
7:15 pm - 7:40 pm	Q3	1000	10%
7:40 pm - 8:05 pm	Mixed Reads(Q1,Q2,Q3)	15000/2500/300	4+5+5 = 14%

Half-time Break

Time	Value
8:05 pm - 8:30 pm	Kill your HBase resources. Carefully!!! Time to relax and prepare for the MySQL Live Test

Live Test Schedule - MySQL

MySQL Live Test

Time	Value	Target	Weight
8:30 pm - 8:55 pm	Warm-up (Q1 only)	0	0%
8:55 pm - 9:20 pm	Q1	30000	6%
9:20 pm - 9:45 pm	Q2	12000	10%
9:45 pm - 10:10 pm	Q3	1000	10%
10:10 pm - 10:35 pm	Mixed Reads(Q1,Q2,Q3)	15000/2500/300	4+5+5 = 14%

Budget Reminder

- Your team has a total AWS budget of \$50 for Phase 2
- Your web service should cost ≤ \$0.89/hour, including:
 - \circ EC2
 - We evaluate your cost using the On-Demand Pricing towards \$0.89/hour even if you use spot instances.
 - EBS & ELB
 - Ignore data transfer and EMR cost
- Phase 2 Live Test Targets:
 - Query 1 30000 rps
 - Query 2 12000 rps (for both MySQL and HBase)
 - Query 3 1000 rps (for both MySQL and HBase)
 - Mixed 15000/2500/300 rps (for both MySQL and HBase)

Phase 2, Query 3

Problem Statement

- Given a time range and a user id range, which tweets have the most impact and what are the topic words?
- Impact score and topic words (see the write up for details)
 - Impact of tweets: Which tweet is "important"? Calculate using the effective word count, favorite count retweet count and follower count.
 - Topic words: In this given range, what words could be viewed as a "topic"? Done using TF-IDF.
- Request/Response Format
 - Request: Time range, uid range, #words, #tweets
 - Response: List of topic words with their topic score, as well as a list of tweets (after censoring)

Phase 2, Query 3 FAQs

Question 1: How to calculate the topic score?

For word **w** in the given range of tweets, calculate:

- Calculate the Term Frequency of word w in tweet t⁽ⁱ⁾
- Calculate Inverse Document Frequency for word w
- Calculate Impact Score of each tweet
- Topic Score for word w =

$$\sum_{i}^{n} TF(w, t^{(i)}) \cdot IDF(w) \cdot ln(Impact(t^{(i)}) + 1),$$

for *n* tweets in time and uid range

Phase 2, Query 3 FAQs

Question 2: When to censor? When to exclude stop words?

- Censor in the Web Tier or during ETL. It is your own choice.
 - If you censor in ETL, consider the problem it brings to calculating the topic word scores (two different words might look the same after censoring).
- You should count stop words when counting the total words for each tweet in order to calculate the topic score.
- Exclude stop words when calculating the impact score and selecting topic words.

Hints

- Completely understand every AssessMe question
- Completely understand the definition of a <u>word</u>. This is different for text censoring and calculating scores.
- A query contains two ranges. Log some requests to get an idea on the range of user_id and timestamps.
- Optimization is time-consuming. Before ETL, please
 - Think about your schema design
 - Think about your database configuration

Hints

- For HBase, you're not restricted to just 1 master node. The two sample setups below are both permitted.
 - 1 x (1 master + 5 slaves)
 - 2 x (1 master + 2 slaves)
- Understand and keep an eye on
 - EC2 CPU Credits and burstable performance
 - EBS volume I/O Credits and Burst Performance

EC2 CPU Burst Credits

- One CPU credit is equal to one vCPU running at 100% utilization for one minute.
- Other combinations of number of vCPUs, utilization, and time can also equate to one CPU credit.
- For example, one CPU credit is equal to:
 - one vCPU running at 50% utilization for two minutes, or
 - two vCPUs running at 25% utilization for two minutes.

Hints for the live test

- The request pattern will differ for Phase 2 submission test and the live test so your solution should handle all types of load.
- Monitor your system during the live test to recover in case of a system crash.
- Be prepared with your monitoring consoles setup
- Lookup what commands you can use to learn about the aspects of your web service health.
- Your Phase 2 budget should take into account the cost for the live test.
- Take cloudwatch snapshots

Warning

- NEVER open all ports to the public (0.0.0.0) when using instances on a public cloud.
- For your purposes, you likely only need to open port 80 to the public. Port 22 should be open only to your public IPs.
- Port 3306 (for MySQL) and HBase ports should be open only to cluster members if necessary.

Upcoming Deadlines

- P4.1 Spark
 - O Code review this week
- Quiz 11
 - O Due: 04/12/2019 11:59 PM Pittsburgh
- Team Project: Phase 2
 - Live-test due: 04/14/2019 3:59 PM Pittsburgh
 - Code and report due: 04/16/2019 11:59 PM Pittsburgh

Questions?

