
15-319 / 15-619
Cloud Computing

Recitation 2

January 22 & 24, 2019

Accessing the Course

● Open Learning Initiative (OLI) Course
○ Access via canvas.cmu.edu

● http://theproject.zone (access through canvas)

○ choose CMU as the identity provider
○ AWS Account Setup
○ Azure Account Setup
○ GCP Account Setup
○ Update your TPZ profile with AWS, Azure & GCP info
○ Complete the Primers on AWS, Azure and GCP

● Piazza

http://canvas.cmu.edu
http://theproject.zone/
https://theproject.zone/profile
https://piazza.com/class/jccgr24hou2186

Amazon Web Services (AWS) Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Log on to https://theproject.zone through Canvas and make

sure you follow the instructions in the Account Setup Primer
● Use an AWS standard account instead of an AWS Educate

starter account
● Wait to receive Consolidated Billing Request email from

Amazon
○ Manual process, waiting time varies

● When you receive the linking email, click the link to verify
the linked billing
○ Many students have not clicked on the link yet!

■ Check your SPAM folder
○ You won’t be able to complete the projects.

https://theproject.zone/

Azure Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Do not use your @andrew.cmu.edu or other CMU

issued email address.
● Update your TPZ Profile

Google Cloud Platform (GCP) Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Please contact us if you have trouble creating your

GCP account.
● Follow the instructions in the primer.
● Receive a $50 coupon on https://theproject.zone
● Redeem the coupon as per instructions on

https://theproject.zone
● If you cannot view your GCP coupon in your TPZ

profile (https://theproject.zone/profile) post on
Piazza privately and share your Andrew ID so we
can make that available for you.

https://theproject.zone/
https://theproject.zone/
https://theproject.zone/profile

Piazza
● Suggestions for using Piazza

○ Discussion forum, contribute questions and answers
○ Read the Piazza Post Guidelines (@6) before asking

● When you have a (project-specific) problem, follow the order
below!
○ Try to solve the problem by yourself (Search, Stack Overflow)
○ Read Piazza questions & answers carefully to avoid duplicates

■ Visit TA OHs: TA office hours are posted on Piazza and
Google calendar

■ Create a piazza post
● Please note:

○ Show the effort you have done first
○ Give us fullest context (AndrewId, error message in text, etc.)
○ Don’t ask a public question about a quiz question
○ Try to ask a public question if possible

https://piazza.com/class/jqsp37y8m572vm?cid=6
http://goo.gl/DwR9re

Reflecting on Last Week

● AWS, Azure and GCP
○ Create accounts
○ Use web consoles or APIs to launch VMs on AWS, Azure and GCP
○ (AWS) Spot instances and S3

● In P0, run a web server, test to access the server over a browser
○ Launch, connect to and terminate VMs
○ Install & run software on a VM
○ Vertical scaling

● Basic SSH skills
● Terraform primer

○ Read it if you have not done so

Skill Building in This Course

● Important skill to develop
○ willingness and courage to

■ recognize, explore and solve problems
on your own with suitable tools

■ ask technical question properly instead of
simply asking for solutions

■ learn the basics of new tools quickly and make
use of them in a limited time (e.g. 1 week)

Make Sure to Complete the Primers!

● Complete the Primers
○ Understanding AWS/Azure/GCP

■ provisioning resources, connecting to VMs, playing
around, …

○ Linux warmup
○ Git
○ Maven and Checkstyle
○ Jupyter Notebook

■ Command Line
■ Data analysis in Bash
■ Data analysis in Python (pandas)

○ Infrastructure as Code (Terraform)

Programming Experience Expected

● Strong proficiency in at least one of the following, with some

fair comprehension of the others:

○ Java 8

○ Python 3

○ Bash

● Java and Python are required to complete parts of Projects.

● Use the time now to brush up

● Please read Maven primer!

● Do not fear bash/python scripting, it will make your life

easier!

Completing Projects in this Course

● Provision AWS, Azure or GCP Resources
○ Use the AMIs/VHDs/OS Images we provide for the project

○ Tag all instances!

● Monitor your cost
○ Calculate costs before you provision!

● Complete tasks for each project module
○ Each project module has several sections unlocked by AssessMe

● Submit your work
○ Pledge of integrity

○ Results in scoreboard

● Terminate all resources when you have verified your score

and kept a copy of your work (e.g., git private repo)

Tagging
● Tag *all* tag-able resources on AWS

○ Before you make a resource request, read the
docs/specifications to find out if tagging is supported

○ We will specify which resources are required to be tagged
in each project

○ Apply the tags during resource provisioning
○ We need tags to track usage, a grade penalty will be applied

automatically if you do not tag!
○ Spot instances

■ Tags of spot request do not propagate to the VMs!
■ AWS EC2 Fleet is the remedy

● Tagging Format
○ Key: Project
○ Value: 0, 1.1, 1.2….etc.

Budgets and Penalties

● No proper tags ➔ 10% grade penalty
● Provision resources in regions other than us-east-1 ➔

10% grade penalty
● Budget

○ For P1.1, each student’s budget is $1
○ Exceeding Budget ➔ 10% project penalty
○ Exceeding Budget x 2 ➔ 100% project penalty (no score)
○ You can see Cost and Penalties in TPZ.

● No exceptions.

● We will enforce these penalties
automatically starting from Project 1.1

How to Work on a Budget

● P1.1 Budget → $1

● You are only allowed to use t2.micro
○ $0.0116 per hour (on demand)

● Other costs to consider:
○ EBS is $0.1 per GB/month

○ Instances using our AMI gets 30 GB EBS by default.

○ Data transfer costs (minimal)

Total time:

$1 / ($0.0116 + 30 * $0.1 / 30 / 24) = 63 hours

● Note: Free Tier does not apply to linked accounts!

Academic Integrity Violation

● Cheating ➔ the lowest penalty is a 200% penalty &

potential dismissal
○ Other students, previous students, Internet (e.g.

Stackoverflow)

○ Do not work on code together

○ This is about you struggling with something and learning

○ Penalty for cheating is SEVERE – don’t do it!

○ Ask us if you are unsure

Compromised Accounts

● If you put any of your credentials in files on
○ Github, Dropbox, Google Drive, Box, etc.

○ You are vulnerable to getting your account

compromised.

○ Going over 2x the project budget ⇒ 100% penalty!

● People are scanning publicly available files for

cloud credentials.
○ They compromise your account and launch resources

in other regions.

DO NOT SAVE YOUR CLOUD CREDENTIALS IN FILES!

Deadlines!

● Hard Deadlines
○ No late days, no extensions

○ Start early!

○ Plan your activities, interviews and other

commitments around the deadlines.

○ No exceptions!

● Project modules are due on Sundays at 23:59 ET

● Quizzes are typically due on Fridays
○ There is one exception this semester the Thursday

before Spring Break

Deadlines!

● Project deadlines
○ On TheProject.Zone

● Quiz deadlines
○ On OLI

Quiz 1 Preparation
● Tests your understanding in Modules 1 and 2

○ Cloud computing fundamentals, service models,
economics, SLAs, security

○ Use the activities in each page for practice.
○ You will be tested on you ability to perform the

stated learning objectives on OLI:

Quiz 1 Logistics

● Quiz 1 will be open for 24 hours, Friday, Jan 26
○ Quiz 1 becomes available on Jan 25, 00:01 AM ET.

○ Deadline for submission is Jan 25, 11:59 PM ET.

○ Once open, you have 120 min to complete the quiz.

○ You may not start the quiz after the deadline has passed.

○ Every 15 minutes you will be prompted to save.

○ Maintain your own timer from when you start the quiz.

○ Click submit before deadline passes. No Exceptions!

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (2 Hours)

Quiz Open Quiz Deadline

Submit Before Deadline

● When you start the Quiz, you cannot stop the clock.
○ You have 120 minutes to click on submit.

○ You have to keep track of the time yourself.

○ If you don’t click on submit you will not receive a grade.

YOU MUST SUBMIT
WITHIN 120 MINUTES

AND
BEFORE THE DEADLINE

Project 1 Motivation: Big Data

● What is Big Data?
○ It is high volume, high velocity, and/or high variety

information assets.
○ There is a lot of value in the analysis of big data for

organizations

Use Cases: Big Data Analysis

● Online retailers are analyzing consumer spending
habits to learn trends and offer personalized
recommendations and offers to individual
customers.

● Companies such as Time Warner, Comcast etc. are
using big data to track media consumption habits of
their subscribers and trends to provide value-added
information to advertisers and customers.

Trending Topics are Everywhere!

Why Trending Topics?

● Identify trends and viral content
● Maximize advertisement placement opportunities
● Search Engine Optimization (SEO)
● And more....

Project 1

● Identify Trending Topics on Wikipedia

○ Use the hourly pageviews dataset.

● Project 1.1: (This Week)

○ Find trends from a single hour of data.

● Project 1.2: (Next Week)

○ Find trends with the 30-day dataset using

MapReduce.

■ Data from March 8 to April 6 in 2018

The Dataset

● Data set
○ Wikimedia page views dataset
○ One File Per Hour

● Format:
<domain code> <page title> <number of accesses> <total data returned>

<Language>.<ProjectName>
en = English Wikipedia (Desktop)
en.b = English Wikibooks
fr.v = French Wikiversity

https://dumps.wikimedia.org/other/pageviews/

Project 1.1 Tasks
● Task 1: Sequential data pre-processing

○ Implement sequential data filter in Java

○ Practice test-driven development (TDD) with JUnit

○ Achieve 100% code coverage for the DataFilter class

● Task 2: Data analysis

○ Search a file with grep

○ Filter or process data with awk

○ Data Analysis with Jupyter Notebook and Pandas

library

○ Identify the limitations of the sequential programming

Data Pre-processing is Important
● Impossible: Raw Dataset →Data analysis
● Raw Dataset →Data pre-processing →Data analysis

raw data: after data pre-processing

reference: Nishant Neeraj

https://www.quora.com/profile/Nishant-Neeraj-1

Task 1: Data Pre-processing

● We are only interested in English Wikipedia desktop/mobile

pages (<domain code>: en, en.m)

● This dataset is raw, real-world

○ Never assume that the dataset is perfectly clean and

well formed

● Use the filtering rules specified in the writeup

● If there are records from both desktop and mobile sites for

the same page title, sum the accesses into one record

● Sort the pages by number of pageviews, break ties by

ascending lexicographical order

● Output: <page title> <number of accesses>

Bad Coding Practices!
No modularity in code, hard to debug:

public static void main(final String[] args) {

read the records from the input

for record in records:

if it violates the rule A: (20 lines)

continue

if it violates the rule B: (20 lines)

continue

… 5 other rules (100 lines)

put record into a map <title, pageview>

 sort the map

 print output

 }

Good Coding Practice:
Test-Driven Development (TDD)

What is TDD?

● divide the problem into a series of small steps
● start by writing test cases
● then refactor the code to pass the test
● and repeat

○ Test case ⇒ code ⇒ pass ⇒ another test case ⇒ ...

TDD emphasizes writing unit tests ahead of writing the code.

TDD lets you treat failures as a norm instead of an exception.

Test-Driven Development (TDD)

Why TDD?

● Helps to structure your code in a way that easily
facilitates testing

● Separates the concerns and makes your code clean,
easy-to-read and robust

● Ensures that your changes won’t break existing
functionality

● Achieves safer refactoring, increasing returns and
effective collaborations

● TDD is an industry best practice!!!

TDD w/ JUnit 5: Start by signature

public class Filter {

 public static boolean containsCloud(final String record) {

 // it is okay to start with an incorrect solution

 // the method signature is what matters

 return false;

 }

}

TDD w/ JUnit 5: Create test cases
import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class FilterTest {

 @Test

 void testContainsCloud() {

 // positive

 assertTrue(Filter.containsCloud("cloud computing"));

 // negative

 assertFalse(Filter.containsCloud("mapreduce"));

 }

}

TDD w/ JUnit 5: Run the test
[INFO] Running FilterTest

[ERROR] Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.021 s <<<

FAILURE! - in FilterTest

[ERROR] testContainsCloud Time elapsed: 0.017 s <<< FAILURE!

org.opentest4j.AssertionFailedError: expected: <true> but was: <false>

 at FilterTest.testContainsCloud(FilterTest.java:9)

[INFO] Results:

[ERROR] Failures:

[ERROR] FilterTest.testContainsCloud:9 expected: <true> but was: <false>

[ERROR] Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

[INFO]

[INFO] --

[INFO] BUILD FAILURE

[INFO] --

TDD w/ JUnit 5: Implement

public class Filter {

 public static boolean containsCloud(final String record) {

 return record.contains("cloud");

 }

}

TDD w/ JUnit 5: Rerun the test
[INFO] T E S T S

[INFO] ---

[INFO] Running FilterTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.012 s

- in FilterTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO]

--

[INFO] BUILD SUCCESS

[INFO]

--

Java Code Coverage Tool (JaCoCo)

Jacoco analyzes Java byte code and maps the collected
information back to source code to visualize the code
coverage at line-level granularity.

● Instructions (C0 Coverage)
● Branches (C1 Coverage)

Your JaCoCo Task

Your task is to create the test cases to achieve 100%
instructions and branches coverage.

P1.1 Task 1: Data Pre-processing
Code Template

● In this task, we provide a code template:
○ Merges both desktop and mobile sites for the same page title if any
○ Sorts the output in descending numerical order of the number of

accesses and break ties by ascending lexicographical order
○ Outputs the results into a file named as exactly “output”

● It also defines a set of filter methods that you need to implement
● We provide a set of test cases for the first several filter methods
● Your task is to:

○ add the test cases for the rest of the required methods
■ achieve 100% code coverage

○ implement the methods and pass the test
○ make the program encoding aware

Develop Robust Code that Can Execute
Correctly on Multiple Environments

● “My submitted code does not produce the same results as the
one on my EC2 instance...”

● If your code behaves well in your development environment, it
does not guarantee that your code will work perfectly in other
environments.

● If you run into this, read the writeup carefully, check and adopt
best practices before you create posts on Piazza.

● Be cautious about implicit reliance on your environment
○ Locale
○ Encoding-aware I/O
○ Newline(EOL)
○ Versions & Compatibility
○ Absolute/Relative Paths

!
Error

Develop Robust Code that Can Execute
Correctly on Multiple Environments(cont.)

● Example of how locale will change default behavior

LC_ALL=en_US.UTF-8 LC_ALL=C

sort aAbB ABab

encoding ьмопяёя ??????????????

...

Develop Robust Code that Can Execute
Correctly on Multiple Environments(cont.)

● newlines, Windows versus Linux
○ \n
○ \r\n

● Versions & compatibility
○ python2 python3 over python
○ pip2 pip3 over pip

● Absolute versus relative paths
○ use relative ones!

Progressively Solve Data Science Problems
with Jupyter Notebook

Why Jupyter Notebook?

● Interactive Computing
○ "save" your progress at the latest checkpoint

● Persisted Output and Reproducible Analysis
○ write data analysis reports and share with others

Your Data Science Task
with Jupyter Notebook

• Finish the Jupyter Notebook primer
• Visit the Azure Notebooks library 15-319/15-619:

Cloud Computing Course

https://notebooks.azure.com/CloudComputingCourse/libraries/cloud-computing-course
https://notebooks.azure.com/CloudComputingCourse/libraries/cloud-computing-course

Project 1.1 Workflow
● Launch EC2 instance with a special AMI

○ Experiment using Terraform with prepared worked examples

● Download the required dataset
● Implement the Data Filter program

○ Achieve 100% code coverage
● Complete Data Analysis Task

○ Answer the awk/grep questions inside runner.sh
○ Answer the Python questions inside data_analysis.ipynb
○ Answer q10 which will be manual graded

● Submit your code for grading
○ Complete the references file in JSON format
○ Execute submitter to submit your code

● Finish Project Reflection (graded) before the deadline
● Finish Project Reflection Feedback for 3 students

○ Within 7 days after the project deadline

Grading of Your Projects
● Code submissions are auto-graded
● Scores will be made available on http://theproject.zone

○ it may take several minutes for your score to show
○ the submissions table is updated with every submission

● We will grade all the code (both auto and manually graded)
● Hard to read code of poor quality will lead to a loss of points

during manual grading.
● Lack of comments, especially in complicated code, will lead to a

loss of points during manual grading.
● Poor indentation will lead to a loss of points during manual

grading
○ Preface each function with a header that describes what it does

■ Use descriptive variable and function names
■ Use Checkstyle, PEP8, or other tools to check your coding style

● The idea is also NOT to comment every line of code

http://theproject.zone/

Reminder: Deadlines

● This Friday at 23:59 ET
○ Quiz 1

● This Sunday at 23:59 ET
○ Project 1.1 (including Project Reflection)

● Next Sunday at 23:59 ET
○ Project 1.1 Reflection Feedback

● ASAP, at the latest 1/28/2019 at 23:59 ET
○ Academic Integrity Course Quiz

