
15-319 / 15-619
Cloud Computing

Recitation 3

Jan 29 and 31, 2019

Important Notice

● DON’T EXPOSE YOUR AWS CREDENTIALS!
○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EXPOSE YOUR GCP CREDENTIALS!
● DON’T EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

2

Reflection

● Conceptual content on OLI
○ Modules 1, 2, Quiz 1

● Project theme - Sequential Analysis
○ Wiki Data Processing Task

■ Sequential Analysis of 100s MB of wikipedia data, adopt Test
Driven Development (TDD)

○ Data Analytics Task
■ Write analytics code on Jupyter Notebook using the pandas

library
○ Identify the limitations of sequential programs

3

This Week

● Quiz 2 (OLI Modules 3 & 4)

○ Due on Friday, Feb 1, 2019, 11:59PM ET

● Project 1.2

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

● Project 1.1 Reflection Feedback

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

● Primers released this week

○ Code Review

4

Guideline for Project Reflection

● Describe your approach in solving each task in this project
○ Please share your

■ approach, challenges faced, how you overcame
issues, and lessons learned.

○ However, please:
■ Do not share your code or pseudocode
■ Do not share details about your solution

5

Module 3: Data Center Trends

● Definition & Origins
○ Infrastructure dedicated to housing computer and

networking equipment, including power, cooling, and
networking.

● Growth
○ Size (No. of racks and cabinets)
○ Density

● Efficiency
○ Servers
○ Server Components
○ Power
○ Cooling

Facebook data center
6

Module 4: Data Center Components

● IT Equipment
○ Servers : rack-mounted

■ Motherboard
■ Expansion cards

○ Type of Storage
■ Direct attached storage (DAS)
■ Storage area network (SAN)
■ Network attached storage (NAS)

○ Networking
■ Ethernet, protocols, etc.

● Facilities
○ Server room
○ Power (distribution)
○ Cooling
○ Safety Source: http://www.google.com/about/datacenters/efficiency/internal/

7

Project 1

● Identify Trending Topics on Wikipedia

○ Use the hourly pageviews dataset.

● Project 1.1: (Last Week)

○ Find trends from a single hour of data.

● Project 1.2: (This Week)

○ Find trends with a 30-day dataset using

MapReduce.

■ Data from March 8 to April 6 in 2018

8

Limitations of sequential programs

● Your data-preprocessing program might work well with an hourly
dataset, but will fall short to process a large dataset
○ Might take too long
○ Might run out of resources

● Methods to process a large dataset
○ Sequential program might not scale ⇒ a parallel solution
○ A single EC2 machine might not have adequate memory

and computational capabilities either ⇒ a large distributed
cluster

● Challenges to overcome for your program to work in a
distributed system
○ How would you partition and distribute the tasks and data?
○ How would the nodes communicate and collaborate?
○ What if a node fails?

9

The MapReduce programming model

● The MapReduce programming model simplifies parallel
processing by abstracting away the complexities
involved in working with distributed systems
○ Data partition and distribution
○ Management of communication across nodes
○ Deal with unreliable hardware and software

10

The MapReduce programming model

● Handling failure gracefully
○ Failure of a single machine will not cause the failure of

the whole job
○ A task failure on one node can be resolved by

rerunning the task on other nodes
● Reduce the communication cost

○ Data is stored in a distributed manner with replication
○ Exploiting data locality

● Easy to program
○ The minimal code you need to implement is only the

map and reduce functions

11

Overview of MapReduce

• Map: Process the input data in chunks and in parallel
• Shuffle and sort
• Reduce: Aggregate or summarize intermediate data in

parallel and output the result

12

The Map phase in MapReduce

● Map map(k1,v1) --> list(k2,v2)
○ Map function takes input as Key-Value pairs k1,v1.
○ The map function produces zero or more output

Key-Value pairs for one input pair. list(k2,v2)

13

The Map Phase and Intermediate Data

● Map
○ map(k1,v1) --> list(k2,v2)

If the input is a file, the input Key-Value pair could
represent a line in the file

● keys are the position in the file
● values are the text of the line

k2,v2 is called “intermediate key-value pair” because it is

● the output of the Mapper
● the input of the Reducer

14

Word Count Example:
● Input ⇒ Word Count ⇒ output

● Content of one or more input files:
○ cat cow
○ duck
○ dog cat
○ cat

● Output:
○ cat, 3
○ cow, 1
○ dog, 1
○ duck, 1

15

Input:
file1.txt

cat cow

duck

dog cat

Map in Word Count

• Map in the Word Count Example

k1,v1 pairs:

(pos, “cat cow”)
(pos, “duck”)
(pos, “dog cat”)

Mapper1

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

Input:
file2.txt

cat

k1,v1 pairs:

(pos, “cat”)
Mapper2

k2,v2 pairs:

(cat, 1)

16

The Shuffle and Sort in MapReduce

• Shuffle: transfers data from the mappers to the reducers
• Sort: transfers data from the mappers to the reducers

17

Reducer2

Reducer1

Shuffle and sort in the Word Count Example

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

(cat, 1)

(cat, 1)
(cow, 1)
(cat, 1)
(cat, 1)

ShufflePartition

(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

(duck, 1)
(dog, 1)

Sort

reduce()

reduce()

reduce()
reduce()

18

The Reduce Phase
in MapReduce

● Reduce:
○ reduce(k2, list(v2)) --> list(v3)

● The reduce function is called once for each unique
key emitted from the Mapper.

● The Reducer has an iterator for all values for each
key.

● Produce the output to the directory defined by the
MapReduce job.

19

Shuffle and sort in the Word Count Example

• Reduce in the Word Count example

Reducer2

Reducer1
(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

reduce()

reduce()

reduce()
reduce()

(cat, 3)

(cow, 1)

(dog, 1)
(duck,1)

20

MapReduce In a Nutshell
● MapReduce incorporates two phases

○ Map Phase

○ Reduce phase

Map
Task

Map
Task

Map
Task

Map
Task

Reduce
Task

Reduce
Task

Reduce
Task

Partition

Partition
Partition

Partition

Partition
Partition Partition
Partition

Partition

To
HDFS

Dataset

HDFS

HDFS BLK

HDFS BLK

HDFS BLK

HDFS BLK

Map Phase
Shuffle Stage

Merge &
 Sort
Stage Reduce Stage

Reduce Phase

Partition

Split 0

Split 1

Split 2

Split 3

Partition

Partition

Partition

Partition

Partition

Partition

Partition

21

Parallelism in MapReduce

● Mappers run in parallel, processing different
input splits and creating intermediate Key-Value
pairs

● Reducers also run in parallel, each working on a
set of keys based on the partitioning function
○ By default, the partitioning function is a hash

function
● Although the shuffle can start early, however, the

reduce function cannot start until all mappers
finish and all intermediate data is shuffled

22

MRUnit: TDD for MapReduce

● MRUnit is a unit test framework for MapReduce

● Allows you to define your input and expected

output for the map and reduce functions

● This will allow you to test your map and reduce

functions

23

Using MRUnit

● Tests supported
○ Map Test to test map()
○ Reduce Test to test reduce()
○ MapReduce Test to test both

● Steps to Map Test
○ Step 1: Create your Mapper
○ Step 2: Create map test using MRUnit
○ Step 3: Set the input and output records
○ Step 4: Implement your map function
○ Step 5: Run locally to evaluate the test

24

MRUnit: Example map() test

// the test code is under the test source folder, similar to JUnit 5 test code

// run “mvn test” to run the test

public class WordCountMapTest extends TestCase {

 @Test

 public void testWordCountMapper() throws IOException {
 driver.withInput(new Text(""), new Text("cat cat dog"))
 .withOutput(new Text("cat"), new VIntWritable(1))
 .withOutput(new Text("cat"), new VIntWritable(1))
 .withOutput(new Text("dog"), new VIntWritable(1))
 .runTest(false);
 }
}

25

Test the MR workflow

● Use LocalJobRunner to test the MR jobs
○ Runs the MapReduce workflow in memory locally

● Steps to follow:
○ Define the configurations similar to the

configurations of a real MapReduce job
■ Input path, output path
■ Mapper class, reducer class
■ etc.

○ Test if the job can be successful

26

Troubleshooting EMR and MapReduce

● As you run the jobs with the large dataset, you can
still run into errors despite the tests because of:

○ Resource limit, e.g., OutOfMemory
○ Malformed input data

● Aggregate the distributed log chunks into a single file
will enable you to search all logs at once

● To retrieve the aggregated logs, run the following
command on the master node

yarn logs -applicationId <applicationId>

● The first 3 questions in runner.sh will help you
practice how to use grep to search the log files

27

Task 1: Inverted Index in
MapReduce

● An index maps the words to the file where they occur.

Input:
file1.txt

cat cow

duck

dog cat

Input:
file2.txt

cat dog

Output:

cat (file1.txt,file2.txt)
cow (file1.txt)
dog (file1.txt,file2.txt)
duck (file1.txt)

28

Your Task

Implement Inverted Index with MapReduce using TDD

● A worked example of WordCount and the test cases
are provided for you to learn from

● We provide you with the test cases for Inverted Index
○ to test the implementation of map and reduce

functions
○ to test if the MapReduce application can run

successfully w/ LocalJobRunner on a local dataset
● Your task is to pass the test cases
● If you can pass the test cases, the LocalJobRunner will

generate the output to a local path

29

Running a Hadoop MR Job from
the Command Line

● Create a cluster as per the AWS EMR section
○ provision via Terraform
○ SSH into the master node

● Run the MapReduce job in hadoop
> yarn jar project1.jar
edu.cmu.scs.cc.project1.WordCount input-path
output-path

30

Task 2: Wikipedia MapReduce
application
● Put what you have learned together
● Design and implement a MapReduce application to:

○ Filter out records based on the filtering rules in the data
filtering task. Reuse your code.

○ Get the input filename from within a Mapper
○ Aggregate the pageviews from hourly views to daily

views
○ Calculate the total pageviews for each article
○ Print the popular article that has over 100,000

page-views (100,000 excluded)

31

Task 3: Data Analysis with Pandas

• Now that you have filtered and aggregated the
monthly data, you are ready to analyze the data
to answer some interesting analytics questions.

32

Project 1.2 Workflow

● Launch an EC2 instance with a specified AMI
● Provision EMR cluster(s) and finish tasks:

○ Inverted Index in MapReduce
○ Wikipedia MapReduce

● Complete and run the script
○ /home/clouduser/Project1/runner.sh
○ Answer a set of questions by providing the code inside

data_analysis.ipynb

● Submit your code for grading
○ Complete the references file in JSON format
○ Execute submitter to submit your code

● Finish Project Reflection (graded) before the deadline

33

Grading of Your Projects
● Code submissions are auto-graded
● We will grade all the code (both auto and manually)
● We auto grade your coding style, which is worth 5 points
● Coding style will be manually graded.

○ high quality code
○ sufficient comments
○ self-explanatory code
○ modularize code

34

Reminder: Deadlines

● Quiz 2 (OLI Modules 3 & 4)

○ Due on Friday, Feb 1, 2019, 11:59PM ET

● Project 1.2

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

● Project 1.1 Reflection Feedback

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

35

