15-319 / 15-619
Cloud Computing

Recitation 7/
February 26, 2019

Overview

e Last week’s reflection

o OLI Unit 3 - Module 10, 11, 12

o Quiz5

o Project 2.3
e This week’s schedule

o OLI Unit 3 - Module 13

o Quiz 6

o Project 3.1

o Sign up for the Multi-threaded OPE session
e Team Project, Twitter Analytics

o Phase 1 is out, checkpoint due on Sunday 3/3!

Last Week

e Unit 3: Virtualizing Resources for the Cloud
o Module 10: Resource virtualization (memory)
o Module 11: Resource virtualization (I/O devices)
o Module 12: Case Study

® Quiz5

® Project 2.3, Functions as a Service (FaaS)

o Task 1, Explore functions on various CSPs

m Azure Functions, GCP Cloud Functions, AWS Lambda
o Task 2, extract thumbnails from video stream

m Lambda and FFmpeg
o Task 3, get image labels and index

m AWS Rekognition, AWS CloudSearch

This Week

OLI : Module 13

o Storage and network virtualization

Quiz 6

Project 3.1, Files v/s Databases

Sign up for the multi-threaded OPE session
Team Project, Phase 1 released

Conceptual Topics - OLI Content

e Unit 3 - Module 13: Storage and network virtualization
o Software Defined Data Center (SDDC)
o Software Defined Networking (SDN)
m Device virtualization

m Link virtualization
o Software Defined Storage (SDS)
m |[OFlow
e Quizb
o0 Quizzes must be submitted within 2 hours once you start.
o Remember to click submit!

This Week’s Project

Project 3: Storage and DBs on the cloud
e P3.1: Files and Databases
o Comparison and usage of Flat files, RDBMS (MySQL)
and NoSQL (Redis, HBase)

Project 3 - Storage
MySQmLM .mongoDB

J

Primers for Project 3

e P3.1: Files, SQL and NoSQL
o Primer: Storage & |0 Benchmarking
o Primer: NoSQL and HBase primers
e P3.2: Social network with heterogeneous backend
storage
o Primers: MongoDB
e P3.3: Replication and Consistency models
O Primer: Intro. to Java Multithreading
o Primer: Intro. to Consistency Models

10

Storage & 10 Benchmarking Primer

Storage & 10 Benchmarking:

e Running sysbench and preparing data
o Use the prepare option to generate the data.
e EXxperiments
o Run sysbench with different storage
systems and instance types.
o Doing this multiple times to reveal different
behaviors and results.
e Compare the requests per second.

11

Performance Benchmarks Sample Report

Scenario Instance Storage Type
Type

1 t2.micro EBS Magnetic
Storage

2 t2.micro EBS General
Purpose SSD

3 m4.large EBS Magnetic
Storage

4 m4.large EBS General
Purpose SSD

What can you conclude from these results?

RPS Range

169.13, 171.81,
181.31

1465.00, 1473.33,
1490.93

527.70, 973.63,
1246.67

2046.66, 2612.00,
2649.66

RPS Increase Across 3 lterations

Trivial (< 5%)

Trivial (< 5%)

Significant (can reach ~140%
increase with an absolute value of
450-700)

Noticeable (can reach ~30%
increase with an absolute value of
500-600)

12

/0 Benchmarking Conclusions

e SSD has better performance than magnetic disk

e m4.large instance offers higher performance than
a t2.micro instance

e The RPS increase across 3 iterations for m4.large

IS more significant than that for t2.micro:

o The reason is an instance with more memory
can cache more of the previous requests for
repeated tests.

o Caching is a vital performance tuning
mechanism when building high performance
applications.

13

Project 3.1 Overview

P3.1: Files, SQL, and NoSQL.:

e Task 1: analyze data in flat files
o Linux tools (e.g. grep, awk)
o Data libraries (e.g. pandas)

e Task 2: Explore a SQL database (MySQL)
o load data, run queries, indexing, auditing
o plain-SQL v/s ORM

e Task 3: Implement a Key-Value Store
o prototype of Redis using TDD

e Task 4: Explore a NoSQL DB (HBase)
o load data, run basic queries

The NoSQL and HBase primers are vital for P3.1

Flat Files

e Flat files, plain text or binary

o comma-separated values (CSV) format:
Carnegie,Cloud Computing,A, 2018

o tab-separated values (TSV) format:
Carnegie\tCloud Computing\tA\t2018

o a custom and verbose format: Name:
Carnegie, Course: Cloud Computing,
Section: A, Year: 2018

15

Flat Files

Lightweight, Flexible, in favor of small tasks

o Run it once and throw it away

Performing complicated analysis on data in files
can be inconvenient

Usually flat files should be fixed or append-only
Writes to files without breaking data integrity is
difficult

Managing the relations among multiple files is
also challenging

16

Databases

A collection of organized data

Database management system (DBMS)

o Interface between user and data

o Store/manage/analyze data

Relational databases

o Based on the relational model (schema)
o MySQL, PostgreSQL

NoSQL Databases

o Unstructured/semi-structured

o Redis, HBase, MongoDB, Neo4J

17

Databases

e Advantages

o Logical and physical data independence

o Concurrency control and transaction support
o Query the data easily (e.g., SQL)
O

e Disadvantages
o Cost (computational resources, fixed schema)
o Maintenance and management
o Complex and time-consuming to design schema
O

18

Files vs. Databases

e Compare flat files to databases

e Think about:
o What are the advantages and disadvantages of
using flat files or databases?

o In what situations would you use a flat file or a
database?

o How to design your own database”? How to
load, index and query data in a database?

19

Dataset

e Analyze Yelp's Academic Dataset
o https://www.velp.com/dataset challenge

business
checkin
review
tip

user

O O O O O

20

https://www.yelp.com/dataset_challenge

Inspect and visualize data using Facets

Sort by
Feature order » [[] Reverse order Feature search

Features: int(4) string(5)

Numeric Features (4) Chart to show
Standard v
count missing mean std dev Zeros min median max Olog Dexpand
funny
10,000 0% 0.65 1.84 73.27% 0 0 46) l
stars

10,000 0% 3.74 1.27 0% 1 4 5 l I
500 -1 = .

cool

|
useful
10,000 0% 1.67 3.06 44.16% 0 1 95 l

10,000 0% 0.78 1.96 65.98% 0 0 43 l

20

Task 1: Flat File

Answer questions in runner.sh
o Use tools such as awk and pandas
o Similar to what you did in Project 1

Merge TSV files by joining on a common field
|dentify the disadvantages of flat files

You may use Jupyter Notebook to help you
solve the questions in Python.

20

Task 2: MySQL

e Prepare tables

o A script to create the table and load the data is
already provided

e Use MySQL queries to answer questions
o Learn JDBC

Complete MySQLTasks.java

Aggregate functions, joins

Statement and PreparedStatement

SQL injection

e Learn how to use proper indexes to improve
performance

O O O O

21

MySQL Indexing

Schema

o The structure of the tables and the relations between
tables

o Based on the structure of the data and the application
requirement

Index:

o An index is simply a pointer to data in a table. It's a data
structure (lookup table) that helps speed up the retrieval
of data from tables (e.g., B-Tree, Hash indexes, etc.)

o Based on the data as well as queries

You can build effective indexes only if you are aware of the
gueries you need

We have an insightful section about the practice of indexing,

read it carefully! Very helpful for the team project
22

EXPLAIN statements in MySQL

e How do we evaluate the performance of a
query?
o Runit.

e \What if we want/need to predict the

performance without execution?
o Use EXPLAIN statements.

e An EXPLAIN statement on a query will predict:
o The number of rows to scan
o \Whether it makes use of indexes or not
o efc.

23

Object Relational Mapping (ORM)

ORM is a technique to abstract away the work for you to:

1. Map the domain class with the database table

2. Map each field of the domain class with a column of the table

3. Map instances of the classes (objects) with rows in the
corresponding tables

Mapped to
public class Course { — course
String courseld; —> course_id (PK)
String name; — name
}
Domain Class —> Database Table
Objects — Rows

24

Benefits of adopting ORM

Separation of concerns

o ORM decouples the CRUD operations and the business logic
code.

Productivity

o You don’t need to keep switching between your OOP
language such as Java/Python, etc. and SQL.

Flexibility to meet evolving business requirements

o ORM cannot eliminate the schema update problem, but it
may ease the difficulty, especially when used together with
data migration tools.

Persistence transparency

o Any changes to a persistent object will be automatically
propagated to the database without explicit SQL queries.

Vendor independence

o ORM can abstract the application away from the underlying
SQL database and SQL dialect.

25

ORM Question in the MySQL Task

The current business application exposes an AP
that returns the most popular Pittsburgh
businesses.

It is based on a SQLite3 database with an

outdated schema.

Your task:

o Plug the business application to the MySQL
database and update the definition of the
domain class to match the new schema.

The API will be backward compatible without

modifying any business logic code.

26

NoSQL

e Non-SQL or NotOnly-SQL
o Non-relational

e \Why NoSQL if we already have SQL solutions?

o Flexible data model (schemaless, can change)

o Designed to be distributed (scale horizontally)

o Certain applications require improved performance at
the cost of reduced data consistency (data staleness)

e Basic Types of NoSQL Databases
o Schema-less Key-Value Stores (Redis)
o Wide Column Stores (Column Family Stores) (HBase)
o Document Stores (MongoDB)
o Graph DBMS (Neo4))

28

CAP Theorem

e The CAP theorem: it is impossible for a
distributed data store to provide all the following
three guarantees at the same time
o Consistency: no stale data
o Availability: no downtime
o Partition Tolerance: network failure tolerance

In a distributed system

27

Single Node to Distributed Databases

A database, replicated on two
nodes, Node 1 and Node 2

| |
L v

Replica Replica
Single node Distributed System

Three issues emerge:

e Since DB is replicated, how to maintain consistency?
e Since the data is replicated, if one replica is down, is the
entire service down?

e How will the service behave during a network failure?
27

C, A, P in Distributed Databases

Consistency

Availability

Partition Tolerance

data: x
Node 1

Node 1

Node 1

data: x
Node 2

Node 2

Node 2

27

CAP Theorem

Only two out of the three are feasible:

e CA: non-distributed (MySQL, PostgreSQL)
o Traditional databases like MySQL and PostgresQL
have only one server. They meet the requirement of
CA and don't provide partition tolerance

e CP: downtime (HBase, MongoDB)

o Stop responding if there is partition. There will be
downtime

e AP: stale data (Amazon DynamoDB)

o Always available. Data may be inconsistent among
nodes if there is a partition

31

Only two out of three in CAP are feasible

data: x
Node 1
Consistency & Partition Tolerant & 2
(CP)
Client 1
data: x
Node 1
Available & Partition Tolerant
(AP)
Client 1

Unavailable

Inconsistent

data: x
Node 2

Client 2

data:y
Node 2

Client 2

32

Task 3: Implement Redis

e Key-value store is a type of NoSQL database
e.g., Redis and Memcached
e \Widely used as an in-memory cache

Your task:

e Implement a simplified version of Redis
e \We provide starter code Redis. java, you will
implement two of the commonly used data

structures supported by Redis:
o hashes and lists
e TDD with 100% code coverage

29

Task 4: Explore HBase

HBase is an open source, column-oriented,
distributed database developed as part of the

Apache Hadoop project

Steps to complete:

1. Launch an HDInsight cluster with HBase installed.
2. Follow the write-up to download and load the

data into HBase.
3. Try different querying commands in the HBase shell.

4. Complete HBaseTasks.java using HBase Java APIs.

30

P3.1 Reminders

Tag your resources with:

o Key: Project, Value: 3.1

An HDInsight cluster is very expensive.

Your subscription will be disabled if you run out
of your subscription budget. Please exercise
caution to plan the budget.

Remember to delete the Azure resource group to
clean up all the resources in the end.

31

TEAM PROJECT
Twitter Data Analytics

= + 9= 1T

Team Project

Twitter Analytics Web Service

Given ~1TB of Twitter data
Build a performant web service
to analyze tweets

Explore web frameworks

Explore and optimize database systems

« Y

Query

THEPR:7 JECTZONE iy EC2

Load Generation <:’ Web-tier
Response \H'ITP Web Service/

Query

—
po—

Response

é N
“

-
am v
W\

My-iis

R P RACHE

HBRASE

Storage-tier

K Database /

Team Project

e Phase 1:
o Q1 Input your team

t ID and GitHub
o Q2 (MySQL AND HBase) | oo o

username on TPZ

e Phase 2
o Q1
o Q2 & Q3 (MySQL AND HBase)

e Phase 3
o Q1,Q2, & Q3 (Managed Cloud Services)

Query 1 (CloudCoin)

e Query 1 does not require a database (storage tier)

e Implement a web service that verifies and updates
blockchains.

e You must explore different web frameworks
o Get at least 2 different web frameworks working
o Select the framework with the better performance
o Provide evidence of your experimentations
o Read the report first

40

What is a blockchain, though?

Data structure that supports digital currency.
Designed to be untamperable.

Distributed. Shared among all user nodes.
— Decentralized

— Fault Tolerant.

Consists of chained blocks.

Each block consists of transactions.

40

« Q1 input

Q1 Example

— Base64 encoded

Chain List

— zlib compressed
—— Request JSON ——

New Transaction

Block Object

Block ID

All transactions
Proof of Work
Block Hash

New Transaction

Recipient’s account
Transaction amount

Transaction List —
— Transaction Object —

Timestamp
Sender’s account
Recipient’s account
Transaction amount
Transaction fee
Transaction Hash

Signature

— Reward Transaction —

Timestamp
Miner’'s account
Reward amount

Transaction Hash

{

ne

1

hain": [
{
"all_tx": [
{
"recv”:
“amt":
"time":
"hash":
¥

s
"id": o,

“hash": "02
"pow"”: "pos

"all tx": [
{

"send":
"recv":
"amt”:
"fee":
"time":
"hash":
"sig™:

"recv":
"amt":

"time":
“hash":

1,
b 1 W I

509915179679,

500000008,
"1558721967779362304",
"d50e5266"

899b89" ,
tpone”

509015179679,
484954352161,

126848946,

12488,
"1550721967779391744"
“5a2b4d71",

463334877351

1284110893049,

500820000,
"1550721967779424000",
"7924c55e"

“hash™: "@fce51cl1”,
"pow": "fountain"

3s
{
taldstxT: f
{
"send":
"recv":
"amt":
"fee":
"time":
"hash":
"sig":

"recv":
“amt":
"time":
"hash":
¥
1,
=3 d =25

1284110893849,

484054352161,

58759591,

5048,
"1550721967779447040" ,
“b43737af",

1984970046728

34123506233,

500000008,
"1558721967779474176",
"d7@5e74e"

“hash": "03635f77",
“pow": "jeans"

3

"new_tx": {
"recv": 837939704897,

¥

"amt":

430642077,

"time": "1550721967779486720"

Q1 Example

Block:
_ Createcli by "miners .. vall tx": [... 1,
— Has a list of transactions. "id": o,
"hash": "©2899b89",
— Block hash encapsulates "now": "procrastination"

all transaction info and block &
Metadata, as well as the hash of the previous
block.

— Block hash, required to start with a 0.

— PoW (Proof of Work), which makes the hash
start with a 0.

— PoW is found by miner through brute forcing. 4

Q1 Example

Transaction:
— Hash value computed

using all info in the blue
box.
— Signature is computed

with hash value using
RSA. i
sig=RSA(hash, key)

"send": 1284110893049,

"recv": 484054352161,

"amt": 58759591,

"fee": 5048,

"time": "1550721967779447040",
"hash": "b43737af",

"sig": 1084970046728

43

Q1 Example

« Reward:
— Special type of
- {

transaCtlon' "recv": 34123506233,

— Created by miner. "amt": 560000000, "
time": "1550721967779474176",

— |s the last transaction in } "hash": "d7@5e74e"

the block’s transaction

list.

44

Q1 Example

New transaction:

— You need to fill in
missing fields.

— You also need to sign
the transaction using
the key given to you.

"new_tx": {
"recv": 837939704897,
"amt": 430642077,
"time": "1550721967779486720"

}

45

Q1 Example

Output:

Complete the new transaction.

Create a reward transaction.

Mine a new block that only has those two
transactions.

Return the new transaction signature and new
block PoW.

E.g. <1256484134151]|i_love cc>

46

Q1 Example

Output:

— There will be malicious attempts to break the
blockchain.

— You need to check the validity of the chain.

— If the chain is not valid, return INVALID.

— E.g. <INVALID|any _debug info _you'd like>

47

Query 2 - User Recommendation System

Use Case: When you follow someone on twitter, recommend close friends.

Three Scores:
» Interaction Score - closeness
« Hashtag Score - common interests
« Keywords Score - to match interests

Final Score: Interaction Score * Hashtag Score * Keywords Score

Query: Response:
GET /_q2? <TEAMNAME>,<AWSID>\n
user_id=<ID>& uid\tname\tdescription\ttweet\n

=< >
Lyr?rz SeTZPPﬁRi SE>g uid\tname\tdescription\ttweet

hashtag=<HASHTAG> 38

Query 2 Example

GET /g2?
user_id=100123&
type=retweet&
phrase=hello7%20cc&
hashtag=cmu

TeamCoolCloud, 1234-0000-0001
100124\tAlan\tScientist\tDo machines think?\n
100125\ tKnuth\tprogrammer\thello cc!

49

Twitter Analytics System Architecture

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Response | HTTP Web Service

Git workflow

e Commit your code to the private repo we set up
o Update your GitHub username in TPZ!
e Make changes on a new branch
o Work on this branch, commit as you wish
o Open a pull request to merge into the master
branch
e Code review
o Someone else needs to review and accept (or
reject) your code changes
o This process will allow you to capture bugs and
remain informed on what others are doing

37

—

—_—
—

©C 000N OAEWDh =

Heartwarming Tips from Your Beloved

TAS

Design your architecture early and apply for limit increase.
EC2 VM is not the only thing that costs money.

Primers and individual projects are helpful.

You don’t need all your hourly budget to get Q1 target.
Coding is the least time consuming part.

Think before you do. Esp. for ETL (Azure, GCP, or AWS).
Divide workload appropriately. Take up your responsibility.
Read the write-up.

Read the write-up again.

Start early. You cannot make-up the time lost. Lots to
finish.

I’'m not kidding. Drama happens frequently.
52

s
Team Project Time Table u]

Phase Deadline (11:59PM EST)
Phase 1 (20%) e Q1 CKPT (5%): Sun, 3/3
- Query1 e Reportl (5%): Sun, 3/3
- Query 2 e Q1 FINAL (10%): Sun, 3/10
e Q2M & Q2H CKPT (10%): Sun, 3/24
e Q2M & Q2H FINAL (50%): Sun, 3/31
® Report2 (20%): Tue, 4/2
Phase 2 (30%) e Live Test on Sun, 4/14
- Add Query 3
Phase 3 (50%) e Live Test on Sun, 4/28
- Managed Services
53

Team Project Deadlines - Phase 1

e \Writeup and queries were released on Monday.
e Phase 1 milestones:
o Q1 Checkpoint: Sunday, Mar 3
m A successful 10-min submission for Q1
m Checkpoint 1 Report (link)
o Q1 final due: Sunday, Mar 10
m Achieve the Q1 target
o Q2 Checkpoint: Sunday, Mar 24
m A successful 10-min submissions:
e Q2 MySQL and Q2 HBase.
o Q2 final due: Sunday, Mar 31
m Achieve the Q2 target for Q2 MySQL and Q2 HBase.
o Phase 1, code and report: Tuesday, Apr 2 (link)
e Start early, read the report and earn bonus points! 36

https://docs.google.com/document/d/1qdaz7EXP6NTX1EETXfkTwy5Z4b7d473pxh_Ezt6UzLs/edit#
https://docs.google.com/document/d/1RenufK-FSIHjYosGANUzEF_YC8P5nmMHS51QfQ9GgHY/edit

Suggested Tasks for Phase 1

-

Phase 1 weeks | Tasks Deadline
Week 1 e Team meeting e Q1 Checkpoint due on 3/3
e 2/25 e Writeup e Checkpoint Report due on 3/3
e Complete Q1 code & achieve correctness
e Q2 Schema, think about ETL
Week 2 e Q1 targetreached e Q1 final target due on 3/10
o 3/4 ® Q2 ETL & Initial schema design completed
Week 3 e Take a break or make progress (up to
e Spring your team)
Break
Week 4 ® Achieve correctness for both Q2 MySQL e Q2 MySQL Checkpoint due on 3/24
e 3/18 and HBase & basic throughput e Q2 HBase Checkpoint due on 3/24
Week 5 e Optimizations to achieve target e Q2 MysQl final target due on 3/31
e 3/25 throughputs for Q2 MySQL and HBase e Q2 HBase final target due on 3/31

95

This Week’s Deadlines @,«

Quiz 6:
Due: Friday, March 1st, 2019 11:59PM ET

Sign up for the Multi-Threading OPE task
Due: Saturday, March 2nd, 2019 11:59PM ET

Project 3.1: Files and Databases
Due: Sunday, March 3rd, 2019 11:59PM ET

Team Project Phase 1 Q1 Checkpoint 1
Due: Sunday, March 3rd, 2019 11:59PM ET

56

START EARLY
AND PLAN AH EA[\)

Q&A

