
15-319 / 15-619
Cloud Computing

Recitation 12

April 7th and 9th , 2015

Overview

• Last week’s reflection
– Project 3.5

• Budget issues
– Tagging, 15619Project

• This week’s schedule
– Unit 5 - Modules 17
– Project 4.1

• Demo
• Twitter Analytics: The 15619Project

Reflections on P3.5

• Implement a key-value store with different
levels of consistency
• Strong consistency
• Causal consistency

• FAQs
• Failure in consistency checker test

• Best way: log requests and analyze
• The checker also checks for response time

of certain requests in some tests

Budget Issues

• Tag all resources(Piazza @1656)
• Amazon EBS General Purpose SSD
• Amazon EBS Provisioned IOPS
• Amazon EBS Snapshot

• Untagged resources will be counted towards
your weekly project
• Keep a buffer

Module to Read
• UNIT 5: Distributed Programming and Analytics

Engines for the Cloud
– Module 16: Introduction to Distributed Programming

for the Cloud
– Module 17: Distributed Analytics Engines for the

Cloud: MapReduce
•Hadoop 1.0

•Hadoop 2.0 - YARN

– Module 18: Distributed Analytics Engines for the
Cloud: Spark

– Module 19: Distributed Analytics Engines for the
Cloud: GraphLab

Project 4

• Project 4.1
– MapReduce Programming Using YARN

• Project 4.2

– Iterative Programming Using Apache Spark

• Project 4.3

– Graph Programming Using GraphLab

MapReduce - Introduced in Project 1

• The idea of MapReduce

How many times
does the word
“Apple” appear in
these books?

I heard 6 “Apple”s !

Apple,1

Apple,1
Apple,1
Apple,1

Apple,1
Apple,1

MapReduce - Overview

• The idea of MapReduce

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

How do I know who is
the “Apple” listener? You Don’t!

MapReduce - Phases

• The idea of MapReduce

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

Magic Box
(Shuffle,

sort,
merge)

Bbbbb

Map Phase Reduce Phase
Mapper

Reducer

MapReduce - This Week

• The idea of MapReduce

Apple ?

Blueberry ?

Orange ?

Map Phase Reduce Phase

Magic Box
(Shuffle,

sort,
merge)

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

MapReduce - Data Types

• Mapper (default)
– Input: key-value pairs

• Key: byte offset of the line

• Value: the text content of the line

– Output: key-value pairs
• Key: specified by your program

• Value: specified by your program based on what content you
expect the reducer to receive as a list

(k1,v1) -> Mapper -> (k2,v2)

MapReduce - Data Types

• Reducer
– Input: key-value pairs

• A list of values for each key output from

the mapper

– Output: key-value pairs
• The desired result from your aggregation

(k2,list(v2)) -> Reducer -> (k3,v3)

GFS

MapReduce

BigTable

HDFS

MapReduce

HBase

Proprietary Open Source

Hadoop

• MapReduce
– A programming model for processing large data sets

using a parallel distributed algorithm
• Apache Hadoop

– A framework for running applications on a large
cluster of commodity hardware

– Implements the MapReduce computational paradigm
– Uses HDFS for data storage
– Engineers with little knowledge of distributed

computing can write the code in a short period

HDFS - Distributed File System

• Paper
– The Hadoop Distributed File System, Konstantin

Shvachko, Hairong Kuang, Sanjay Radia, Robert
Chansler, Yahoo!, 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST)

• Purpose
– Serve as the distributed storage to run Hadoop’s

MapReduce applications
– An open-source framework which can be used by

different clients with different needs

HDFS - Distributed File System

• Hadoop Distributed File System

• Open source version of Google File System

Using a Custom Jar in P4.1

• What is a custom JAR
– Customize your java MapReduce program

– Run the MapReduce JAR in EMR

• Why custom JAR

– More resources: HDFS/HBASE/S3

– More job configuration flexibility

– More control of how the resources are utilized

Typical MapReduce Job

• Simplistic view of a MapReduce job

• You simply write code for the
– Mapper

– Reducer

Input

HDFSMapper ReducerHDFS

Output

MapReduce and HDFS

• Detailed workflow

Cool things with MapReduce

• Chain of two MapReduce jobs

• Load external data into your program

• Modify the behavior of FileInputSplit

Mapper1 Reducer1 Reducer2Mapper2HDFS

HDFS

Input

Output

Mapper1 Reducer1HDFS

Input

HDFS

Output

Distributed Cache

Project 4.1 - Input Text Predictor

• Suggest words based on letters already typed

Project 4.1

• Input Text Predictor
– Input Data
– N-Gram Model
– Statistical Language Model
– Predict the next word given a phrase

• Have to use EMR Custom JAR

– CANNOT use EMR Streaming

Construct an Input Text Predictor

1. Given a language corpus
– Project Gutenberg (2.5 GB)

2. Construct an n-gram model of the corpus
– An n-gram is a phrase with n contiguous words
– For example a set of 1,2,3,4,5-grams with counts:

• this 1000
• this is 500
• this is a 125
• this is a cloud 60
• this is a cloud computing 20

Construct an Input Text Predictor - 2

3. Build a statistical language model to calculate
the probability of a word appearing after a phrase

4. Load data to HBase and predict the next word
based on the probabilities

Generate n-gram

• An n-gram is a phrase with n contiguous words

Statistical Language Model

• Provide a mechanism to solve common natural
language processing problems

• Examples: speech recognition, machine
translation and intelligent input method

• SLM estimates the probability of a word given
the previous phrase

• N-gram model is one of the most popular
mechanisms to generate an SLM today

Statistical Language Model

• Build a statistical language model that
calculates the probability of a word appearing
after a phrase

Load and Predict

• Load data into HBase
• Connect HBase with the PHP-based front end

server to provide a functional web service.

Recommendations

• Test for correctness with small datasets first

• Don’t start a new cluster for every job
– EMR will charge you one hour of usage for instances

even though your EMR job failed to start

• Optimize your code to accelerate MapReduce
before seeking other optimization methods

– Pay attention to your code efficiency

• Version of Hadoop
– should match the version shown in EMR AMI

• Start early

Upcoming Deadlines

● P4.1 MapReduce Programming Using YARN

○ Due: 11:59PM ET April 12th (Sunday)

● 15619Project Phase3

○ Deadline: 18:59PM ET April 15th

(Wednesday)

■ Live Test, due 18:59PM ET Apr 15th

Project 4.1

• Demo

Overview

● Run 2 MapReduce jobs to generate a
language model

● First step: generate n-grams
● Second step: generate language model
● Third step: connect user interface to HBase

Grading

● Use submitter file to autograde your answers
● Ngrams
● Run the command ./submitter -n with the top

100 ngrams in a file called “ngrams”.

Grading

● Model
● Run the command ./submitter -m to

autograde you language model and your
interface

● Code files for ngram and model will be
manually graded

Hive Shell for ad-hoc queries

● Run SQL like queries over distributed
storage(HDFS/S3)

● SELECT, WHERE, ORDER BY,...
● https://cwiki.apache.

org/confluence/display/Hive/LanguageManu
al+Select

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select

Questions?

tWITTER ANALYTICS:

THE 15619PROJECT

Phase 2 Live Test
 Congratulations UnusualItem!

 MySQL HBase

What’s due soon?

● Phase 3 Deadline

○ Submission of one URL by 18:59 ET

(Pittsburgh) Wed 4/15
■ Live Test from 8 PM to midnight ET

○ Choose one database

○ Can only use m1.large or cheaper t1, t2, m1, m3 instances

○ Fix Q1,Q2,Q3,Q4 if your Phase 2 did not go well

○ New queries Q5 and Q6.

○ Phase 3 counts for 60% of 15619Project grade

Phase 3 Report [VERY IMPORTANT]

● Start early

● Document your steps

● Identify and isolate the performance impact of
each change you make

● Document your ideas and experiments

MAKE A QUANTITATIVE, DATA-DRIVEN REPORT

Query 5: Twitter Rankster
● Request: a list of userids and a date range
● You should award points to the users based on these

rules:
● +1 per unique tweet sent by the user in the time

interval
● +3 per friend (based on the maximum value of user.

friends_count in the time interval)
● +5 per follower (based on the maximum value of

user.followers_count in the time interval)

Query 5: Twitter Rankster
GET /q5?userlist=12,14,16,18,20&start=2010-01-

01&end=2014-12-31

Team,1234-5678-1234,1234-5678-1234,1234-5678-1234

12,173

16,155

14,99

20,99

18,55

Query 6: Hermit Finder

● Request: A range of userids
● You should count the number of users where:

○ userid is between M and N inclusive,
○ has at least one tweet but none of his/her tweets

contain location information.

GET /q6?m=0&n=9999999999

Team,1234-5678-1234,1234-5678-1234,1234-5678-1234

55811730

Live Test
● 30 minutes warm-up
● 3 hours Q1 - Q6
● 30 minutes mix-Q1Q2Q3Q4Q5Q6
● Preparing for the live test

○ Choose a database based on your observations
from previous phases and all six queries

○ Caching known requests will not work(unless you
are smart)

○ Need to have all Qs running at the same time
○ Don’t expect testing in sequence
○ Avoid bottlenecks in mixed queries

Warnings
● Avoid tagging penalties

● Keep a watch on budget.
○ $55 (phase + livetest)

● Check correctness before livetest

● Start early

