
15-319 / 15-619
Cloud Computing

Recitation 7

February 26, 2019

1

Overview

● Last week’s reflection

○ OLI Unit 3 - Module 10, 11, 12

○ Quiz 5

○ Project 2.3

● This week’s schedule

○ OLI Unit 3 - Module 13

○ Quiz 6

○ Project 3.1

○ Sign up for the Multi-threaded OPE session

● Team Project, Twitter Analytics

○ Phase 1 is out, checkpoint due on Sunday 3/3!

2

Last Week
● Unit 3: Virtualizing Resources for the Cloud

○ Module 10: Resource virtualization (memory)

○ Module 11: Resource virtualization (I/O devices)

○ Module 12: Case Study

● Quiz 5

● Project 2.3, Functions as a Service (FaaS)

○ Task 1, Explore functions on various CSPs

■ Azure Functions, GCP Cloud Functions, AWS Lambda

○ Task 2, extract thumbnails from video stream

■ Lambda and FFmpeg

○ Task 3, get image labels and index

■ AWS Rekognition, AWS CloudSearch 3

This Week

● OLI : Module 13

○ Storage and network virtualization

● Quiz 6

● Project 3.1, Files v/s Databases

● Sign up for the multi-threaded OPE session

● Team Project, Phase 1 released

4

Conceptual Topics - OLI Content

● Unit 3 - Module 13: Storage and network virtualization

○ Software Defined Data Center (SDDC)

○ Software Defined Networking (SDN)

■ Device virtualization

■ Link virtualization

○ Software Defined Storage (SDS)

■ IOFlow

● Quiz 6

○ Quizzes must be submitted within 2 hours once you start.

○ Remember to click submit!

5

This Week’s Project

Project 3: Storage and DBs on the cloud

● P3.1: Files and Databases

○ Comparison and usage of Flat files, RDBMS (MySQL)

and NoSQL (Redis, HBase)

● P3.2: Social Networking Timeline with Heterogeneous

Backends

○ Social Networking Timeline with Heterogeneous

Backends (MySQL, Neo4j, MongoDB, S3)

● P3.3: Replication and Consistency

○ Multi-threaded Programming and Consistency
8

Project 3 - Storage

9

Primers for Project 3

● P3.1: Files, SQL and NoSQL
○ Primer: Storage & IO Benchmarking
○ Primer: NoSQL and HBase primers

● P3.2: Social network with heterogeneous backend
storage
○ Primers: MongoDB

● P3.3: Replication and Consistency models
○ Primer: Intro. to Java Multithreading
○ Primer: Intro. to Consistency Models

 10

Storage & IO Benchmarking Primer

Storage & IO Benchmarking:
● Running sysbench and preparing data

○ Use the prepare option to generate the data.
● Experiments

○ Run sysbench with different storage
systems and instance types.

○ Doing this multiple times to reveal different
behaviors and results.

● Compare the requests per second.

 11

Performance Benchmarks Sample Report
Scenario Instance

Type

Storage Type RPS Range RPS Increase Across 3 Iterations

1 t2.micro EBS Magnetic

Storage

169.13, 171.81,

181.31

Trivial (< 5%)

2 t2.micro EBS General

Purpose SSD

1465.00, 1473.33,

1490.93

Trivial (< 5%)

3 m4.large EBS Magnetic

Storage

527.70, 973.63,

1246.67

Significant (can reach ~140%

increase with an absolute value of

450-700)

4 m4.large EBS General

Purpose SSD

2046.66, 2612.00,

2649.66

Noticeable (can reach ~30%

increase with an absolute value of

500-600)

What can you conclude from these results?
 12

I/O Benchmarking Conclusions

● SSD has better performance than magnetic disk
● m4.large instance offers higher performance than

a t2.micro instance
● The RPS increase across 3 iterations for m4.large

is more significant than that for t2.micro:
○ The reason is an instance with more memory

can cache more of the previous requests for
repeated tests.

○ Caching is a vital performance tuning
mechanism when building high performance
applications.

 13

Project 3.1 Overview
P3.1: Files, SQL, and NoSQL:
● Task 1: analyze data in flat files

○ Linux tools (e.g. grep, awk)
○ Data libraries (e.g. pandas)

● Task 2: Explore a SQL database (MySQL)
○ load data, run queries, indexing, auditing
○ plain-SQL v/s ORM

● Task 3: Implement a Key-Value Store
○ prototype of Redis using TDD

● Task 4: Explore a NoSQL DB (HBase)
○ load data, run basic queries

The NoSQL and HBase primers are vital for P3.1
 14

Flat Files

● Flat files, plain text or binary
○ comma-separated values (CSV) format:

Carnegie,Cloud Computing,A,2018

○ tab-separated values (TSV) format:
Carnegie\tCloud Computing\tA\t2018

○ a custom and verbose format: Name:
Carnegie, Course: Cloud Computing,

Section: A, Year: 2018

 15

Flat Files

● Lightweight, Flexible, in favor of small tasks
○ Run it once and throw it away

● Performing complicated analysis on data in files
can be inconvenient

● Usually flat files should be fixed or append-only
● Writes to files without breaking data integrity is

difficult
● Managing the relations among multiple files is

also challenging
 16

Databases

● A collection of organized data
● Database management system (DBMS)

○ Interface between user and data
○ Store/manage/analyze data

● Relational databases
○ Based on the relational model (schema)
○ MySQL, PostgreSQL

● NoSQL Databases
○ Unstructured/semi-structured
○ Redis, HBase, MongoDB, Neo4J

 17

Databases
● Advantages

○ Logical and physical data independence
○ Concurrency control and transaction support
○ Query the data easily (e.g., SQL)
○ ...

● Disadvantages
○ Cost (computational resources, fixed schema)
○ Maintenance and management
○ Complex and time-consuming to design schema
○ ...

 18

Files vs. Databases

● Compare flat files to databases

● Think about:
○ What are the advantages and disadvantages of

using flat files or databases?
○ In what situations would you use a flat file or a

database?
○ How to design your own database? How to

load, index and query data in a database?

 19

● Analyze Yelp’s Academic Dataset
○ https://www.yelp.com/dataset_challenge

○ business
○ checkin
○ review
○ tip
○ user

Dataset

 20

https://www.yelp.com/dataset_challenge

Inspect and visualize data using Facets

 20

● Answer questions in runner.sh
○ Use tools such as awk and pandas
○ Similar to what you did in Project 1

● Merge TSV files by joining on a common field
● Identify the disadvantages of flat files
● You may use Jupyter Notebook to help you

solve the questions in Python.

Task 1: Flat File

 20

Task 2: MySQL
● Prepare tables

○ A script to create the table and load the data is
already provided

● Use MySQL queries to answer questions
○ Learn JDBC
○ Complete MySQLTasks.java
○ Aggregate functions, joins
○ Statement and PreparedStatement
○ SQL injection

● Learn how to use proper indexes to improve
performance

 21

MySQL Indexing
● Schema

○ The structure of the tables and the relations between
tables

○ Based on the structure of the data and the application
requirement

● Index:
○ An index is simply a pointer to data in a table. It’s a data

structure (lookup table) that helps speed up the retrieval
of data from tables (e.g., B-Tree, Hash indexes, etc.)

○ Based on the data as well as queries
● You can build effective indexes only if you are aware of the

queries you need
● We have an insightful section about the practice of indexing,

read it carefully! Very helpful for the team project
 22

EXPLAIN statements in MySQL
● How do we evaluate the performance of a

query?
○ Run it.

● What if we want/need to predict the
performance without execution?
○ Use EXPLAIN statements.

● An EXPLAIN statement on a query will predict:
○ The number of rows to scan
○ Whether it makes use of indexes or not
○ etc.

 23

Object Relational Mapping (ORM)

ORM is a technique to abstract away the work for you to:
1. Map the domain class with the database table
2. Map each field of the domain class with a column of the table
3. Map instances of the classes (objects) with rows in the

corresponding tables

 24

Benefits of adopting ORM
● Separation of concerns

○ ORM decouples the CRUD operations and the business logic
code.

● Productivity
○ You don’t need to keep switching between your OOP

language such as Java/Python, etc. and SQL.
● Flexibility to meet evolving business requirements

○ ORM cannot eliminate the schema update problem, but it
may ease the difficulty, especially when used together with
data migration tools.

● Persistence transparency
○ Any changes to a persistent object will be automatically

propagated to the database without explicit SQL queries.
● Vendor independence

○ ORM can abstract the application away from the underlying
SQL database and SQL dialect.

 25

ORM Question in the MySQL Task

● The current business application exposes an API
that returns the most popular Pittsburgh
businesses.

● It is based on a SQLite3 database with an
outdated schema.

● Your task:
○ Plug the business application to the MySQL

database and update the definition of the
domain class to match the new schema.

● The API will be backward compatible without
modifying any business logic code.

 26

NoSQL
● Non-SQL or NotOnly-SQL

○ Non-relational
● Why NoSQL if we already have SQL solutions?

○ Flexible data model (schemaless, can change)
○ Designed to be distributed (scale horizontally)
○ Certain applications require improved performance at

the cost of reduced data consistency (data staleness)
● Basic Types of NoSQL Databases

○ Schema-less Key-Value Stores (Redis)
○ Wide Column Stores (Column Family Stores) (HBase)
○ Document Stores (MongoDB)
○ Graph DBMS (Neo4j)

 28

CAP Theorem

● The CAP theorem: it is impossible for a
distributed data store to provide all the following
three guarantees at the same time
○ Consistency: no stale data
○ Availability: no downtime
○ Partition Tolerance: network failure tolerance

in a distributed system

 27

Single Node to Distributed Databases

Three issues emerge:
● Since DB is replicated, how to maintain consistency?
● Since the data is replicated, if one replica is down, is the

entire service down?
● How will the service behave during a network failure?

 27

A database, replicated on two
nodes, Node 1 and Node 2

C, A, P in Distributed Databases

 27

Only two out of the three are feasible:
● CA: non-distributed (MySQL, PostgreSQL)

○ Traditional databases like MySQL and PostgresQL
have only one server. They meet the requirement of
CA and don’t provide partition tolerance

● CP: downtime (HBase, MongoDB)
○ Stop responding if there is partition. There will be

downtime
● AP: stale data (Amazon DynamoDB)

○ Always available. Data may be inconsistent among
nodes if there is a partition

31

CAP Theorem

32

Only two out of three in CAP are feasible

Task 3: Implement Redis

● Key-value store is a type of NoSQL database
e.g., Redis and Memcached

● Widely used as an in-memory cache

Your task:

● Implement a simplified version of Redis
● We provide starter code Redis.java, you will

implement two of the commonly used data
structures supported by Redis:
○ hashes and lists

● TDD with 100% code coverage
 29

Task 4: Explore HBase

HBase is an open source, column-oriented,
distributed database developed as part of the
Apache Hadoop project

Steps to complete:
1. Launch an HDInsight cluster with HBase installed.
2. Follow the write-up to download and load the

data into HBase.
3. Try different querying commands in the HBase shell.
4. Complete HBaseTasks.java using HBase Java APIs.

 30

P3.1 Reminders

● Tag your resources with:
○ Key: Project, Value: 3.1

● An HDInsight cluster is very expensive.
● Your subscription will be disabled if you run out

of your subscription budget. Please exercise
caution to plan the budget.

● Remember to delete the Azure resource group to
clean up all the resources in the end.

 31

3
6

TEAM PROJECT
Twitter Data Analytics

Team Project

Twitter Analytics Web Service
• Given ~1TB of Twitter data
• Build a performant web service

to analyze tweets
• Explore web frameworks
• Explore and optimize database systems

Web-tier Storage-tier

Team Project
● Phase 1:

○ Q1
○ Q2 (MySQL AND HBase)

● Phase 2
○ Q1
○ Q2 & Q3 (MySQL AND HBase)

● Phase 3
○ Q1, Q2, & Q3 (Managed Cloud Services)

Input your team
account ID and GitHub

username on TPZ

Query 1 (CloudCoin)

● Query 1 does not require a database (storage tier)
● Implement a web service that verifies and updates

blockchains.
● You must explore different web frameworks

○ Get at least 2 different web frameworks working
○ Select the framework with the better performance
○ Provide evidence of your experimentations
○ Read the report first

 40

What is a blockchain, though?

40

• Data structure that supports digital currency.
• Designed to be untamperable.
• Distributed. Shared among all user nodes.

– Decentralized
– Fault Tolerant.

• Consists of chained blocks.
• Each block consists of transactions.

Q1 Example

41

• Q1 input

42

Q1 Example
• Block:

– Created by “miners”.
– Has a list of transactions.
– Block hash encapsulates

all transaction info and block
Metadata, as well as the hash of the previous
block.

– Block hash, required to start with a 0.
– PoW (Proof of Work), which makes the hash

start with a 0.
– PoW is found by miner through brute forcing.

43

Q1 Example
• Transaction:

– Hash value computed
using all info in the blue
box.

– Signature is computed
with hash value using
RSA.
sig=RSA(hash, key)

44

Q1 Example
• Reward:

– Special type of
transaction.

– Created by miner.
– Is the last transaction in

the block’s transaction
list.

45

Q1 Example
• New transaction:

– You need to fill in
missing fields.

– You also need to sign
the transaction using
the key given to you.

46

Q1 Example
• Output:

– Complete the new transaction.
– Create a reward transaction.
– Mine a new block that only has those two

transactions.
– Return the new transaction signature and new

block PoW.
– E.g. <1256484134151|i_love_cc>

47

Q1 Example
• Output:

– There will be malicious attempts to break the
blockchain.

– You need to check the validity of the chain.
– If the chain is not valid, return INVALID.
– E.g. <INVALID|any_debug_info_you’d_like>

Query 2 - User Recommendation System
Use Case: When you follow someone on twitter, recommend close friends.

Three Scores:
• Interaction Score - closeness
• Hashtag Score - common interests
• Keywords Score - to match interests

Final Score: Interaction Score * Hashtag Score * Keywords Score

Query:
GET /q2?
user_id=<ID>&
type=<TYPE>&
phrase=<PHRASE>&
hashtag=<HASHTAG> 38

Response:
<TEAMNAME>,<AWSID>\n
uid\tname\tdescription\ttweet\n
uid\tname\tdescription\ttweet

Query 2 Example
GET /q2?

user_id=100123&

type=retweet&

phrase=hello%20cc&

hashtag=cmu

TeamCoolCloud,1234-0000-0001

100124\tAlan\tScientist\tDo machines think?\n

100125\tKnuth\tprogrammer\thello cc!

49

Twitter Analytics System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 35

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

Git workflow
● Commit your code to the private repo we set up

○ Update your GitHub username in TPZ!
● Make changes on a new branch

○ Work on this branch, commit as you wish
○ Open a pull request to merge into the master

branch
● Code review

○ Someone else needs to review and accept (or
reject) your code changes

○ This process will allow you to capture bugs and
remain informed on what others are doing

 37

Heartwarming Tips from Your Beloved
TAs

1. Design your architecture early and apply for limit increase.
2. EC2 VM is not the only thing that costs money.
3. Primers and individual projects are helpful.
4. You don’t need all your hourly budget to get Q1 target.
5. Coding is the least time consuming part.
6. Think before you do. Esp. for ETL (Azure, GCP, or AWS).
7. Divide workload appropriately. Take up your responsibility.
8. Read the write-up.
9. Read the write-up again.

10. Start early. You cannot make-up the time lost. Lots to
finish.

11. I’m not kidding. Drama happens frequently.
52

Team Project Time Table
Phase Deadline (11:59PM EST)

Phase 1 (20%)
- Query 1
- Query 2

● Q1 CKPT (5%): Sun, 3/3
● Report1 (5%): Sun, 3/3
● Q1 FINAL (10%): Sun, 3/10
● Q2M & Q2H CKPT (10%): Sun, 3/24
● Q2M & Q2H FINAL (50%): Sun, 3/31
● Report2 (20%): Tue, 4/2

Phase 2 (30%)
- Add Query 3

● Live Test on Sun, 4/14

Phase 3 (50%)
- Managed Services

● Live Test on Sun, 4/28

53

Team Project Deadlines - Phase 1
● Writeup and queries were released on Monday.
● Phase 1 milestones:

○ Q1 Checkpoint: Sunday, Mar 3
■ A successful 10-min submission for Q1
■ Checkpoint 1 Report (link)

○ Q1 final due: Sunday, Mar 10
■ Achieve the Q1 target

○ Q2 Checkpoint: Sunday, Mar 24
■ A successful 10-min submissions:

● Q2 MySQL and Q2 HBase.
○ Q2 final due: Sunday, Mar 31

■ Achieve the Q2 target for Q2 MySQL and Q2 HBase.
○ Phase 1, code and report: Tuesday, Apr 2 (link)

● Start early, read the report and earn bonus points! 36

https://docs.google.com/document/d/1qdaz7EXP6NTX1EETXfkTwy5Z4b7d473pxh_Ezt6UzLs/edit#
https://docs.google.com/document/d/1RenufK-FSIHjYosGANUzEF_YC8P5nmMHS51QfQ9GgHY/edit

Suggested Tasks for Phase 1
Phase 1 weeks Tasks Deadline

Week 1
● 2/25

● Team meeting
● Writeup
● Complete Q1 code & achieve correctness
● Q2 Schema, think about ETL

● Q1 Checkpoint due on 3/3
● Checkpoint Report due on 3/3

Week 2
● 3/4

● Q1 target reached
● Q2 ETL & Initial schema design completed

● Q1 final target due on 3/10

Week 3
● Spring

Break

● Take a break or make progress (up to
your team)

Week 4
● 3/18

● Achieve correctness for both Q2 MySQL
and HBase & basic throughput

● Q2 MySQL Checkpoint due on 3/24
● Q2 HBase Checkpoint due on 3/24

Week 5
● 3/25

● Optimizations to achieve target
throughputs for Q2 MySQL and HBase

● Q2 MySQL final target due on 3/31
● Q2 HBase final target due on 3/31

55

This Week’s Deadlines

• Quiz 6:

Due: Friday, March 1st, 2019 11:59PM ET

• Sign up for the Multi-Threading OPE task

Due: Saturday, March 2nd, 2019 11:59PM ET

• Project 3.1: Files and Databases

Due: Sunday, March 3rd, 2019 11:59PM ET

• Team Project Phase 1 Q1 Checkpoint 1

Due: Sunday, March 3rd, 2019 11:59PM ET
56

AND PLAN AHE

57

START EARLY
A
D

Q&A

58

