
15-319 / 15-619
Cloud Computing

Recitation 10

March 24th and 26th, 2015

Overview
● Administrative issues

– Tagging, 15619Project
● Last week’s reflection

– Project 3.3
● This week’s schedule

– Project 3.4
– Unit 4 - Modules 14 & 15
– Quiz 4

• Demo
• Twitter Analytics: The 15619Project

Caution!
● Tag spot instances in the FIRST 59 mins.

○ Otherwise, it will be considered as an untagged instance
for that hour.

● 15619Project is in progress!

○ Phase 2 due on next Wednesday, 4/1

○ Fix Q1 and Q2, start on Q3 and Q4

○ Meet your TA mentor every week to get the token for
the Query Reference Server.

○ Tag all resources used for 15619Project as
Key: 15619project, Value: phase2

Key: 15619backend, Value: hbase/mysql

Project 3.3 : FAQs - 1

Problem 1:The request received by server is not actually GET
/step#?id=XX&pwd=XXX, but something like GET /step#?
callback=returnRes&id=XX&pwd=XXX&_=XXX ?

● the request you need to deal with on backend server is
 http://server-public-dns:8080/step#?id=XX&pwd=XXX
 However, since JavaScript is used in the frontend and it

cannot make a cross domain http request, we're using a
callback function to make a request to a remote server.
However, you can simply treat the request as shown in
the writeup but use the response as a parameter of
returnRes (that's why the response is actually
"returnRes(response)").

http://server-public-dns:8080/step#?id=XX&pwd=XXX

Project 3.3 : FAQs - 2

Problem 2: Does not receive any mark on submission but my
answer is correct.

● Very likely that you didn't keep the front end server
(Undertow) running. Refer to "Grading" section of the
writeup.

Problem 3: What is key in the constructor for GetItemRequest?

● The key should be in Map format (Map<String, AttributeValue>

key)

An example is:
Map<String, AttributeValue> key = new HashMap<String,
AttributeValue>();
key.put("userid", new AttributeValue().withN(id));
GetItemRequest greq = new GetItemRequest().
withTableName(table).withKey(key);

Project 3.3 : FAQs - 3

https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

This week: Project

● P3.1 Files vs Databases

● P3.2 Partitioning and Replication

● P3.3 Database-as-a-Service

● P3.4 Cloud Data Warehousing

● P3.5 Consistency in Distributed Databases

OLTP vs OLAP
● OLTP (Online Transaction Processing)

○ Deals with operational data.
○ Characterized by a large number of short online transactions (INSERT,

UPDATE, DELETE). In an OLTP system data are frequently updated and
queried. So a fast response to a request is required.

○ Example OLTP query: What is the Salary of Mr.John?

● OLAP (Online Analytical Processing)
○ Deals with historical data or archival data.
○ Data from OLTP are collected over a period of time and stored in a very

large database called a Data Warehouse. Data warehouses are highly
optimized for read(SELECT) and aggregation(SUM) operation.

○ Example OLAP query: How is the profit changing over the last three
months across different regions?

http://datawarehouse4u.info/OLTP-vs-OLAP.html#

OLTP vs OLAP

Data Warehouse

● Data Warehouses(DW) are large storage systems
which store historical data that can be used for strategic
decision making.
○ For business intelligence systems (data warehouse)

OLAP (Online Analytical Processing) is used.

● Data Warehouse table design is structured for efficient
querying and reporting.

● Data warehouse databases commonly use a star
schema design
○ A star schema is characterized by

■ one or more very large fact tables that contain the
primary information in the data warehouse and

■ a number of much smaller dimension tables (or
lookup tables), each of which contains information
about the entries for a particular attribute in the fact
table.

Introduce Star Schema in DW

Example Star Schema

● Carnegie Records(CR) is booming with sales in more
than a 100 countries and half a billion customers
worldwide.

● CR want to analyze their historical sales data which has
several hundred million records.

● CR asked you to benchmark multiple Business
Intelligence (BI) tools so that they use the best system
available for their workload
● Benchmark multiple products for their requirements.
● You have to use the Star Schema Benchmark (SSB).

P3.4: Background

P3.4: Tasks

The set of tasks that you have to complete:

Part 1: Compare
● MySQL
● Hive
● AWS Redshift

Part 2: Optimize Redshift
● Optimize table design for query performance

P3.4: Overview

● An open source row-store database.
● Row-wise database storage, data blocks store values

sequentially for each consecutive column making up the
entire row.

● Typically used for Online Transaction processing (OLTP)
○ Volume: 1K to 1M transactions/sec
○ Latency: > 1-50 ms
○ Database Size: 100s GB to 10s TB
○ typically more writes than reads

Part 1: MySQL

Part 1: Hive

● The Apache Hive data warehouse software facilitates
querying and managing large datasets residing in
distributed storage (HDFS).

● Hive provides a mechanism to project structure onto this
data and query the data using a SQL-like language called
HiveQL.

● Hive is best used for batch jobs over large sets of
append-only data (like web logs).

Part 1: Hive

● OLAP System:
○ Volume: A couple queries per second
○ Latency: 1-60 seconds
○ Database Size: 100s TB to 10sPB
○ Many more reads than writes

● The most important characteristics of Hive are:
○ scalability (scale out with more machines added

dynamically to the Hadoop cluster)
○ extensibility (with MapReduce framework)
○ fault-tolerance (provided by HDFS)

Part 1: Hive

● A high level overview of Hive and its relationship with HDFS

● Enterprise-class relational database
 query and management system

Part 1 : RedShift

● Columnar storage

Part 1 : RedShift

P3.4: What you need to do
Part 1: Comparison
● Provision a MySQL instance with the star schema benchmark data-set and

benchmark the performance of query1 in ssb.
● Provision a Hive (EMR) Cluster. Create an external table in Hive that reads

from S3 and benchmark the performance of query1 in ssb.
● Provision a Redshift cluster, load ssb data-set to structured (relational) tables

and benchmark queries 1, 2 and 3 in ssb.

Part 2: Optimization
● Optimize the table structure in Redshift using sort keys and dist keys in order

to improve the performance of the ssb queries by leveraging the parallel
execution and columnar compression in distributed columnar stores.

Sort Keys:
● While creating a table, you can specify one or more columns as the sort key.
● Redshift stores your data on disk in sorted order according to the sort key.
● How your data is sorted has an important effect on

○ disk I/O, columnar compression, and query performance.
Dist Keys:
● When loading data into a table, Redshift distributes the rows of the table to

each of the node slices according to the table's distribution style
● You should assign distribution styles to achieve these goals.

● Collocate the rows from joining tables.

● When the rows for joining columns are on the same slices, less data

needs to be moved during query execution.

● Distribute data evenly among the slices in a cluster.

● If data is distributed evenly, the workload can be allocated evenly to all
the slices.

Part 2 : Optimize RedShift

P3.4: Possible hurdles

1. Do not run multiple Runner processes from
the same instance at the same time.
● This will report wrong results to the autograder.

2. Make sure the security groups on the
backend and runner instance allow traffic on
the ports on which the database listens.
● MySQL:3306
● Hive: 10000
● RedShift: 5439

Unit 4 Module 14 & 15

NoSQL Databases
● Apache HBase

○ An open-source version of Google's BigTable
distributed storage system.

○ Both systems are distributed, scalable, high-
performance, versioned databases.

● MongoDB
○ A document store that stores documents in

collections.
● Apache Cassandra

○ A fully distributed, structured key-value storage system,
which uses multiple design aspects of BigTable and
Dynamo.

● Amazon's DynamoDB
○ DynamoDB is a managed NoSQL service provided by

AWS.

Cloud Object Storage

● Amazon S3
○ Amazon Simple Storage Service (S3) is an online

durable and scalable object storage service offered
by Amazon Web Services.

● Openstack Swift
○ OpenStack Swift is an open-source object storage

system for public or private clouds.

● Ceph object gateway
○ Ceph object gateway is an access layer over the

RADOS distributed object store.This offers both S3
and SWIFT compatible interfaces into RADOS.

Quiz 4

• Quiz 4 will be open for 24 hours, Friday, Mar 27

• Quiz 4 becomes available on Mar 27, 00:01 AM EST.
• Deadline for submission is Mar 27, 11:59 PM EST.
• Once open, you have 180 min to complete the quiz.
• Late submissions are NOT accepted.
• You may not start the quiz after the deadline has passed.
• Maintain your own timer from when you start the quiz.
• Click submit before deadline passes. No Exceptions!

Location Silicon Valley Pittsburgh Rwanda Adelaide

Open Mar 26, 09:01 PM Mar 27, 00:01 AM Mar 27 06:01 AM Mar 27 02:31 PM

Deadline Mar 27, 08:59 PM Mar 27, 11:59 PM Mar 28 05:59 AM Mar 28 02:29 PM

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (3 Hours)

Quiz Open Quiz Deadline

Quiz 4
• 5% of your Overall Grade

• You only have 1 attempt

• You can save your Quiz answers
• Highly recommended
• Save prompt every 15 minutes

• What can I expect from the Quiz?
• Questions similar to the activities in the Units
• multiple choice, fill-in-the-blanks, numeric questions, ...

• Feedback for Quiz 4 is released after the deadline passes

Upcoming Deadlines

● Modules 14 & 15

● Quiz 4
○ Due: 11:59PM ET Mar 27th (Friday)

● P3.4
○ Due: 11:59PM ET Mar 29th (Sunday)

● 15619Project Phase2
○ Due: 16:59PM ET Apr 1st (Wednesday)

Project 3.4

Demo

Overview

Test query benchmark on
three different backend
systems:
1. MySQL,
2. Hive, and
3. Amazon RedShift

Runner (Frontend)

java -jar Runner.jar <DBType> <Query>

Set up DNS for backend instances and
username/password of RedShift

Task 1: MySQL

Please be patient…
Query runs for ~2 hours

Task 2: Hive

Task 3: Amazon Redshift

Please make sure to
add your username
and and password
in config.properties

Redshift

Configuration

Set the security
groups to allow
traffic on port 5439

Redshift Status Page

Load data into Redshift

Check rows in tables

Run each query three times

Optimizing query performance

Design considerations

● Workload Balancing

● Communication Cost

Two ways of improvement

● Sort key
 Keys are stored in sorted order for range
 filtering and compression.

● Dist key
 Distribute keys to every compute node.

Optimized table benchmark

drop_tables
redshift_create_table_optimized
redshift_load_compressed
query1, query2, query3
analyze_compression

Don’t forget the quiz for P3.4!

After completing all the tasks:
1. Edit runner.sh and answer the questions
2. Edit the references file
3. Submit your answers

Questions?

tWITTER ANALYTICS:

THE 15619PROJECT

Phase 1 Leaderboard

Well done !!!
Congratulations UnusualItem

Phase 1 Statistics

● Total Phase 1 submissions: 3932
○ Q1 1733
○ Q2 2199

● Phase 1 scores
○ Average 54.9
○ Median 36, Max:145 Min:9

Phase 2

● New Query 3 and Query 4
○ Make sure you read the write up properly.

● Phase2 is Live
○ One team (z2m) has 100% correctness for Q3 and

Q4.
● Team Oak

636 submissions
till now.

What’s due soon?

● Phase 2 Deadline

○ Submission by 16.59 ET (Pittsburgh) Wed 4/1
■ HBase Live from 6 PM to 9 PM ET

■ MySQL Live from 9 PM to midnight ET

○ Fix Q1 and Q2 if your Phase 1 did not go well

○ New queries Q3 and Q4. Targets 10000 and 6000 rps

○ Heads up: Phase 2 counts for 30% of 15619 grade

● Report at the end of Phase 2
○ Make sure you highlight failures and learning

○ If you didn’t do well, explain why

○ If you did, explain how

What to watch out for in Phase 2...

● Two more queries (Q3 and Q4)
○ More ETL

○ Multiple tables and queries

● Live Test!!!
■ For HBase and MySQL

■ Includes Mixed-Load

■ No more pre-caching of known requests

Query 3: Retweet Buddies

Q. What’s a retweet and how do I find it?

Read https://dev.twitter.com/docs/platform-objects/tweets

https://dev.twitter.com/docs/platform-objects/tweets

Query 3: Retweet Buddies

● A retweeted B twice

● B retweeted A once

● C retweeted A once

● A retweeted D once

GET /q3?userid=A

● *,3, B

● +,1, C

● -,1, D

Query 4: Trending Hashtag

● Use the hashtag entity

GET /q4?hashtag=SamSmith&start=2014-06-

23&end=2014-06-24

…

481298397299630080,57299114,2014-06-

24+04:50:54

...

Query 4: Trending Hashtags
(how it fits in)

● GET /q2?userid=57299114&tweet_time2014-06-

24+04:50:54

● 481298397299630080:0:tapi gak papa deh, doi

Taurus juga #SamSmith

Tips for Phase 2

● Avoid Tagging Penalties
● Keep a watch on budget. $60 phase +

livetest
● Preparing for the live test

○ You are required to submit two DNS each for
MySQL and HBase for the live test

○ Budget limited to $1.75/hr for MySQL and HBase
web service separately.

○ Caching known requests will not work
○ Need to have all Qs running at the same time
○ Dont expect testing in sequence.

■ Queries will be mixed.

Thank You

Any Questions?

