
15-319 / 15-619
Cloud Computing

Recitation 4

Feb 5 , 2019

● Make use of office hours
○ Make sure that you are able to describe the problem and what you

have tried so far
○ Piazza Course Staff
○ Google calendar in ET
○ Google calendar in PT

● Suggestions for using Piazza
○ Contribute questions and answers
○ Read the Piazza Post Guidelines (@6) before asking questions
○ Read Piazza questions & answers carefully to avoid duplicates
○ Don’t ask a public question about a quiz question
○ Try to ask a public question if possible

Administrative - OH & Piazza

2

https://piazza.com/cmu/spring2019/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://piazza.com/class/jqsp37y8m572vm?cid=6

Administrative - Cloud spending
● Suggestion on cloud service usage

○ Monitor AWS expenses regularly
○ Always do the cost calculation before launching services
○ Terminate your instances when not in use
○ Stopped instances have EBS costs ($0.1/GB-Month)
○ Make sure spot instances are tagged right after launch

Important Notice
● DON’T EVER EXPOSE YOUR AWS CREDENTIALS!

○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
● DON’T EVER EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

Reflection
● Conceptual content on OLI

○ Modules 3, 4, Quiz 2
● Project theme - Big data analytics

○ Inverted Index: Implemented an inverted index with MapReduce
using TDD

○ Wiki Data Parallel Processing Analysis: Use MapReduce to
process 36GB compressed / 128GB uncompressed wiki data
■ MapReduce application to filter records and calculate

aggregate daily pageviews
○ Data Analytics: Use Jupyter Notebooks and the pandas library to

analyze the data and answer questions

This Week
● Quiz 3 (OLI Modules 5 & 6)

○ Due on Friday, Feb 8th, 2019, 11:59PM ET
● Project 2.1

○ Due on Sunday, Feb 10th, 2019, 11:59PM ET
● Primers released this week

○ P2.2 - Intro to Containers and Docker
○ P2.2 - Kubernetes and Container Orchestration

Guideline for Project Reflection
● Describe your approach in solving each task in this

project
○ Please share your:

■ Approach to solving each task in the project
■ What you would do differently if you could do the

project over again
■ Interesting problems that your overcame

○ However, please:
■ Do not share your code or pseudocode
■ Do not share details about your solution

7

OLI Module 5 - Cloud Management
Cloud Software stack - enables provisioning,
monitoring and metering of virtual user “resources”
on top of the Cloud Service Provider’s (CSP)
infrastructure.
● Cloud middleware
● Provisioning
● Metering
● Orchestration and automation
● Case Study: Openstack - Open-source cloud stack

implementation 8

OLI Module 6 - Cloud Software
Deployment Considerations

● Programming the cloud

● Deploying applications on the cloud

● Build fault-tolerant cloud services

● Load balancing

● Scaling resources

● Dealing with tail latency

● Economics for cloud applications
9

Project 2
Overview

● 2.1 Scaling Virtual Machines
- Horizontal scaling in / out using AWS APIs
- Load balancing, failure detection, and cost

management on AWS
- Infrastructure as Code (Terraform)

● 2.2 Scaling with Containers
- Building your own container-based

microservices
- Docker containers
- Manage multiple Kubernetes Cluster
- Multi Cloud deployments

● 2.3 Functions as a Service
- Develop event driven cloud functions
- Deploy multiple functions to build a video

processing pipeline

Scaling and Elasticity with
● VMs
● Containers
● Functions

Project 2.1 Learning Objectives
● Design solutions and invoke cloud APIs to programmatically provision and

deprovision cloud resources based on the current load.
● Explore the usability and performance of APIs used in AWS.
● Configure and deploy an Elastic Load Balancer along with an Auto Scaling

Group on AWS.
● Develop elasticity policies to maintain the QoS of a web service that also deals

with resource failure.
● Account for cost as a constraint when provisioning cloud resources and analyze

the performance tradeoffs due to budget restrictions.
● Experience using cloud orchestration and automation tools such as Terraform.

Overview of Quality of Service (QoS),
Latency and Cloud Elasticity
● Load patterns for web services
● Vertical scaling (Scale up/down)
● Horizontal scaling (Scale out/in)
● Load balancers
● Autoscaling groups
● Resource monitoring (CloudWatch)
● Resource orchestration with Terraform

Quality of Service (QoS)
Quantitatively Measure QoS

● Performance: Throughput, Latency
(Very helpful in Projects 2 & Team Project)

● Availability: the probability that a system is operational at a given
time (Projects P2.1 and P2.2)

● Reliability: the probability that a system will produce a correct
output up to a given time (Project P2.1 and P2.2)

QoS Matters:

• Amazon found every 100ms of latency
cost them 1% in sales (~$1B).

Reality, human patterns...

15

● Daily
● Weekly
● Monthly
● Yearly
● ...

The Ferenstein Wire

Reality, human patterns...

sapient.com
16

● Daily
● Weekly
● Monthly
● Yearly
● ...

Cloud Comes to the Rescue!
Scaling!

P0: Vertical Scaling

Load
Generator

DC

DC

DC

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

Resources in Cloud Infrastructure

Middleware

Small
Medium

Large
Instance Types

Bare Metal Resources

P0: Vertical Scaling Limitation

Load
Generator

DC

DC

DC

● However, one
instance will
always have
limited resources.

● Reboot/Downtime.

Horizontal Scaling

DC

DC

DC

Load
Generator

How do we distribute load?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

Instance Failure?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

What You Need
• Make sure that workload is even on each server

• Do not assign load to servers that are down

• Increase/Remove servers according to changing load

How does a cloud service help solve these problems?

Server2

Server3

Server1

Server4

Managed group of servers

Load Balancer

Load balancer

● “Evenly” distribute the load
● Simplest distribution strategy

○ Round Robin
● Health Check

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer (ELB)

■ Could scale up based on load
○ Elastic, but it still takes time

■ Through the warm-up process

Load Balancer

Scaling
Manual Scaling:
● Expensive on manpower
● Low utilization or over provisioning
● Manual control
● Lose customers

Autoscaling:
● Automatically adjust the size based

on demand
● Flexible capacity and scaling sets
● Save cost

AWS Autoscaling
Auto Scaling on AWS

Using the AWS APIs:

● ELB
● Auto Scaling Group
● EC2
● CloudWatch
● Auto Scaling Policy

You can build a load balanced
auto-scaled web service.

Amazon Auto Scaling Group

User Load

Auto Scaling Group

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

E
L
B

Elastic Load
Balancer

28

Amazon’s CloudWatch Alarm

• Monitor CloudWatch metrics for some specified
alarm conditions

• Take automated action when the condition is met

CloudWatch
Metrics Repository

CPU Utilization
Other Metrics… CloudWatch

Alarm

Amazon
CloudWatch

User-Defined
Action

Resources with
CloudWatch

Enabled

29

Terraform Configuration
$ cat main.tf
provider "aws" {
 region = "us-east-1"
}

resource "aws_instance" "cmucc" {
 ami = "ami-2757f631"
 instance_type = "t2.micro"

 tags {
 Project = "2.1"
 }

 key_name = "my-ssh-key"
}

● Providers
○ A provider is responsible for

understanding API interactions
and exposing resources.

● Resources
○ The resource block defines a

resource that exists within the
infrastructure.

● AWS Provider
○ https://www.terraform.io/docs/p

roviders/aws/index.html

https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html

Terraform CLI
$ terraform plan
...
Terraform will perform the following actions:

 + aws_instance.cmucc
 id: <computed>
 ami: "ami-2757f631"
 ...

Plan: 1 to add, 0 to change, 0 to destroy.

$ terraform apply
...

● init
○ Initializes a working directory

containing Terraform
configuration files.

● plan
○ Creates an execution plan.

● apply
○ Apply the changes required to

reach the desired state.
● destroy

○ Destroy the Terraform-managed
infrastructure.

Declarative Infrastructures with
Terraform

Do not expect this to
exactly match your
solution (e.g. the load
balancer is supposed
to be an Application
Load Balancer)!

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

fig. horizontal scaling

Load
Generator

WS

WS

WS

Project 2.1 Scaling on AWS
Task 1 - AWS Horizontal Scaling:
● Implement Horizontal Scaling in AWS.

● Write a program that launches the data
center instances and ensures that the
target total RPS is reached.

● Your program should be fully
automated: launch LG->submit
password-> Launch DC-> start test->
check log -> add more DC... fig. horizontal scaling

Load
Generator

WS

WS

WS

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

Autoscaling Group

Load
Generator

WS

WS

DWS
C

LB

P2.1 - Task 2
• Programmatically create an Application Load Balancer (ALB) and an Auto Scaling

Policy. Attach the policy to Auto-Scaling Group (ASG) and link ASG to ALB.
• Test by submitting a URL request and observe logs, ALB, and CloudWatch.
• Decide on the Scale-Out and Scale-In policies
• Mitigate failure

Elastic Load Balancer

Target Group

Auto Scaling Group

CloudWatch Alarm

36

Hints for Project 2.1 AWS Autoscaling
Task 2 - AWS Auto Scaling

● Do a dry run via the console to make sure you understand the workflow
completely and mimic that workflow programmatically.

● Autoscaling Test could be very expensive!
○ on-demand but now charged by the second

● Determine if there is a less expensive means to test your solution
● Creating and deleting security groups can be tricky
● CloudWatch and monitoring in ELB is helpful
● Explore ways to check if your instance is ready
● Understanding the API documents could take time

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

Autoscaling Group

Load
Generator

WS

WS

WS

LB

Project 2.1 Scaling on AWS
Task 3 - AWS Auto Scaling with Terraform:
● Read the Infrastructure as Code primer to learn about infrastructure

automation

● Update your code to create and attach an IAM role to your Load
Generator.

● Remove the code to launch the AWS resource required for autoscaling
(ALB, Alarms, ASG…) resources (as they are in the TF config)

● Makes sure that terraform plan generates the expected resource
fig. horizontal scaling

● Submit the horizontal scaling task on AWS’s load generator (LG) instance
● Submit the autoscaling task to the AWS load generator (LG) instance

● Submit the Terraform autoscaling task to the AWS load generator (LG)
instance

○ You can use the test id from the AWS autoscaling task when creating
the .tar.gz file

○ mkdir testId; tar -zcf <testId>.tar.gz <testId>

● Remove all hidden files from your submission(.git / .idea / .DS_store)
○ export COPYFILE_DISABLE=true; (Mac Users)

tar --exclude='.*' -zcf <testId>.tar.gz <testId>

Project 2.1 Code Submission

Penalties for Project 2.1
Violation Penalty of the

project grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $35 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
with the tag: key=Project, value=2.1 -10%

Submitting your AWS/Andrew credentials in your code for grading -100%

Using instances other than t2.micro,t3.micro (testing only) or m5.large for Horizontal
scaling on AWS -100%

Using instances other than t2.micro ,t3.micro (testing only), m5.large for Autoscaling on
AWS -100%

Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh,
etc.) -100%

Penalties for Project 2.1 cont.

Violation Penalty of the
project grade

Attempting to hack/tamper the autograder in any way -200%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on
academic integrity and our syllabus) -200%

AWS Cloud APIs

● AWS CLI (link)

● AWS Java SDK (link)

● AWS Python SDK (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

This Week
● Quiz 4 (OLI Modules 5 & 6)

○ Due on Friday, Feb 8th, 2019, 11:59PM ET
● Project 2.1

○ Due on Sunday, Feb 10th, 2019, 11:59PM ET
● Primers released this week

○ P2.2 - Intro to Containers and Docker
○ P2.2 - Kubernetes and Container Orchestration

Team Project - Time to Team Up

15-619 Students:
● Start to form your teams

○ See @5 for other potential team members
○ See @387 for suggestions on creating your post for @5
○ Choose carefully as you cannot change teams
○ Look for a mix of skills in the team

■ Web tier: web framework performance
■ Storage tier: deploy and optimize MySQL and HBase
■ Extract, Transform and Load (ETL)

● Create an AWS account only for the team project
● Wait for our post on Piazza to submit your team information

https://piazza.com/class/jqsp37y8m572vm?cid=5
https://piazza.com/class/jqsp37y8m572vm?cid=387
https://piazza.com/class/jqsp37y8m572vm?cid=5

Questions?

