
 1

15-319 / 15-619
Cloud Computing

Recitation 9

March 20, 2018

Overview

● Last week’s reflection
○ Last week was Spring Break!

● This week’s schedule
○ OLI - Modules 15, 16 & 17

■ Quiz 8 – due on Friday, March 23rd

○ Project 3.3 – due on Sunday, March 25th

● Team Project, Phase 1
○ Query 1 is due on Sunday, March 25
○ Query 2 is due next week!

 2

Last week: Week 8

● Module 14: Cloud Storage
○ Quiz 7

● Project 3.2
○ Social Network with Heterogenous Backends

3

This Week: Conceptual Content

OLI UNIT 4: Cloud Storage
● Module 15: Case Studies: Distributed File System

○ HDFS
○ Ceph

● Module 16: Case Studies: NoSQL Databases
● Module 17: Case Studies: Cloud Object Storage
● Quiz 8

○ DUE on Friday, March 23rd

 4

Project 3 Weekly Modules

● P3.1: Files, SQL and NoSQL
● P3.2: Social network with heterogeneous

backend storage
● P3.3: Replication and Consistency Models

○ Primer: Intro. to Java Multithreading
○ Primer: Thread-safe Programming
○ Primer: Intro. to Consistency Models

 5

Scale of Data is Growing

International Data Corporation's (IDC) Digital
Universe Study predicts a 300-fold increase in
the amount of data created globally from 130
exabytes (1028) in 2012 to 30,000 exabytes in
2020.

6

Users are Global

7

~26ms

~14ms

● Speed of Light (≈3.00×108 m/s)
● Inherent latencies

Pittsburgh

Moscow

San Francisco

● Typical end-to-end latency

○ The client sends the request to the server

■ Network latency

○ The backend processes the request and sends

the response

■ Overhead of fetching and processing data

from backend

■ Network latency

○ The client receives the response

Typical End-To-End Latency

8

Latency with a Single Backend

9

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend
Storage

~20ms ~40ms

~320ms

Client Statistics:
Min Latency: 20ms
Max Latency: 320ms
Average Latency: 126ms

Replicate the Data Globally

10

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~40ms

~20ms

Client Statistics:
Min Latency: 20ms
Max Latency: 40ms
Average Latency: 26.6ms

Replicate the Data Close to Users

11

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~20ms

~20ms

Client Statistics:
Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

Backend Storage 3:
USA East

Demo

Run:
• ping www.cmu.edu
• ping www.google.com
• ping www.berkeley.edu
• ping www.nus.edu.sg

Compare the latencies of these global webpages!

1
2

http://www.cmu.edu
http://www.google.com
http://www.berkeley.edu
http://www.nus.edu.sg

● As you can see, by adding replicas to strategic

locations in the world, we can significantly reduce

the latency seen by our global clients

● Each added datacenter decreases the average

latency

● But how about the cost?

Replication

13

What If We Continue to Replicate?

14

Client Statistics:
Min Latency: ??
Max Latency: ??
Average Latency: ??

Cost: ?????

We have to consider cost as well as data consistency
across replicas, which increases the latency for writes.

Replication READ

15

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 3:
Europe Central

~20ms

~20ms

Read Operation:

Min Latency: 20ms
Max Latency: 20ms
Average Latency: 20ms

Backend Storage 2:
USA East

Replication WRITE

16

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 3:
Europe Central

~20ms

Write Operation:

Latency for Client 2 = 20ms +
MAX(40ms, 240ms)
= 260ms

All the clients suffer from
long latency

Backend Storage 2:
USA East

~40ms
~240ms

● Read operations are very fast!
○ All clients have a replica close to them to

access
● Write requests are quite slow

○ Write requests must update all the replicas
○ If multiple write requests for a certain key,

then they may have to wait for each other to
complete

Replication Reads and Writes

17

● Duplicate the data across multiple instances
● Advantages

○ Low latency for reads
○ Reduce the workload of a single backend server

(Load balance for hot keys)
○ Handle failures of nodes (High availability)

● Disadvantages
○ Requires more storage capacity and cost
○ Updates are slower
○ Changes must reflect on all datastores either

instantly or eventually (Data Consistency)

Pros and Cons of Replication

 18

Data Consistency Becomes Necessary

● Data consistency across replicas is important
○ Five consistency levels:

Strict, Strong (Linearizability), Sequential, Causal and

Eventual Consistency

● This week’s task: Implement Strong Consistency
○ All datastores must return the same value for a key

at all times

○ The order in which the values are updated must be

preserved

● Bonus: Implement Eventual Consistency
19

P3.3 Task 1: Strong Consistency

20

Coordinator:

● A request router that

routes the web requests

from the clients to

datacenter

● Preserves the order of

both READ&WRITE

requests

Datastore:

● The actual backend

storage that persists

collections of data

P3.3 Task 1: Strong Consistency

21

Single PUT request for key ‘X’

● Block all GET for key ‘X’

until all datastores are

updated

● GET requests for a

different key ‘Y’ should

not be blocked

Multiple PUT requests for ‘X’

● Resolved in order of their

timestamp when received

by Coordinator.

● Any GET request in

between 2 PUTs must

return the first PUT value

P3.3 Tasks 1 & 2: Strong Consistency

22

● Every request has a global timestamp order
○ In task 1, the timestamp is issued by the

coordinator

○ In task 2, the timestamp is issued by the client

● Operations must be ordered by the

timestamps

Requirement: At any given point of time, all

clients should read the same data from any

datacenter replica

Choosing a Consistency Level
Bad Example

23

Account Balance

xxxxx-4437 $100

Choosing a Consistency Level
Bad Example

24

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Bad Example

25

Account Balance

xxxxx-4437 $0

$100

$100

Bank lost $100

Choosing a Consistency Level
Good Example

26

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Good Example

27

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Choosing a Consistency Level
Good Example

28

Account Balance

xxxxx-4437 $0

$100

$0

P3.3: Consistency Models

29

Tradeoff: Consistency vs. Availability
● Strict
● Strong
● Sequential
● Causal
● Eventual

vs.

P3.3 Task 2: Architecture
Global Coordinators and Data Stores

us-west
us-east

Singapore

DCI

coordinator datacenter

DCI

coordinator datacenter
DCI

coordinator datacenter

30

P3.3: Tasks

31

● Launch the Coordinators and DCs in us-east-1

○ We’ll simulate global latencies for you

● Implement the code for the Coordinators and

Datastores

Task 2 Workflow and Example

32

• Launch a total of 7 machines (3 data centers, 3 coordinators and
1 client)

• All machines should be launched in US East region.

 The “US East” here has nothing to do with the simulated location

 of datacenters and coordinators in the project.

 33

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Tasks:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 34

Hash Functions and Primary Coordinator

35

● Primary coordinator is responsible for handling all PUT

requests for that particular key. I.e., a PUT operation on a

specific key will be handled only by its Primary Coordinator.

● A hash function will determine the primary coordinator of

the key.

Here’s what coordinator will do upon receiving a PUT request.

1. Calculate the hash value of that key.

2. If the Coordinator finds that the hash function maps the key to itself

(i.e., the receiving coordinator is the primary coordinator for that key),

then it should handle the request.

3. Otherwise, the Coordinator should forward (by calling

KeyValueLib.FORWARD) the request to the Primary Coordinator of that

key and send a PRECOMMIT message to datacenters.

PRECOMMIT

36

● This API method will contact the
datastores of a given region, and notify
it that a PUT request is being serviced
for the specified key, starting at the
specified timestamp.

Example workflow for a PUT request using strong consistency

put?key=X&value=1×tamp=1

 37

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

Example workflow for a PUT request using strong consistency

hash(“X”) to determine if this
coordinator is
responsible for “X”.

 38

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

precommit?key=X×tamp=1

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X”

 39

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

PUT(REGIONAL-DNS, "X", "1", 1, "strong")

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X”

 40

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

Response back

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X”

 41

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

Response back

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X”

 42

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

 43

Example workflow for a PUT request using strong consistency

• If US-WEST is responsible for key “Y”

put?key=Y&value=2×tamp=200

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

KeyValueLib.FORWARD(US-WEST-DNS, "Y", "2",
200)

Example workflow for a PUT request using strong consistency

• If US-WEST is responsible for key “Y”

 44

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

precommit?key=Y×tamp=200

Example workflow for a PUT request using strong consistency

• If US-WEST is responsible for key “Y”

 45

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3: Eventual Consistency (Bonus)

46

● Write requests are performed in the order
received by local coordinator
○ Operations may not be blocked for replica

consensus (no communication between
servers across region)

● Clients that request data may receive multiple
versions of the data, or stale data
○ Problems left for the application owner to

resolve

More Hints
● In strong consistency, “PRECOMMIT” should be

useful to help you lock requests because they are

able to communicate with datastores

● Don’t wait for the PRECOMMIT messages that

might be sent from other coordinators halfway,

or you cannot pass all the test cases

● Lock by the key across all the datacenters in

strong consistency

● Remember to update both KeyValueStore.java

and Coordinator.java in Eventual Consistency
 47

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINAT

OR

US-WEST
COORDINAT

OR

SINGAPORE
COORDINAT

OR

Assume US-WEST is the primary Coordinator for key ‘Y’

PUT(Y, t = 1000)GET(Y, t = 1005)

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINAT

OR

US-WEST
COORDINAT

OR

SINGAPORE
COORDINAT

OR

Assume US-WEST is the primary Coordinator for key ‘Y’

PRECOMMIT(‘Y’, 1000)

GET(Y, t = 1005)

800ms200ms delay
Arrive at 1200

● Read all three primers (PLEASE!)

● Consider the differences between the 2

consistency models before writing code

● Think about possible race conditions

● Read the hints in the writeup carefully

● Don’t modify any class except

Coordinator.java and KeyValueStore.java

Suggestions

 50

How to Run Your Program

● Run “./sudo run_server.sh” to start the server on each of the

data centers and coordinators.

● Use “./consistency_checker strong”, or “./consistency_checker

eventual” to test your implementation of each consistency.

(Our grader uses the same checker)

● If you want to test one simple PUT/GET request, you could

directly send the request to datacenters or coordinators.

 51

Start early!
Trickiest Individual Project!

 52

tWITTER DATA ANALYTICS:
TEAM PROJECT

Team Project Phase-1 Deadlines
● Writeup and queries were released on

Monday, Feb 26th, 2018.
● Phase 1 milestones:

○ Checkpoint 1:
■ Report, due on Sunday, 3/11

○ Checkpoint 2:
■ Q1 on scoreboard, due on Sunday, 3/25

○ Phase 1 Deadline:
■ Q2 on scoreboard, due on Sunday, 4/1

○ Phase 1, code and report:
■ due on Tuesday, 4/3 36

Team Project Time Table

55

Phase (and query due) Start Deadlines Code and Report Due

Phase 1
● Q1, Q2

Monday 02/26/2018
00:00:00 ET

Checkpoint 1, Report:
Sunday 03/11/2018
23:59:59 ET
Checkpoint 2, Q1: Sunday
03/25/2018 23:59:59 ET
Phase 1, Q2: Sunday
04/01/2018 23:59:59 ET

Phase 1: Tuesday
04/03/2018 23:59:59 ET

Phase 2
● Q1, Q2,Q3

Monday 04/02/2018
00:00:00 ET

Sunday 04/15/2018
15:59:59 ET

Phase 2 Live Test (Hbase
AND MySQL)

● Q1, Q2, Q3

Sunday 04/15/2018
17:00:00 ET

Sunday 04/15/2018
23:59:59 ET

Tuesday 04/17/2018
23:59:59 ET

Phase 3
● Q1, Q2, Q3, Q4

Monday 04/16/2018
00:00:00 ET

Sunday 04/29/2018
15:59:59 ET

Phase 3 Live Test (Hbase
OR MySQL)

● Q1, Q2, Q3, Q4

Sunday 04/29/2018
17:00:00 ET

Sunday 04/29/2018
23:59:59 ET

Tuesday 05/01/2018
23:59:59 ET

Upcoming Deadlines

• Conceptual Topics: OLI (Modules 15, 16, & 17)

Quiz 8 due: Friday, 03/23/2018 11:59 PM Pittsburgh

• P3.3: Replication and Consistency Models

Due: Sunday, 03/25/2018 11:59 PM Pittsburgh

• Team Project: Phase 1 - Query 1

Due: Sunday, 03/25/2018 11:59 PM Pittsburgh

