


–



•
–

•
–

•
–



●
●

●

●

●

●





●

○
○

●

○
○



tWITTER DATA ANALYTICS:
TEAM PROJECT



●



 |      field      |          type          |                 example                 |

|-----------------|------------------------|-----------------------------------------|

| tweetid         | long int               | 15213                                   |

| userid          | long int               | 156190000001                            |

| username        | string                 | CloudComputing                          |

| timestamp       | string                 | Mon Feb 15 19:19:57 2017                |

| text            | string                 | Welcome to P4!#CC15619#P3               |

 | favorite_count  | int                    | 22                                      |

 | retweet_count   | int                    | 33                                      |             

 



●
/q4?op=write&payload=json_string&uuid=unique_id&s
eq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

● payload 
○
○
○
○



● Read Request 
/q4?op=read&uid1=userid_1&uid2=userid_2&n=max_num
ber_of_tweets&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

tid_n\ttimestamp_n\tuid_n\tusername_n\ttext_n\tfavo
rite_count_n\tretweet_count_n\n



● Delete Request 
/q4?op=delete&tid=tweet_id&uuid=unique_id&seq=seq
uence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

●



● Set Request 
/q4?op=set&field=field_to_set&tid=tweet_id&payloa
d=string&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

●
●



● Malformed Request 
/q4?op=set&field=field_to_set&tid1=tweet_id&tid2=
<empty>&payload=0;drop+tables+littlebobby&uuid=un
ique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n



● Cache became too large
● Used up IOPS
● Forgot to catch exceptions



● Identify the bottlenecks using fine-grained profiling.
● Do not cache naively.
● Use logging to debug concurrent issues
● Review what we have learned in previous project modules

○ Load balancing (are requests balanced?)
○ Replication and sharding
○ Multi-threading programming

● Look at the feedback of your Phase 1 and Phase 2 reports!
● To test mixed queries, run your own load generator.

○ Use jmeter/ab/etc.
● For the successful teams, they usually have a good testing 

strategy.



● Start with one machine if you are not sure that your 
concurrency model is correct.

● Adopt a forwarding mechanism or a non-forwarding 
mechanism
○ You may need a custom load balancer

● Think carefully about your async/sync design
● May need many connections and threads at the same 

time, in the case of out of order sequence numbers.
● Spare enough time for Q4 as you will face deadlock issues 

that are hard to resolve.



Phase (and query due) Start Deadlines Code and Report Due

●

●

●

●

●



Questions?


