15-319 / 15-619
Cloud Computing

Recitation 4
Feb 5, 2019

Administrative - OH & Piazza

e Make use of office hours
o Make sure that you are able to describe the problem and what you
have tried so far

o Piazza Course Staff
Google calendar in ET
Google calendar in PT

©)

©)

e Suggestions for using Piazza

Contribute questions and answers

Read the Piazza Post Guidelines (@6) before asking questions
Read Piazza questions & answers carefully to avoid duplicates
Don’t ask a public question about a quiz question

Try to ask a public question if possible

O O O O O

https://piazza.com/cmu/spring2019/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://piazza.com/class/jqsp37y8m572vm?cid=6

Administrative - Cloud spending

e Suggestion on cloud service usage

Monitor AWS expenses regularly

Always do the cost calculation before launching services
Terminate your instances when not in use

Stopped instances have EBS costs ($0.1/GB-Month)
Make sure spot instances are tagged right after launch

O O O O O

Important Notice

e DON’T EVER EXPOSE YOUR AWS CREDENTIALS!
o Github
o Bitbucket
o Anywhere public...
e DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
e DON’T EVER EXPOSE YOUR Azure CREDENTIALS!
o Applicationld, ApplicationKey
o StorageAccountKey, EndpointUrl

Reflection

e Conceptual content on OLI
o Modules 3, 4, Quiz 2
e Project theme - Big data analytics
o Inverted Index: Implemented an inverted index with MapReduce
using TDD
o WIiki Data Parallel Processing Analysis: Use MapReduce to
process 36GB compressed / 128GB uncompressed wiki data
m MapReduce application to filter records and calculate
aggregate daily pageviews
o Data Analytics: Use Jupyter Notebooks and the pandas library to
analyze the data and answer questions

This Week

e Quiz 3 (OLI Modules 5 & 6)

o Due on Friday, Feb 8th, 2019, 11:59PM ET
e Project 2.1

o Due on Sunday, Feb 10th, 2019, 11:59PM ET
e Primers released this week

o P2.2 - Intro to Containers and Docker

o P2.2 - Kubernetes and Container Orchestration

Guideline for Project Reflection

e Describe your approach in solving each task in this
project
o Please share your:
m Approach to solving each task in the project
m \What you would do differently if you could do the
project over again
m Interesting problems that your overcame
o However, please:
m Do not share your code or pseudocode
m Do not share details about your solution

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning,
monitoring and metering of virtual user “resources”
on top of the Cloud Service Provider’s (CSP)

infrastructure.

e C(Cloud middleware

Provisioning

Metering

Orchestration and automation

Case Study: Openstack - Open-source cloud stack
implementation

OLI Module 6 - Cloud Software
Deployment Considerations

Programming the cloud

Deploying applications on the cloud
Build fault-tolerant cloud services
Load balancing

Scaling resources

Dealing with tail latency

Economics for cloud applications

Project 2
Overview

Scaling and Elasticity with
o \Ms

e C(Containers

e Functions

2.1 Scaling Virtual Machines
Horizontal scaling in / out using AWS APls
Load balancing, failure detection, and cost
management on AWS

Infrastructure as Code (Terraform)

2.2 Scaling with Containers
Building your own container-based
microservices

Docker containers

Manage multiple Kubernetes Cluster
Multi Cloud deployments

2.3 Functions as a Service
Develop event driven cloud functions

Deploy multiple functions to build a video
processing pipeline

Project 2.1 Learning Objectives

Design solutions and invoke cloud APls to programmatically provision and
deprovision cloud resources based on the current load.

Explore the usability and performance of APIs used in AWS.

Configure and deploy an Elastic Load Balancer along with an Auto Scaling
Group on AWS.

Develop elasticity policies to maintain the QoS of a web service that also deals
with resource failure.

Account for cost as a constraint when provisioning cloud resources and analyze
the performance tradeoffs due to budget restrictions.

Experience using cloud orchestration and automation tools such as Terraform.

Overview of Quality of Service (QoS),
Latency and Cloud Elasticity

Load patterns for web services
Vertical scaling (Scale up/down)
Horizontal scaling (Scale out/in)

Load balancers

Autoscaling groups

Resource monitoring (CloudWatch)
Resource orchestration with Terraform

Quality of Service (QoS)

Quantitatively Measure QoS

e Performance: Throughput, Latency
(Very helpful in Projects 2 & Team Project)

e Availability: the probability that a system is operational at a given
time (Projects P2.1 and P2.2)

e Reliability: the probability that a system will produce a correct
output up to a given time (Project P2.1 and P2.2)

QoS Matters:

e Amazon found every 100ms of latency
cost them 1% in sales (~$1B).

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

Bandwidth

Netflix Traffic Comparison - House of Cards Season 3 Launch Weekend

Thursday
o g o b b b b o o ot o o b
)
0°°m°° 5_0%0%0%0%0%0“ L o° o

APy T e° e° o° . 0‘3 WF® m° c° Ny

——Typical Weekend (Feb 19 - 22)

Friday

Saturday

o ot ‘}‘b‘b“‘r‘b‘hﬁh
o~ Qvevq°w
N h%o%e“\oo Y c°$o°0 °o°

Sunday

SR 0 08 g8 8 o 8 8 8
SN0

A b b R A A b
% N ORI v!:&.e $c° S e°e°o°0°a°c°c°o°

o
o
o

—House of Cards Launch Weekend (Feb 26 - Mar 1) [~Jsandvine

The Ferenstein Wire

15

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

BLACK
FRIDAY
NOV 23

THANKSGIVING

NOV 22

2012 Holiday shopping result

CYBER
MONDAY

NOV 26

GREEN
MONDAY
DEC 10

FREE
SHIPPING
DAY

sl NEW
YEAR'S
EVE

XMAS

sapient.com
16

Cloud Comes to the Rescue!
Scaling!

PO: Vertical Scaling

Load
Generator

=

X

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

Resources in Cloud Infrastructure

/

/
Large
Medium
Small
Middleware
’ @@@@

Instance Types

Bare Metal Resources

PO: Vertical Scaling Limitation

e However, one

vavs e /
\

limited resources. Load
Generator

e Reboot/Downtime.

Horizontal Scaling

Load — 7
Generator

- ~

How do we distribute load?

Instance Failure?

e e
O

What You Need

* Make sure that workload is even on each server

* Do not assign load to servers that are down

* Increase/Remove servers according to changing load
How does a cloud service help solve these problems?

=
e =

Load Balancer

e >-\>-

Managed group of servers

Load balancer

e “Evenly” distribute the load \\/
e Simplest distribution strategy

o Round Robin
e Health Check

Load Balancer

e What if the Load Balancer becomes the bottleneck?
o Elastic Load Balancer (ELB)
m Could scale up based on load
o Elastic, but it still takes time
m Through the warm-up process

Scaling

Manual Scaling:

e EXxpensive on manpower

e Low utilization or over provisioning
e Manual control

e Lose customers

Autoscaling:

e Automatically adjust the size based
on demand

e Flexible capacity and scaling sets

e Save cost

Traditional Scaling

Lost customers

Capacity

Wasted Capacity

Time

Amazon Auto Scalin

Capacity

Virtuas lized Infrastructu

Time

AWS Autoscaling

Auto Scaling on AWS ~ "Webserver Pool)

Round }'?obin

You can build a load balanced HTTP Connections

auto-scaled web service. W g >

|

|

|

Using the AWS APIs: Health l
|

|

e ELB |
e Auto Scaling Group ;| i
o EC2 / |
e CloudWatch - |
e Auto Scaling Policy & |
|

|

I

|

Amazon Auto Scaling Group

User Load

Elastic Load
Balancer

Auto Scaling Group

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

Amazon CloudWatch

Scale In
Rule

 Scale Out
Rule .

28

Amazon’s CloudWatch Alarm

 Monitor CloudWatch metrics for some specified
alarm conditions

e Take automated action when the condition is met

Resources with :> CPU Utilization -=> :> User-Defined
ser-vertine
CloudWatch Other Metrics... | <@ - - CloudWatch Action
Enabled Alarm
CloudWatch

Metrics Repository Amazon

CloudWatch

o A provider is responsible for
understanding API interactions

Terraform Configuration

e Providers

and exposing resources.

e Resources

o The resource block defines a
resource that exists within the

infrastructure.

e AWS Provider

O

https://www.terraform.io/docs/p

roviders/aws/index.html

$ cat main.tf

provider "aws" {
region = "us-east-1"
}

resource "aws_instance" "cmucc" {
ami = "ami-2757f631"
instance_type = "t2.micro"

tags {
Project ="2.1"
}

key _name = "my-ssh-key"

}

https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html

Terraform CLI

init
o Initializes a working directory
containing Terraform
configuration files.
plan
o Creates an execution plan.
apply
o Apply the changes required to
reach the desired state.
destroy
o Destroy the Terraform-managed
infrastructure.

$ terraform plan
Terraform will perform the following actions:
+ aws_instance.cmucc
id: <computed>
ami: "ami-2757f631"

Plan: 1 to add, 0 to change, 0 to destroy.

$ terraform apply

Declarative Infrastructures with
Terraform

[root] root

@counbboundaw (count boundary fixup)

K

[root] provider.aws (close)

aws_cloudwatch_metric_alarm.u

p

aws_cloudwatch_metric_alarm.down

aws_ins

tance

Ag

!

/

aws_autoscaling_policy.up

aws_autoscaling_policy.down

aws_elb.elb

Do not expect this to
exactly match your
solution (e.g. the load
balancer is supposed
to be an Application
Load Balancer)!

Project 2.1 Scaling on AWS

' e Task1
° o AWS Horizontal Scaling

e Task?2 <:>
o AWS Auto Scaling
e Task3

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

Task 1 - AWS Horizontal Scaling:

e Implement Horizontal Scaling in AWS.

e Write a program that launches the data
center instances and ensures that the
target total RPS is reached.

Load —
Generator

e Your program should be fully
automated: launch LG->submit
password-> Launch DC-> start test->
check log -> add more DC...

Project 2.1 Scaling on AWS

Autoscaling Group

-
e Task1
o AWS Horizontal Scaling
' o Task2
® o AWS Auto Scaling Load
Generator
e Task3

o AWS Auto Scaling with Terraform

P2.1-Task 2

Programmatically create an Application Load Balancer (ALB) and an Auto Scaling
Policy. Attach the policy to Auto-Scaling Group (ASG) and link ASG to ALB.

Test by submitting a URL request and observe logs, ALB, and CloudWatch.
Decide on the Scale-Out and Scale-In policies

Mitigate failure

Auto Scaling Group

rTri1r171

Add Resource

Elastic Load Balancer

i
I
i
' - Target Group

Auto Scaling Group

CloudWatch Alarm

Remove Resource

Actions (Policies)

Hints for Project 2.1 AWS Autoscaling

Task 2 - AWS Auto Scaling

Do a dry run via the console to make sure you understand the workflow
completely and mimic that workflow programmatically.
Autoscaling Test could be very expensive!
o on-demand but now charged by the second
Determine if there is a less expensive means to test your solution
Creating and deleting security groups can be tricky
CloudWatch and monitoring in ELB is helpful
Explore ways to check if your instance is ready
Understanding the APl documents could take time

Project 2.1 Scaling on AWS

Autoscaling Group

e

e Task1
o AWS Horizontal Scaling
o Task2
o AWS Auto Scaling Load
' o Task 3 Generator
e

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

' Task 3 - AWS Auto Scaling with Terraform:

Read the Infrastructure as Code primer to learn about infrastructure
automation

Update your code to create and attach an IAM role to your Load
Generator.

Remove the code to launch the AWS resource required for autoscaling
(ALB, Alarms, ASG...) resources (as they are in the TF config)

Makes sure that terraform plan generates the expected resource

Project 2.1 Code Submission

e Submit the horizontal scaling task on AWS’s load generator (LG) instance
e Submit the autoscaling task to the AWS load generator (LG) instance

e Submit the Terraform autoscaling task to the AWS load generator (LG)
instance

o You can use the test id from the AWS autoscaling task when creating
the .tar.gz file

O mkdir testlId; tar -zcf <testId>.tar.gz <testId>
e Remove all hidden files from your submission(.git / .idea / .DS_store)
O export COPYFILE DISABLE=true; (Mac Users)

tar —-exclude='.*' -zcf <testlId>.tar.gz <testId>

Penalties for Project 2.1

Violation

Spending more than $20 for this project phase on AWS
Spending more than $35 for this project phase on AWS

Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
with the tag: key=Project, value=2.1

Submitting your AWS/Andrew credentials in your code for grading

Using instances other than t2.micro,t3.micro (testing only) or m5.large for Horizontal
scaling on AWS

Using instances other than t2.micro ,t3.micro (testing only), m5.large for Autoscaling on
AWS

Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh,
etc.)

Penalty of the
project grade

-10%

-100%

-10%

-100%

-100%

-100%

-100%

Penalties for Project 2.1 cont.

Violation Pen_alty of the
project grade
Attempting to hack/tamper the autograder in any way -200%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on

- (0)
academic integrity and our syllabus) 200%

AWS Cloud APIs amazon

webservices™

e AWS CLI (link)
e AWS Java SDK (link)

e AWS Python SDK (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

This Week

e Quiz 4 (OLI Modules 5 & 6)

o Due on Friday, Feb 8th, 2019, 11:59PM ET
e Project 2.1

o Due on Sunday, Feb 10th, 2019, 11:59PM ET
e Primers released this week

o P2.2 - Intro to Containers and Docker

o P2.2 - Kubernetes and Container Orchestration

Team Project - Time to Team Up

15-619 Students:
e Start to form your teams
o See @5 for other potential team members
o See @387 for suggestions on creating your post for @5
o Choose carefully as you cannot change teams
o Look for a mix of skills in the team
m Web tier: web framework performance
m Storage tier: deploy and optimize MySQL and HBase
m Extract, Transform and Load (ETL)
e Create an AWS account only for the team project
e \Wait for our post on Piazza to submit your team information

https://piazza.com/class/jqsp37y8m572vm?cid=5
https://piazza.com/class/jqsp37y8m572vm?cid=387
https://piazza.com/class/jqsp37y8m572vm?cid=5

Questions?

