
15-319 / 15-619
Cloud Computing

Recitation 9

Mar 19, 2019

1

Overview

● Last week’s reflection

○ Project 3.2

○ OLI Unit 4 - Module 14 (Storage)

○ Quiz 7

● This week’s schedule

○ Project 3.3

○ OLI Unit 4 - Modules 15, 16 & 17

○ Quiz 8 due on Friday, March 22nd

● Team Project, Twitter Analytics

○ Q2M and Q2H correctness due on 3/24

○ Phase 1 due, Mar 31

2

Last Week
● OLI : Module 14 - Cloud Storage

○ Quiz 7

● Project 3.2

○ Social Networking Timeline with Heterogeneous Backends

■ MySQL

■ Neo4j

■ MongoDB

■ Choosing Databases

● Multi-Threaded Online Programming Exercise on Cloud9

3

This Week
● OLI : Module 15, 16 & 17

○ Quiz 8 - Friday, March 22

● Project 3.3 - Sunday, March 24

○ Task 1: Implement a Strong Consistency Model for

distributed data stores

○ Task 2: Implement a Strong Consistency Model

cross-region data stores

○ Bonus task: Implement an Eventual Consistency Model

● Team Project, Twitter Analytics - Sunday, March 24

○ Q2M and Q2H correctness

● Online Programming Exercise - Scheduling

4

Conceptual Topics - OLI Content

OLI UNIT 4: Cloud Storage
● Module 15: Case Studies: Distributed File System

○ HDFS
○ Ceph

● Module 16: Case Studies: NoSQL Databases
● Module 17: Case Studies: Cloud Object Storage
● Quiz 8

○ DUE on Friday, March 22nd

5

Individual Projects

● DONE

○ P3.1: Files vs Databases - comparison and Usage of flat

files, MySQL, Redis, and HBase

○ NoSQL Primer

○ HBase Basics Primer

● Done

○ P3.2: Social networking with heterogeneous backends

○ MongoDB Primer

● Now

○ P3.3: Replication and Consistency models

○ Introduction to multithreaded programming in Java

○ Introduction to consistency models
6

Scale of Data is Growing

International Data Corporation's (IDC) Digital
Universe Study predicts an increase in the
amount of data created globally from
● 16 zettabytes in 2016

to
● 160 zettabytes in 2025.

7

Guo H. Big Earth data: A new frontier in Earth
and information sciences[J]. Big Earth Data,
2017, 1(1-2): 4-20.

Users are Global

8

~26ms

~14ms

● Speed of Light (≈3.00×108 m/s)
● Inherent latencies

Pittsburgh

Moscow

San Francisco

● Typical end-to-end latency

○ The client sends the request to the server

■ Network latency

○ The backend processes the request and sends

the response

■ Overhead of fetching and processing data

from the backend

■ Network latency

○ The client receives the response

Typical End-To-End Latency

9

Latency with a Single Backend

10

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend
Storage

~20ms ~40ms

~320ms

Client Statistics:
Min Latency: 20ms
Max Latency: 320ms
Average Latency: 126ms

Replicate the Data Globally

11

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~40ms

~20ms

Client Statistics:
Min Latency: 20ms
Max Latency: 40ms
Average Latency: 26.6ms

Replicate the Data Close to Users

12

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~20ms

~20ms

Client Statistics:
Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

Backend Storage 3:
USA East

● As you can see, by adding replicas to strategic

locations in the world, we can significantly reduce

the latency seen by our global clients

● Each added datacenter decreases the average

latency

● But how about the cost?

Replication

13

What If We Continue to Replicate?

14

Client Statistics:
Min Latency: ??
Max Latency: ??
Average Latency: ??

Cost: ?????

We have to consider cost as well as data consistency
across replicas, which increases the latency for writes.

Replication READ

15

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 3:
Europe Central

~20ms

~20ms

Read Operation:

Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

Backend Storage 2:
USA East

Replication WRITE

16

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 3:
Europe Central

~20ms

Write Operation:

Latency for Client 2 = 20ms +
MAX(40ms, 240ms)
= 260ms

All the clients suffer from
long latency

Backend Storage 2:
USA East

~40ms
~240ms

● Read operations are very fast!
○ All clients have a replica close to them to

access
● Write requests are quite slow

○ Write requests must update all the replicas
○ If multiple write requests for a certain key,

then they may have to wait for each other to
complete

Replication Reads and Writes

17

● Duplicate the data across multiple instances
● Advantages

○ Low latency for reads
○ Reduce the workload of a single backend server

(Load balance for hot keys)
○ Handle failures of nodes (High availability)

● Disadvantages
○ Requires more storage capacity and cost
○ Updates are slower
○ Changes must reflect on all datastores either

instantly or eventually (Data Consistency)

Pros and Cons of Replication

 18

Data Consistency Becomes Necessary

● Data consistency across replicas is important
○ Five consistency levels:

Strict, Strong (Linearizability), Sequential, Causal

and Eventual Consistency

● This week’s task: Implement Strong Consistency
○ All datastores must return the same value for a key

at all times

○ The order in which the values are updated must

be preserved at all replicas

● Bonus: Implement Eventual Consistency
19

Choosing a Consistency Level
Bad Example

20

Account Balance

xxxxx-4437 $100

Choosing a Consistency Level
Bad Example

21

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Bad Example

22

Account Balance

xxxxx-4437 $0

$100

$100

Bank lost $100

Choosing a Consistency Level
Good Example

23

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Good Example

24

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Good Example

25

Account Balance

xxxxx-4437 $0

$100

$0

P3.3: Consistency Models

26

Tradeoff: Consistency vs. Latency
● Strict
● Strong
● Sequential
● Causal
● Eventual

vs.

P3.3 Task 1: Strong Consistency

27

Coordinator:

● A request router that

routes the web requests

from the clients to

datacenter

● Preserves the order of

both READ&WRITE

requests

Datastore:

● The actual backend

storage that persists

collections of data

P3.3 Task 1: Strong Consistency

28

Single PUT request for key ‘X’

● Block all GET for key ‘X’

until all datastores are

updated

● GET requests for a

different key ‘Y’ should

not be blocked

Multiple PUT requests for ‘X’

● Resolved in order of their

timestamp received from

the Truetime Server.

● Any GET request in

between 2 PUTs must

return the first PUT value

P3.3 Task 2: Architecture
Global Coordinators and Data Stores

us-west
us-east

Singapore

DCI

coordinator datacenter

DCI

coordinator datacenter
DCI

coordinator datacenter

29

P3.3 Tasks 1 & 2: Strong Consistency

30

● Every request has a global timestamp order

where timestamp is issued by a Truetime Server.

● Operations must be ordered by the timestamps

Requirement: At any given point of time, all clients

should read the same data from any datacenter

replica

Task 2 Workflow and Example

• Launch a total of 8 machines (3 data centers, 3 coordinators, 1

truetime server and 1 client).

• All machines should be launched in the US East region.

We will simulate global latencies for you.

• The “US East” here has nothing to do with

the simulated location of datacenters

and coordinators in the project.

• Your task: implement the code

for the Coordinators and Datastores

31

P3.3 Task 2: Architecture

32

PRECOMMIT

33

● This API method will contact the Data
center of a given region, and notify it
that a PUT request is being serviced for
the specified key, starting at the
specified timestamp.

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 34

TrueTime Server

put?key=X&value=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 35

TrueTime Server

put?key=X&value=1

KeyValueLib.getTime()

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 36

TrueTime Server

put?key=X&value=1

precommit?key=X×tamp=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 37

TrueTime Server

put?key=X&value=1

PUT(REGIONAL-DNS, "X", "1",
1, "strong")

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 38

TrueTime Server

put?key=X&value=1

Response back

P3.3: Eventual Consistency (Bonus)

39

● Write requests are performed in the order
received by the local coordinator
○ Operations may not be blocked for replica

consensus (no communication between
servers across region)

● Clients that request data may receive multiple
versions of the data, or stale data
○ Problems left for the application owner to

resolve

Hints - PRECOMMIT
● In strong consistency, “PRECOMMIT” should be

useful to help you lock requests because they are

able to communicate with Data centers.

● Locking needs to be performed on Data centers.

● Lock by the key across all the Data centers in

strong consistency

● Remember to update both KeyValueStore.java

and Coordinator.java in Eventual Consistency

 40

● Read the two primers (PLEASE!)

● Consider the differences between the 2

consistency models before writing code

● Think about possible race conditions

● Read the hints in the writeup and skeleton

code carefully

● Don’t modify any class except

Coordinator.java and KeyValueStore.java

Suggestions

 41

How to Run Your Program

● Run “./copy_code_to_instances” in client instance to copy your

code to servers on each of the Data centers instance,

Coordinators instance.

● Run “./start_servers” in the client instance to start the servers

on each of the data center instances, coordinator instances

and the truetime server instance.

● Use “./consistency_checker strong”, or “./consistency_checker

eventual” to test your implementation of each consistency.

(Our grader uses the same checker)

● If you want to test one simple PUT/GET request, you could

directly send the request to Data centers or Coordinators.

 42

Start early!

 43

4
4

TEAM PROJECT
Twitter Data Analytics

Team Project

Twitter Analytics Web Service
• Given ~1TB of Twitter data
• Build a performant web service

to analyze tweets
• Explore web frameworks
• Explore and optimize database systems

Web-tier Storage-tier

Twitter Analytics System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 35

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

Suggested Tasks for Phase 1
Phase 1 weeks Tasks Deadline

Week 1
● 2/25

● Team meeting
● Writeup
● Complete Q1 code & achieve correctness
● Q2 Schema, think about ETL

● Q1 Checkpoint due on 3/3
● Checkpoint Report due on 3/3

Week 2
● 3/4

● Q1 target reached
● Q2 ETL & Initial schema design completed

● Q1 final target due on 3/10

Week 3
● Spring

Break

● Take a break or make progress (up to your
team)

Week 4
● 3/18

● Achieve correctness for both Q2 MySQL,
Q2 HBase & basic throughput

● Q2 MySQL Checkpoint due on 3/24
● Q2 HBase Checkpoint due on 3/24

Week 5
● 3/25

● Optimizations to achieve target
throughputs for Q2 MySQL and Q2 HBase

● Q2 MySQL final target due on 3/31
● Q2 HBase final target due on 3/31

47

Reminders on penalties
● M family instances only; must be ≤ large type
 ✓ m5.large, m5.medium, m4.large ✗ m5.2xlarge, m3.medium, t2.micro

● Only General Purpose (gp2) SSDs are allowed for storage

○ m5d (which uses NVMe storage) is forbidden

● Other types are allowed (e.g., t2.micro) but only for testing

○ Using these for any submissions = 100% penalty

● $0.85/hour applies to every submission, not just the livetest

● AWS endpoints only (EC2/ELB).

48

Budget
● AWS budget of $45 for Phase 1

● Your web service should cost at most $0.85 per hour

○ Including: EC2 cost, EBS cost, ELB cost

○ Excluding: data transfer, EMR

● Even if you use spot instances, we will calculate your cost

using the on-demand instance price

● Q2 target RPS: 12000 for both MySQL and HBase

 49

Query 2: Tips
1. Libraries can be bottlenecks

2. MySQL connection configuration

3. MySQL warmup

4. Response formatting: be careful with \n \t

5. Understand the three types of scores completely.

 50

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_warm_up

Query 2: More Tips
1. Consider doing ETL on GCP/Azure to save AWS budget

2. Be careful about encoding 😁 (use utf8mb4 in MySQL)

3. Pre-compute as much as possible

4. ETL can be expensive, so read the write-up carefully

 51

Piazza FAQ
1. Search before asking a question

2. Post public questions when possible

https://piazza.com/class/jqsp37y8m572vm?cid=1336

 52

https://piazza.com/class/jqsp37y8m572vm?cid=1336

This Week’s Deadlines

• Quiz 8:

Due: Friday, March 22nd, 2019 11:59PM ET

• Complete OPE task scheduling

Due: This week

• Project 3.3: Consistency

Due: Sunday, March 24th, 2019 11:59PM ET

• Team Project Phase 1 Q2M and Q2H Correctness

Due: Sunday, March 24th, 2019 11:59PM ET
53

54

