15-319 / 15-619
Cloud Computing

Recitation 9
March 20, 2018

Overview

e Last week’s reflection

o Last week was Spring Break!
e This week’s schedule

o OLI - Modules 15, 16 & 17

m Quiz 8 — due on Friday, March 23™
o Project 3.3 — due on Sunday, March 25

e Team Project, Phase 1
o Query 1 is due on Sunday, March 25
o Query 2 is due next week!

Last week: Week 8

e Module 14: Cloud Storage
o Quiz 7
® Project 3.2
o Social Network with Heterogenous Backends

This Week: Conceptual Content

OLI UNIT 4: Cloud Storage
e Module 15: Case Studies: Distributed File System
o HDFS
o Ceph
e Module 16: Case Studies: NoSQL Databases
e Module 17: Case Studies: Cloud Object Storage
e Quiz8
o DUE on Friday, March 23rd

Project 3 Weekly Modules

e P3.1: Files, SQL and NoSQL
e P3.2:Social network with heterogeneous
packend storage
e P3.3: Replication and Consistency Models
o Primer: Intro. to Java Multithreading
O Primer: Thread-safe Programming
o Primer: Intro. to Consistency Models

Scale of Data is Growing

International Data Corporation's (IDC) Digital 40,000
Universe Study predicts a 300-fold increase in
the amount of data created globally from 130
exabytes (1028) in 2012 to 30,000 exabytes in 30,000
2020.
(Exabytes) 20,000
10,000
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Source: IDC's Digtal Universe Study, sponsored by EMC, December 2012

Users are Global

e Speed of Light (=3.00%x10% m/s)
e Inherent latencies

~26ms

—TAme Moscow

San Francisco Pittsburgh

Typical End-To-End Latency

e Typical end-to-end latency

O

The client sends the request to the server
m Network latency

The backend processes the request and sends

the response

m Overhead of fetching and processing data
from backend

m Network latency

The client receives the response

Latency with a Single Backend

Client Statistics:
Min Latency: 20ms
Max Latency: 320ms

Backend Average Latency:
StOEge ~320ms ‘
\‘ Client 3:
~20ms$ =l Moscow
Client 1: Client 2:

San Francisco Pittsburgh

Replicate the Data Globally

Client Statistics:
Min Latency: 20ms
Max Latency: 40ms

Backend Storage 2: Average Latency: 26.6ms
Europe Central
Backend Storage 1: D ~20ms
USA West \'
Client 3:
~20ms¢ ~40ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

10

Replicate the Data Close to Users

Backend Storage 2:
Europe Central

Backend Storage 1: D ~20ms
USA West []| Backend Storage 3: \‘
|] USA East _
~20ms Client 3:
~20ms Moscow
Client 1: Client 2:

San Francisco Pittsburgh

Client Statistics:

Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

11

Demo

* ping www.cmu.edu

* ping www.google.com
« ping www.berkeley.edu
* ping www.nus.edu.sg

Compare the latencies of these global webpages!

http://www.cmu.edu
http://www.google.com
http://www.berkeley.edu
http://www.nus.edu.sg

Replication

® Asyou can see, by adding replicas to strategic
locations in the world, we can significantly reduce
the latency seen by our global clients

e Each added datacenter decreases the average
latency

e But how about the cost?

13

What If We Continue to Replicate?

[]

L]
@
[] O
o O []
O
] []
@ B
[]
@

=

Client Statistics:
Min Latency: ?7?
Max Latency: ??
Average Latency: ?7?

[]
O

We have to consider cost as well as data consistency
across replicas, which increases the latency for writes. 14

Replication READ

Backend Storage 3:
Europe Central

Backend Storage 1: D ~20ms
USA West []| Backend Storage 2: \‘
|] USA East _
~20ms Client 3:
~20ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

Read Operation:
Min Latency: 20ms

Max Latency: 20ms
Average Latency: 20ms

15

Replication WRITE

Write Operation:

Latency for Client 2 = 20ms +
Backend Storage 3: MAX(40ms, 240ms)

Central = 260ms
Backend Storage 1: D
USA West _BacCkend Storage 2:

All the clients suffer from
[] /D USA East @ long latency
~20ms ~240ms Client 3:
.~40ms J Moscow
Client 1: Client 2:
San Francisco Pittsburgh

16

Replication Reads and Writes

e Read operations are very fast!
o All clients have a replica close to them to
access
e \Write requests are quite slow
o Write requests must update all the replicas
o If multiple write requests for a certain key,
then they may have to wait for each other to
complete

17

Pros and Cons of Replication

e Duplicate the data across multiple instances

e Advantages
o Low latency for reads
o Reduce the workload of a single backend server
(Load balance for hot keys)
o Handle failures of nodes (High availability)

e Disadvantages
o Requires more storage capacity and cost
o Updates are slower
o Changes must reflect on all datastores either
iInstantly or eventually (Data Consistency)

18

Data Consistency Becomes Necessary

e Data consistency across replicas is important
o Five consistency levels:
Strict, Strong (Linearizability), Sequential, Causal and
Eventual Consistency
e This week’s task: Implement Strong Consistency
o All datastores must return the same value for a key

at all times
o The order in which the values are updated must be
preserved

e Bonus: Implement Eventual Consistency

19

P3.3 Task 1: Strong Consistency

Coordinator:

® Arequest router that
routes the web requests Datastore 1 Datastore 2 Datastore 3

from the clients to ﬁ @ @
datacenter

® Preserves the order of
both READ&WRITE

requests
Coordinator
Datastore:
PUT/GET
® The actual backend requests

storage that persists

. Client
collections of data

20

P3.3 Task 1: Strong Consistency

Single PUT request for key ‘X’

Block all GET for key ‘X’
until all datastores are
updated

GET requests for a
different key ‘Y’ should
not be blocked

Multiple PUT requests for ‘X’

Resolved in order of their
timestamp when received
by Coordinator.

Any GET request in
between 2 PUTs must
return the first PUT value

Datastore 1 Datastore 2 Datastore 3

J O C

Coordinator

PUT/GET
requests

Client

21

P3.3 Tasks 1 & 2: Strong Consistency

® Every request has a global timestamp order

o Intask 1, the timestamp is issued by the
coordinator
o |n task 2, the timestamp is issued by the client

e QOperations must be ordered by the
timestamps

Requirement: At any given point of time, all

clients should read the same data from any

datacenter replica

22

Choosing a Consistency Level
Bad Example

Account Balance

XXXXX-4437 $100

23

Choosing a Consistency Level
Bad Example

Withdraw $100

Withdraw $100

Account Balance

XXXXX-4437 $100

24

Choosing a Consistency Level
Bad Example

Account Balance 2 Bank lost $100

XXXXX-4437 $0

25

Choosing a Consistency Level
Good Example

Withdraw $100

Account Balance

XXXXX-4437 $100

26

Choosing a Consistency Level
Good Example

Withdraw $100

Account Balance

XXXXX-4437 $100

27

Choosing a Consistency Level
Good Example

Account Balance

XXXXX-4437 $0

28

P3.3: Consistency Models

Tradeoff: @&w® Consistency vs. Availability
® Strict

® Strong

e Sequential
e (Causal

e Eventual

P3.3 Task 2: Architecture
Global Coordinators and Data Stores

P3.3: Tasks

e Launch the Coordinators and DCs in us-east-1
o We'll simulate global latencies for you

e Implement the code for the Coordinators and
Datastores

31

Task 2 Workflow and Example

32

e Launch a total of 7 machines (3 data centers, 3 coordinators and
1 client)

* All machines should be launched in US East region.

The “US East” here has nothing to do with the simulated location
of datacenters and coordinators in the project.

US East (N. Virginia)

US East (Ohio)

US West (N. California)
US West (Oregon)

Asia Pacific (Mumbai)
Asia Pacific (Seoul)
Asia Pacific (Singapore)
Asia Pacific (Sydney)

Asia Pacific (Tokyo)

33

P3.3 Tasks:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in

Coordinators)
US-EAST US-WEST SINGAPORE
DC DC DC

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

C Client)

34

Hash Functions and Primary Coordinator

® Primary coordinator is responsible for handling all PUT
requests for that particular key. l.e., a PUT operation on a
specific key will be handled only by its Primary Coordinator.

® A hash function will determine the primary coordinator of
the key.

Here’s what coordinator will do upon receiving a PUT request.

1. Calculate the hash value of that key.

2. If the Coordinator finds that the hash function maps the key to itself
(i.e., the receiving coordinator is the primary coordinator for that key),
then it should handle the request.

3. Otherwise, the Coordinator should forward (by calling
KeyValueLib.FORWARD) the request to the Primary Coordinator of that

key and send a PRECOMMIT message to datacenters. s

® This API

PRECOMMIT

method will contact the

datastores of a given region, and notify

it that a
for the s

PUT request is being serviced
necified key, starting at the

specifiec

timestamp.

36

Example workflow for a PUT request using strong consistency

US-EAST US-WEST SINGAPORE
DC DC DC
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

put?key=X&value=1×tamp=1

C Client)

37

Example workflow for a PUT request using strong consistency

US-EAST US-WEST SINGAPORE
DC DC DC
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

hash(“X”) to determine if this
coordinator is (" Client)
responsible for “X”.

38

Example workflow for a PUT request using strong consistency
® |f US-EAST is responsible for key “X”

US-EAST US-WEST SINGAPORE
DC DC DC

A

precommit?key=X×tamp=1

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
C Client)

39

Example workflow for a PUT request using strong consistency
® |f US-EAST is responsible for key “X”

US-EAST US-WEST SINGAPORE
DC DC DC

A

PUT(REGIONAL-DNS, "X", "1", 1, "strong")

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
C Client)

40

Example workflow for a PUT request using strong consistency

e |f US-EAST is responsible for key “X”

US-EAST US-WEST SINGAPORE
DC DC DC

, Response back

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
C Client)

41

Example workflow for a PUT request using strong consistency

e |f US-EAST is responsible for key “X”

US-EAST US-WEST SINGAPORE
DC DC DC
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

Response back

C Client)

42

Example workflow for a PUT request using strong consistency

e |f US-WEST is responsible for key “Y”

US-EAST US-WEST SINGAPORE
DC DC DC
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

put?key=Y&value=2×tamp=200
C Client)

43

Example workflow for a PUT request using strong consistency

e |f US-WEST is responsible for key “Y”

US-EAST US-WEST SINGAPORE
DC DC DC
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR

KeyValueLib.FORWARD(US-WEST-DNS, "Y", "2",
200)

C Client)

44

Example workflow for a PUT request using strong consistency
® |f US-WEST is responsible for key “Y”

US-EAST US-WEST SINGAPORE
DC DC DC

A

precommit?key=Y×tamp=200

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
C Client)

45

P3.3: Eventual Consistency (Bonus)

e \Write requests are performed in the order
received by local coordinator
o Operations may not be blocked for replica
consensus (no communication between
Servers across region)
e Clients that request data may receive multiple
versions of the data, or stale data
o Problems left for the application owner to
resolve

46

More Hints

In strong consistency, “PRECOMMIT” should be
useful to help you lock requests because they are
able to communicate with datastores

Don’t wait for the PRECOMMIT messages that
might be sent from other coordinators halfway,
or you cannot pass all the test cases

Lock by the key across all the datacenters in
strong consistency

Remember to update both KeyValueStore.java

and Coordinator.java in Eventual Consistency o

Assume US-WEST is the primary Coordinator for key ‘Y’

US-EAST US-WEST SINGAPORE
DC DC DC

US-EAST US-WEST SINGAPORE

COORDINAT COORDINAT COORDINAT
OR OR OR

GET(Y, t = 1005) PUT(Y, t = 1000)

Assume US-WEST is the primary Coordinator for key ‘Y’

US-EAST US-WEST SINGAPORE
DC DC DC

200ms delay 800ms
i t 1200
SN PRECOMMIT('Y’, 1000)

US-EAST US-WEST SINGAPORE
COORDINAT COORDINAT COORDINAT
OR OR OR

GET(Y, t = 1005)

Suggestions

Read all three primers (PLEASE!)
Consider the differences between the 2
consistency models before writing code
Think about possible race conditions
Read the hints in the writeup carefully
Don’t modify any class except
Coordinator.java and KeyValueStore.java

50

How to Run Your Program

® Run “./sudo run_server.sh” to start the server on each of the
data centers and coordinators.

e Use “./consistency checker strong”, or “./consistency checker
eventual” to test your implementation of each consistency.
(Our grader uses the same checker)

e If you want to test one simple PUT/GET request, you could
directly send the request to datacenters or coordinators.

91

Start early!

Trickiest Individual Project!

TWIT]

i
AJ

BYANWANWANNVANIR A R (@SS
~ROJECT

Team Project Phase-1 Deadlines

e Phase 1 milestones:

o Checkpoint 2:

m Q1 on scoreboard, due on Sunday, 3/25
o Phase 1 Deadline:

m Q2 on scoreboard, due on Sunday, 4/1
o Phase 1. code and report:

m due on Tuesday, 4/3

36

Team Project Time Table

Phase (and query due) | Start Deadlines Code and Report Due
Phase 1 Monday 02/26/2018 Phase 1: Tuesday
e Q1,Q2 00:00:00 ET 04/03/2018 23:59:59 ET
Checkpoint 2, Q1: Sunday
03/25/2018 23:59:59 ET
Phase 1, Q2: Sunday
04/01/2018 23:59:59 ET
Phase 2 Monday 04/02/2018 | Sunday 04/15/2018
e Q1,Q2,03 00:00:00 ET 15:59:59 ET
Phase 2 Live Test (Hbase Sunday 04/15/2018 Sunday 04/15/2018 Tuesday 04/17/2018
AND MySQL) 17:00:00 ET 23:59:59 ET 23:59:59 ET
e Q1,Q20Q3
Phase 3 Monday 04/16/2018 | Sunday 04/29/2018
e Q1,Q2,Q3,Q4 00:00:00 ET 15:59:59 ET
Phase 3 Live Test (Hbase Sunday 04/29/2018 Sunday 04/29/2018 Tuesday 05/01/2018
OR MySQL) 17:00:00 ET 23:59:59 ET 23:59:59 ET

e Q1,Q2,Q3,04

(O]
;M

Upcoming Deadlines

Conceptual Topics: OLI (Modules 15, 16, & 17)
Quiz 8 due: Friday, 03/23/2018 11:59 PM Pittsburgh

P3.3: Replication and Consistency Models
Due: Sunday, 03/25/2018 11:59 PM Pittsburgh

Team Project: Phase 1 - Query 1
Due: Sunday, 03/25/2018 11:59 PM Pittsburgh

