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Overview
• Last week’s reflection

– Team Project Phase 2
– Quiz 11
– OLI Unit 5: Modules 21 & 22

• This week’s schedule
– Project 4.2
– No more OLI modules and quizzes! �

• Twitter Analytics: The Team Project
– Phase 3



Project 4

• Project 4.1
– Batch Processing with MapReduce 

• Project 4.2

– Iterative Batch Processing Using Apache 
Spark

• Project 4.3

– Stream Processing with Kafka and Samza



Typical MapReduce Batch Job

• Simplistic view of a MapReduce job

• You write code to implement the following classes
– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output



Iterative MapReduce Jobs

• Some applications require iterative processing
• Eg: Machine Learning

• MapReduce: Data is always written to disk

– This leads to added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration



Apache Spark

• General-purpose cluster computing framework
• APIs in Python, Java, Scala and R
• Runs on Windows and UNIX-like systems



Spark Ecosystem
• Spark SQL

– Process structured data
– Run SQL-like queries against RDDs

• Spark Streaming
– Ingest data from sources like Kafka
– Process data with high level functions like map and 

reduce
– Output data to live dashboards or databases

• MLlib
– Machine learning algorithms such as regression
– Utilities such as linear algebra and statistics

• GraphX
– Graph-parallel framework
– Support for graph algorithms and analysis

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/


Spark Web UI
• Provides useful information on your Spark programs
• You can learn about resource utilization of your cluster 
• Is a stepping stone to optimize your jobs

Status of RDD 
actions being 
computed

Info about cached 
RDDs and 
memory usage

In-depth job info



Apache Spark APIs

● There exists 3 sets of APIs for handling data in Spark

Resilient 
Distributed 

Datasets (RDD)
DataFrame DataSet

● Distribute 
collection of 
JVM objects

● Functional 
operators 
(map, filter, etc.)

● Distribute 
collection of 
Row objects

● Expression-
based 
operations

● Fast, efficient 
internal 
representations

● Internally rows, 
externally JVM 
objects

● Type safe and 
fast

● Slower than 
dataframes



Resilient Distributed Datasets

● Focus of Project 4.2
● Can be in-memory or on disk
● Read-only objects
● Partitioned across the cluster based on a range or 

the hash of a key in each record

RDD1 RDD1’

RDD2 RDD2’

RDD3 RDD3’

Machine B

Machine A

Machine C

RDD Operation
(e.g. map, filter)



Operations on RDDs
• Loading data

>>> input_RDD = sc.textFile("text.file")

• Transformation
– Applies an operation to derive a new RDD
– Lazily evaluated -- may not be executed immediately
>>> transform_RDD =  input_RDD.filter(lambda x: "abcd" in x)

• Action
– Forces the computation on an RDD
– Returns a single object
>>> print "Number of “abcd”:" + transform_RDD.count()

• Saving data
>>> output.saveAsTextFile(“hdfs:///output”)



Operations on RDDs



RDDs and Fault Tolerance

• Actions create new RDDs
• Uses the notion of lineage to support fault tolerance

– Lineage is a log of transformations
– Stores lineage on the driver node
– Upon node failure, Spark loads data from disk to 

recompute the entire sequence of operations 
based on lineage



DataFrames

● A DataFrame is an immutable distributed collection of data
● Organized into named columns, like a table in a relational 

database
● A DataFrame is represented as a DataSet of rows



Operations on DataFrames
• Suppose we have a file people.json
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

• Create a DataFrame with its contents
val df = spark.read.json("people.json")

• Run SQL-like queries against the data
val sqlDF = df.filter($"age" > 20).show()
+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

• Save data to file
df.filter($"age" > 20).select(“name”).write.format(“parquet”).save(“output”)

Note: Parquet is a column-based storage format for Hadoop. You will need 
special dependencies to read this file



Project 4.2

Task Points Description Language
Tutorial 15 Reimplement the data filtering portion of 

Project 1.2 in Apache Spark
Scala

1 10 Get familiarized with the Spark shell and 
running Spark programs by doing some data 
analysis on a Twitter graph dataset

Python, Scala or Java

2 40 Calculate the influence of users in the Twitter 
graph dataset with the pagerank algorithm

Python, Scala or Java

Bonus 10 Optimize the pagerank algorithm in task 2 Probably Scala

Reflection and 
discussion

5 -

Optional, 
ungraded task

0 Use the Apache Spark GraphX API to 
implement a second degree centrality 
algorithm on the graph

Scala



Tutorial Task

● Data filtering on a month’s worth of Wikipedia 
data

● Similar to Project 1.2
● Output page titles and the number of views
● Starter code in Scala is provided
● Use map, filter 
● Use reduceByKey and aggregateByKey 

over groupByKey



Twitter Social Graph

• Dataset that we will be using in Project 4.2
• ~8GB of data
• Edge list of (follower, followee) pairs
• Directed edges

• (u, v) and (v, u) are two distinct edges



Task 1

• Four parts to Task 1
– Find the number of edges
– Find the number of vertices
– Find the top 100 users with the RDD API
– Find the top 100 users with the SparkSQL API



Task 2: PageRank

• Started as an algorithm to rank websites in search 
engine results

• Assign ranks based on the number of links pointing 
to them

• A page that has links from
– Many nodes ⇒ high rank
– A high-ranking node ⇒ high rank

• In Task 2, we will implement pagerank to find the top 
100 influential vertices in the Twitter social graph



Basic PageRank

● How do we measure influence?
○ Intuitively, it should be the node with the most followers



Basic PageRank
● Influence scores are initialized to 1.0/number of vertices

0.333 0.333

0.333



Basic PageRank
● Influence scores are initialized to 1.0/number of vertices
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following

0.333 0.333

0.333



Basic PageRank
● Influence scores are initialized to 1.0/number of vertices
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following

0.333/2 
= 0.167

0.333 + 0.333/2 
= 0.500

0.333
From Node 2

From Node 1

From Node 1From Node 0



Basic PageRank
● Influence scores are initialized to 1.0/number of vertices
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not 

change between iterations 
● Pagerank is guaranteed to converge

0.333/2 
= 0.167

0.333 + 0.333/2 
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0



Basic PageRank
● Influence scores are initialized to 1.0/number of vertices
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not 

change between iterations
● Pagerank is guaranteed to converge

0.208 0.396

0.396



Basic PageRank Pseudocode
(Note: This does not meet the requirements of Task 2)

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) 
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap 
{

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}



PageRank Terminology
● Dangling or sink vertex

○ No outgoing edges
○ Redistribute contribution equally among all vertices

● Isolated vertex
○ No incoming and outgoing edges
○ No isolated nodes in Project 4.2 dataset

● Damping factor d
○ Represents the probability that a user clicking on links 

will continue clicking on them, traveling down an edge
○ Use d = 0.85

Dangling vertex
Isolated vertex



Visualizing Transitions

● Adjacency matrix:

● Transition matrix: (rows sum to 1)



Task 2: PageRank
Formula for calculating rank

d = 0.85



Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and 
dangling vertices are constant in an 
iteration

Let 



Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and 
dangling vertices are constant in an 
iteration

Let 

This simplifies the formula to



Task 2: PageRank
Formula for calculating rank

d = 0.85



Task 2: PageRank
Formula for calculating rank

d = 0.85



Optional Non-Graded Task
● Implement a second-degree centrality algorithm with 

Apache Spark’s GraphX API
● PageRank score is a type of centrality score

○ Importance of a node in a graph.
○ Score for Node 0 and Node 4 is the same: 0.0306
○ Does not make sense

● The 2nd degree centrality algorithm calculates a node’s 
importance as the average of your 
followees and followee’s followees



General Hints
● Consider the implementation differences between reduceByKey, 

groupByKey and aggregateByKey
● Test out commands in the Spark Shell

○ REPL for Spark
○ Scala: ./spark/bin/spark-shell 
○ Python: ./spark/bin/pyspark

● Test locally on small datasets
○ Spark can run on your local machine
○ EMR r3 clusters are expensive
○ Each task can take 45 min - 1 hour to run on EMR

● When in doubt, read the docs!
○ SparkSQL
○ RDD

● Don’t forget to include in your submission
○ Updated references file
○ Shell commands used in Task 1

● Arguably the hardest P4 project. Start early!

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html


Pagerank Hints

● Ensuring correctness
○ Make sure total scores sum to 1.0 in every iteration
○ Understand closures in Spark

■ Do not do something like this
val data = Array(1,2,3,4,5) 

var counter = 0 

var rdd = sc.parallelize(data) 

rdd.foreach(x => counter += x) 

println("Counter value: " + counter)

○ Graph representation
■ Adjacency lists use less memory than matrices

○ More detailed walkthroughs and sample calculations  
can be found here

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf


Pagerank Hints

● Optimization
○ Eliminate repeated calculations
○ Use the Spark Web UI

■ Monitor your instances to make sure they are fully 
utilized

■ Identify bottlenecks
○ Understand RDD manipulations 

■ Actions vs transformations
■ Lazy transformations

○ Explore parameter tuning to optimize resource usage
○ Be careful with repartition on your RDDs



Upcoming Deadlines

● Team Project : Phase 2

○ Code and report due: 04/17/2018 11:59 PM Pittsburgh

● Project 4.2 : Iterative Programming with Spark

○ Due: 04/22/2018 11:59 PM Pittsburgh

● Team Project : Phase 3

○ Live-test due: 04/29/2018 3:59 PM Pittsburgh

○ Code and report due: 05/01/2018 11:59 PM Pittsburgh



Questions?



tWITTER DATA ANALYTICS:
TEAM PROJECT



Team Project Phase 2 MySQL Live Test 
Honor Board

Hong Kong Journalists

monoid

wen as dog

KingEdward

FatTiger

Faster Hong Kong Journalists

Cerulean

TaZoRo

liulaliula

30 centimeter



Team Project Phase 2 HBase Live Test 
Honor Board

Faster Hong Kong Journalists

liulaliula

30 centimeter

HLW

Hong Kong Journalists

DDLKiller

We Bare Bears

TakemezhuangbTakemefly

return no_sleep

Pyrocumulus



Team Project Phase 2 Live Test 
Honor Board

Faster Hong Kong Journalists 80

liulaliula 80

We Bare Bears 80

HLW 78

wen as dog 76

Hong Kong Journalists 76

TakemezhuangbTakemefly 75

monoid 74

team6412 74

Pyrocumulus 74



Query 4: Interactive Tweet Server

You are going to build a web service that supports READ, WRITE, 
SET and DELETE requests on tweets.

General Info:

1. Four operations:
● write, set, read and delete

2. Operations under the same uuid should be executed in the 
order of the sequence number

3. Be wary of malformed queries
4. Only English tweets are needed



 |      field      |          type          |                 example                 |

|-----------------|------------------------|-----------------------------------------|

| tweetid         | long int               | 15213                                   |

| userid          | long int               | 156190000001                            |

| username        | string                 | CloudComputing                          |

| timestamp       | string                 | Mon Feb 15 19:19:57 2017                |

| text            | string                 | Welcome to P4!#CC15619#P3               |

 | favorite_count  | int                    | 22                                      |

 | retweet_count   | int                    | 33                                      |             

 

Query 4: Interactive Tweet Server



● Write Request 
/q4?op=write&payload=json_string&uuid=unique_id&s
eq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

● payload 
○ It is a url-encoded json string; 
○ It has the same structure as the original tweet json;
○ It only contains the seven fields needed. For tid and uid, 
○ Don’t get them from the “id_str” field, only get them from the 

“id” field.

Query 4: Interactive Tweet Server



● Read Request 
/q4?op=read&uid1=userid_1&uid2=userid_2&n=max_num
ber_of_tweets&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

tid_n\ttimestamp_n\tuid_n\tusername_n\ttext_n\tfavo
rite_count_n\tretweet_count_n\n

Query 4: Interactive Tweet Server



● Delete Request 
/q4?op=delete&tid=tweet_id&uuid=unique_id&seq=seq
uence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

● Delete the whole tweet

Query 4: Tweet Server



● Set Request 
/q4?op=set&field=field_to_set&tid=tweet_id&payloa
d=string&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

● Set one of the text, favorite_count, retweet_count of a particular tweet
● Payload is a url-encoded string

Query 4: Tweet Server



● Malformed Request 
/q4?op=set&field=field_to_set&tid1=tweet_id&tid2=
<empty>&payload=0;drop+tables+littlebobby&uuid=un
ique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

Query 4: Tweet Server



● Cache became too large
● Used up IOPS
● Forgot to catch exceptions

Phase 2 Live Test Issues



● Identify the bottlenecks using fine-grained profiling.
● Do not cache naively.
● Use logging to debug concurrent issues
● Review what we have learned in previous project modules

○ Load balancing (are requests balanced?)
○ Replication and sharding
○ Multi-threading programming

● Look at the feedback of your Phase 1 and Phase 2 reports!
● To test mixed queries, run your own load generator.

○ Use jmeter/ab/etc.

Team Project General Hints



● Start with one machine if you are not sure that your 
concurrency model is correct.

● Adopt a forwarding mechanism or a non-forwarding 
mechanism
○ You may need a custom load balancer

● Think carefully about your async/sync design
● May need many connections and threads at the same 

time, in the case of out of order sequence numbers.

Team Project, Q4 Hints



Team Project Time Table

Phase (and query due) Start Deadlines Code and Report Due

Phase 1
● Q1, Q2

Monday 02/26/2018
00:00:00 ET

Checkpoint 1, Report: 
Sunday 03/11/2018 
23:59:59 ET
Checkpoint 2, Q1: Sunday 
03/25/2018 23:59:59 ET
Phase 1, Q2: Sunday 
04/01/2018 23:59:59 ET

Phase 1: Tuesday 
04/03/2018 23:59:59 ET

Phase 2
● Q1, Q2,Q3

Monday 04/02/2018
00:00:00 ET

Sunday 04/15/2018
15:59:59 ET

Phase 2 Live Test (Hbase 
AND MySQL)

● Q1, Q2, Q3

Sunday 04/15/2018
17:00:00 ET

Sunday 04/15/2018
23:59:59 ET

Tuesday 04/17/2018
23:59:59 ET

Phase 3
● Q1, Q2, Q3, Q4

Monday 04/16/2018
00:00:00 ET

Sunday 04/29/2018
15:59:59 ET

Phase 3 Live Test (Hbase 
OR MySQL)

● Q1, Q2, Q3, Q4

Sunday 04/29/2018
17:00:00 ET

Sunday 04/29/2018
23:59:59 ET

Tuesday 05/01/2018
23:59:59 ET



Questions?


