15-319 / 15-619
Cloud Computing

Overview

e Last week’s reflection
— Team Project Phase 2
— Quiz 11
— OLI Unit 5: Modules 21 & 22

e This week’s schedule

— Project 4.2

— No more OLI modules and quizzes! []
e Twitter Analytics: The Team Project

— Phase 3

Project 4

* Project 4.2

— Iterative Batch Processing Using Apache «
Spark

Typical MapReduce Batch Job

e Simplistic view of a MapReduce job

Input

[HDFS }——* Mapper

Reducer

Output

(o)

* You write code to implement the following classes

— Mapper
— Reducer

e |nputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk

Iterative MapReduce Jobs

 Some applications require iterative processing

* Eg: Machine Learning

->[HDFS]—' Mapper

e MapReduce: Data is always written to disk

Reducer

Prepare data for the next iteration

Output

-

— This leads to added overhead for each iteration

— Can we keep data in memory? Across Iterations?

— How do you manage this?

Apache Spark

* General-purpose cluster computing framework
e APIs in Python, Java, Scala and R
e Runs on Windows and UNIX-like systems

RDD Objects Spark Client Task Scheduler Worker
(Application Master)

| Scheduler and
RDD Graph
, Threads
-\ Cluster Manager Block Manager
\ -
S |
" /B —
=t
+Eilteri..) Trackers

Spark Ecosystem

Spark SQL
— Process structured data

— Run SQL-like queries against RDDs

Spark Streaming
— Ingest data from sources like Kafka

— Process data with high level functions like map and

reduce
— Output data to live dashboards or databases

MLIib

— Machine learning algorithms such as regression

— Utilities such as linear algebra and statistics

GraphX
— Graph-parallel framework

— Support for graph algorithms and analysis

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Spark Web Ul

Provides useful information on your Spark programs
You can learn about resource utilization of your cluster
e |s astepping stone to optimize your jobs

Info about cached
Status of RDD RDDs and
actions being | l memory usage
23

computed

SprK 200 Jobs Stages Storage Environmen t Executors Spark shell application Ul

Details for Stage 1 (Attempt 0)
Total Time Across All Tasks: 46 ms

Locality Level Summary: Any: 1

Shuffle Read: 50.0 B/ 2

v DAG Visualization

In-depth job info

Enable zoomin, g
[l Scheduler Delay Executor Computing Time Getting Result Time
[l Task Deserialization Time Shuffle Write Time
Shuffle Read Time M Result Serialization Time
d / localhost
30 085 090 095 100 105 110 115 120 125 130 135 140 145 150
08:11:09

Summary Metrics for 1 Completed Tasks
Metric Min 25th percentile Median 75th percentile Max

Duration 46 ms 46 ms 46 ms 46 ms 46 ms

Apache Spark APIs

® There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed

Datasets (RDD)

-

_

Distribute
collection of
JVM objects
Functional
operators

(map, filter, etc.)

~

/

DataFrame

/e

Distribute
collection of
Row objects
Expression-
based
operations
Fast, efficient

DataSet

internal
representations/

Internally rows,
externally JVM
objects

Type safe and
fast

Slower than
dataframes

J

Resilient Distributed Datasets

Focus of Project 4.2
Can be in-memory or on disk

Read-only objects
Partitioned across the cluster based on a range or

the hash of a key in each record

' I
Machine A t RDD1 RDD1’

t | RDD Operation t

Machine B RDD2 (e.g. map, filter)

RDD2’

Machine C L | L
RDD3 RDD3

Operations on RDDs

Loading data
>>> input_RDD = sc.textFile("text.file")

Transformation
— Applies an operation to derive a new RDD

— Lazily evaluated -- may not be executed immediately
>>> transform RDD = input RDD.filter(lambda x: "abcd" in x)

Action
— Forces the computation on an RDD

— Returns a single object
>>> print "Number of “abcd”:"™ + transform RDD.count()

Saving data
>>> output.saveAsTextFile(“hdfs:///output®)

Operations on RDDs

map, filter, and reduce
explained with emoji &

:> [g) $7 “) m:l

filter([®, ®, ,], isvegetarian)

=> [#, 0]

reduce([®, &, , M7, eat)

=> &

RDDs and Fault Tolerance

e Actions create new RDDs
e Uses the notion of lineage to support fault tolerance
— Lineage is a log of transformations
— Stores lineage on the driver node
— Upon node failure, Spark loads data from disk to
recompute the entire sequence of operations
based on lineage

DataFrames

® A DataFrame is an immutable distributed collection of data

e Organized into named columns, like a table in a relational
database

® A DataFrame is represented as a DataSet of rows

Unified Apache Spark 2.0 API

DataFrame

DataFrame = Dataset[Row]
Alias

Dataset[T]

@databricks

Operations on DataFrames

e Suppose we have a file people. json

{"name" :"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

e Create a DataFrame with its contents

val df = spark.read.json("people.json")

e Run SQL-like queries against the data

val sqlDF = df.filter($"age" > 20).show()

+---t----+

| age | name |

e Save data to file

df.filter($"age" > 20).select(“name”).write.format(“parquet”).save(“output”)

Note: Parquet is a column-based storage format for Hadoop. You will need
special dependencies to read this file

Task Points

Tutorial 15
1 10
2 40
Bonus 10

Reflection and | 5
discussion

Optional, 0
ungraded task

Project 4.2

Description

Reimplement the data filtering portion of
Project 1.2 in Apache Spark

Get familiarized with the Spark shell and
running Spark programs by doing some data
analysis on a Twitter graph dataset

Calculate the influence of users in the Twitter
graph dataset with the pagerank algorithm

Optimize the pagerank algorithm in task 2

Use the Apache Spark GraphX API to
implement a second degree centrality
algorithm on the graph

Language

Scala

Python, Scala or Java

Python, Scala or Java

Probably Scala

Scala

Tutorial Task

Data filtering on a month’s worth of Wikipedia
data

Similar to Project 1.2

Output page titles and the number of views
Starter code in Scala is provided

Use map, filter

Use reduceByKey and aggregateByKey
over groupByKey

Twitter Social Graph

Dataset that we will be using in Project 4.2
~8GB of data

Edge list of (follower, followee) pairs
Directed edges

e (u,v)and (v, u)are two distinct edges

-3» Taylor Swift @
— Follow v
A @taylorswift13

15619 is my favorite course, and Project 4.2
iIs my favorite project! &

5:01 PM - 10 Apr 2018

8,517 Retweets 50,466 Likes &) G‘(}‘ @ @, @ g@ a e .

QO 1.8K 11 8.5K) 50K

Task 1

e Four parts to Task 1

— FIncC
— Fino
— FInC
— FincC

t
t
t
t

ne number of edges
ne number of vertices
ne top 100 users with the RDD API

ne top 100 users with the SparkSQL API

Task 2: PageRank

Started as an algorithm to rank websites in search
engine results

Assign ranks based on the number of links pointing
to them

A page that has links from

— Many nodes = high rank

— A high-ranking node = high rank

In Task 2, we will implement pagerank to find the top
100 influential vertices in the Twitter social graph

Basic PageRank

e How do we measure influence?
o Intuitively, it should be the node with the most followers

Y 1//

Basic PageRank

e Influence scores are initialized to 1.0/number of vertices

0.333 0.333

Y 1//

0.333

Basic PageRank

e Influence scores are initialized to 1.0/number of vertices
e In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

0.333 0.333

Y 1//

0.333

Basic PageRank

e Influence scores are initialized to 1.0/number of vertices
e In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

From Node 0 From Node 1
0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333
From Node 2

Basic PageRank

Influence scores are initialized to 1.0/number of vertices

In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

Pagerank is guaranteed to converge

From Node 0 From Node 1

0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2

Basic PageRank

Influence scores are initialized to 1.0/number of vertices

In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

Pagerank is guaranteed to converge

L 1//

0.396

0.208 0.396

Basic PageRank Pseudocode

(Note: This does not meet the requirements of Task 2)

val links = spark.textFile(...) .map(...) .persist()
var ranks = // RDD of (URL, rank) pairs
for (1 <- 1 to ITERATIONS)

{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{

(url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey ((x,y) => x+y)
.mapValues (sum => a/N + (1l-a)*sum)

PageRank Terminology

e Dangling or sink vertex
o No outgoing edges
o Redistribute contribution equally among all vertices
e |[solated vertex
o No incoming and outgoing edges
o No isolated nodes in Project 4.2 dataset
e Damping factor d
o Represents the probability that a user clicking on links
will continue clicking on them, traveling down an edge
o Used=0.85

Dangllng vertex \ //

3 /) «— Isolated vertex

Visualizing Transitions

e Adjacency matrix:
0 0 0 0

G —

IOO»—\
o=
i

IOOO

e Transition matrix: (rows sum to 1)

(0.25 0.25 0.25 0.25] @
0o 0 05 O
M= 0 1 0 0

025 025 0.25 0.25

Mij Gij (when Z sz 7é O) @
k=1

; ZZ:1 Gk

Task 2: PageRank

Formula for Calculating rank

kH)—d Z ’r

’UJEN vZ
@ d=0.85
(0) (0) (0)

(1) _ 4 "o I3 1—dl
) =+ B By (-)
(0) (0) (0)

(1 _ g2 o Ig 1—dl
=2+ s By - a)-
(0) 0) (0)

) _ 41 o 3 1—dl
=+ B By - a)-
(0) (0)

1
) = (4 =)+ (1= d)

—d)r

(0)

)

O

Task 2: PageRank

&

Formula for Calculating rank
k—i—l)_d Z T d)?“go)

Vj EN vZ

d=10.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

Task 2: PageRank

O

. D)
r(())—d——i—e—l—(l—d)

: (0)
rg)_d 2 tet(1—d)

(0)
r! —d—+e+(1—d)

ri) = e+ (1—d)

S|P3l 3|l 3+

&

This simplifies the formula to

Formula for calculating rank
k—i—l)_d Z T d)?“go)

Vj EN vZ

d=0.85

Note: contributions from isolated and

dangling vertices are constant in an
iteration

Let

Task 2: PageRank

@ Formula for calculating rank
Pt — g Z it — d)r?
’UJEN

e = 0.85 x (0.25/4 + 0.25/4) = 0.106

ri) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
rit = 0.85 x 0.25 + 0.106 + 0.15 x 0.25 = 0.356
(1) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
ri =0.106 + 0.15 x 0.25 = 0.144

Task 2: PageRank

Formula for calculating rank
k—i—l) —d Z 7“ —d)r (0)

v; EN (v;

r = 0.2656
ri¥) = 0.3487
r{¥) = 0.2656
r =0.1199

Optional Non-Graded Task

e Implement a second-degree centrality algorithm with
Apache Spark’s GraphX API

e PageRank score is a type of centrality score
o Importance of a node in a graph.
o Score for Node 0 and Node 4 is the same: 0.0306
o Does not make sense

e The 2nd degree centrality algorithm calculates a node’s
importance as the average of your
followees and followee’s followees

General Hints

Consider the implementation differences between reduceByKey,
groupByKey and aggregateByKey
Test out commands in the Spark Shell
o REPL for Spark
o Scala: ./spark/bin/spark-shell
o Python: ./spark/bin/pyspark
Test locally on small datasets
o Spark can run on your local machine
o EMR r3 clusters are expensive
o Each task can take 45 min - 1 hour to run on EMR
When in doubt, read the docs!
o SparkSQL
© RDD
Don’t forget to include in your submission
o Updated references file
o Shell commands used in Task 1
Arguably the hardest P4 project. Start early!

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Pagerank Hints

e Ensuring correctness

O Make sure total scores sum to 1.0 in every iteration

o Understand closures in Spark

m Do not do something like this
val data = Array(1,2,3,4,5)
var counter = 0
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += Xx)
println("Counter value: " + counter)

o Graph representation
m Adjacency lists use less memory than matrices

o More detailed walkthroughs and sample calculations
can be found here

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Pagerank Hints

e Optimization
o Eliminate repeated calculations
o Use the Spark Web Ul
m Monitor your instances to make sure they are fully
utilized
m |dentify bottlenecks
o Understand RDD manipulations
m Actions vs transformations
m Lazy transformations
o Explore parameter tuning to optimize resource usage
o Be careful with repartition on your RDDs

Upcoming Deadlines

e Team Project : Phase 2

-

® Project 4.2 : Iterative Programming with Spark

-

® Team Project : Phase 3
O Live-test due: 04/29/2018 3:59 PM Pittsburgh

O Code and report due: 05/01/2018 11:59 PM Pittsburgh

Questions?

TWIT]

|l
AJ

BYANIWANWANNVANIR A B IG5
—AM PROJECT

Team Project Phase 2 MySQL Live Test
Honor Board

Hong Kong Journalists
monoid

wen as dog

KingEdward

FatTiger

Faster Hong Kong Journalists
Cerulean

TaZoRo

liulaliula

30 centimeter

Team Project Phase 2 HBase Live Test
Honor Board

Faster Hong Kong Journalists
liulaliula

30 centimeter

HLW

Hong Kong Journalists
DDLKiller

We Bare Bears
TakemezhuangbTakemefly
return no_sleep

Pyrocumulus

Team Project Phase 2 Live Test
Honor Board

Faster Hong Kong Journalists 80
liulaliula 80
" We Bare Bears 80
HLW 78
wen as dog 76
Hong Kong Journalists 76
TakemezhuangbTakemefly 75
monoid 74
team6412 74

Pyrocumulus 74

Query 4: Interactive Tweet Server

You are going to build a web service that supports READ, WRITE,
SET and DELETE requests on tweets.

General Info:

1. Four operations:
® write, set, read and delete
2. Operations under the same uuid should be executed in the
order of the sequence number
Be wary of malformed queries
4. Only English tweets are needed

w

Query 4: Interactive Tweet Server

| userid

| username

| timestamp

| text

| favorite_count

| retweet_count

long int
long int
string
string
string
int

int

example |

156190000001 |
CloudComputing |
Mon Feb 15 19:19:57 2017 |
Welcome to P4!'#CC15619#P3 |
22 |
33 |

Query 4: Interactive Tweet Server

® Write Request
/gd4?op=write&payload=json string&uuid=unique idé&s
eg=sequence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n
success\n

® pavyload

It is a url-encoded json string;

It has the same structure as the original tweet json;

It only contains the seven fields needed. For tid and uid,

Don’t get them from the “id_str” field, only get them from the
“id” field.

O O O O

Query 4: Interactive Tweet Server

e Read Request
/g4?op=read&uidl=userid l&uid2=userid 2&n=max num
ber of tweets&uuld=unique id&seg=sequence number

e Response

TEAMID, TEAM AWS ACCOUNT ID\n
tid n\ttimestamp n\tuid n\tusername n\ttext n\tfavo

rite count n\tretweet count n\n

Query 4: Tweet Server

e Delete Request
/g4?op=delete&tid=tweet id&uuid=unique id&seg=seq
uence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

® Delete the whole tweet

Query 4: Tweet Server

Set Request
/g4?op=set&field=field to set&tid=tweet id&payloa
d=string&uuilid=unique 1dé&seg=sequence number

Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

Set one of the text, favorite_count, retweet_count of a particular tweet
Payload is a url-encoded string

Query 4: Tweet Server

e Malformed Request
/g4?op=set&field=field to set&tidl=tweet id&tid2=
<empty>&payload=0;drop+tables+littlebobby&uuid=un
ique 1dé&seg=sequence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

Phase 2 Live Test Issues

e Cache became too large
e Used up IOPS
e Forgot to catch exceptions

Team Project General Hints

|dentify the bottlenecks using fine-grained profiling.

Do not cache naively.

Use logging to debug concurrent issues

Review what we have learned in previous project modules
o Load balancing (are requests balanced?)

o Replication and sharding

o Multi-threading programming

Look at the feedback of your Phase 1 and Phase 2 reports!
To test mixed queries, run your own load generator.

o Use jmeter/abl/etc.

Team Project, Q4 Hints

Start with one machine if you are not sure that your
concurrency model is correct.

Adopt a forwarding mechanism or a non-forwarding
mechanism

o You may need a custom load balancer

Think carefully about your async/sync design

May need many connections and threads at the same
time, in the case of out of order sequence numbers.

Team Project Time Table

Phase (and query due) | Start Deadlines Code and Report Due
Tuesday 04/17/2018
23:59:59 ET
Phase 3 Monday 04/16/2018 | Sunday 04/29/2018
e Q1,Q2,Q3,Q4 00:00:00 ET 15:59:59 ET
Phase 3 Live Test (Hbase Sunday 04/29/2018 Sunday 04/29/2018 Tuesday 05/01/2018
OR MySQL) 17:00:00 ET 23:59:59 ET 23:59:59 ET

e Q1,Q2,Q3,04

Questions?

