
15-319 / 15-619
Cloud Computing

Weekly Overview 7

October 11th, 2022

Recap of Last Week’s Activities

● Project 2 Discussion

● Project 3 - Part 1 Released - SQL and NoSQL

● OLI Unit 3 - Modules 10, 11, 12

● Quiz 5

● Team Project, Phase 1

○ Microservice 1 Checkpoint

○ Microservice 1 Early Bird Bonus

2

This Week’s Activities
● Project 3, Part 1 Discussion

○ Due on 16th October 11:59 PM ET

● OLI Unit 3: Virtualizing Resources for the Cloud

○ Module 13: Storage and Network Virtualization

● Quiz 6

○ Due on 14th October 11:59 PM ET

● Project 3 - Part 2: Cloud Storage - Heterogeneous Storage in the Cloud

○ Due on 16th October 11:59 PM ET

● Team Project, Phase 1

○ Microservice 1 Final Due on 16th October 11:59PM ET

○ Microservice 2 Checkpoint Due on 16th October 11:59 PM ET 3

This Week: Conceptual Content

●Unit 3: Virtualizing Resources for the Cloud

○ Module 7: Introduction and Motivation
○ Module 8: Virtualization
○ Module 9: Resource Virtualization - CPU
○ Module 10: Resource Virtualization - Memory
○ Module 11: Resource Virtualization – I/O
○ Module 12: Case Study
○ Module 13: Storage and Network Virtualization

4

OLI Module 13 - Storage and network Virtualization

●Unit 3 - Module 13: Storage and network virtualization

○ Software Defined Data Center (SDDC)

○ Software Defined Networking (SDN)

• Device virtualization

• Link virtualization

○ Software Defined Storage (SDS)

• IOFlow

●Quiz 6

○ Due on October 14th
5

Project 3 Part 2: Heterogeneous Storage on the Cloud

6

Project 3, Part 2 - Reminder!

● By Sunday, October 16th at 11:59 PM

○ Heterogeneous Storage on the Cloud (Part 2) -- Complete the tasks

and make a reflection post

● By Sunday, October 16th at 11:59PM

○ SQL and NoSQL (Part 1) -- Complete discussion tasks

● By Sunday, October 23rd at 11:59 PM

○ Heterogeneous Storage on the Cloud (Part 2) -- Finish discussion

tasks

7

Primers for Project 3, Part 2

● Neo4j Primer

● MongoDB Primer

● MySQL Primer

8

Neo4j Primer

● Introduction to Graph Databases

○ Need for Graph Databases

• We usually require joins between entities in RDBMSs, and they are

expensive to compute. Graph databases store connections

alongside data in the model

○ Cypher Query Language (CQL)

• Create: CREATE, Read: MATCH, Update: SET, Delete: DELETE

●Table indexing

○ Single Property vs Composite indexing

9

MongoDB Primer

●Compare MongoDB and MySQL

●MongoDB Features

●MongoDB Technicalities

○ Documents

○ Collections

●MongoDB Tutorial to practice:

○ How to import data into MongoDB

○ Some basic queries with Mongo Shell

○ How to Build index to speed up your query

10

Project 3, Part 2 Overview

Scenario: Build Your Own Social Network Website using datasets from

Reddit.com: users.csv, links.csv, posts.json

● Task 1: Implementing Basic Login with SQL

○ User authentication system : Azure Database for MySQL (users.csv)

○ User info / profile : Azure Database for MySQL

● Task 2: Storing Social Graph using Neo4j

○ Follower, followee : Neo4j (links.csv)

● Task 3: Build Homepage using MongoDB

○ All user generated comments: MongoDB (posts.json)

11

Project 3, Part 2 Overview (contd.)

● Task 4: Put Everything Together

○ User Timeline: Fanout

● Task 5: Caching

○ Cache the requests with high frequency

12

Social Network Architecture

13

Front-end Server Back-end Server

MySQL
(Azure Database for

MySQL)

Neo4j

MongoDB

Task 1: Implementing Basic Login with MySQL

○ Designed to manage highly structured data.

■ Authentication data

○ Database-as-a-Service (DBaaS)

■ Azure Managed MySQL database

● Cloud vendor is responsible for administrative tasks

● Users are responsible for optimizing applications that use

database resources

14

TDD with Mockito

● Mockito is an open-source testing framework that allows the creation

of test double objects (mock objects).

● It is used to mock interfaces so that the specific functionality of an

application can be tested without using real resources such as

databases, expensive API calls, etc.

● You are required to understand the given implementation, and may use

it to quickly debug your solution for Task 1.

15

Task 2: Storing Social Graph using Neo4j

● Designed to treat the relationships between data as equally

important as the data

○ Relationships are very important in social graphs

● Property graph model

○ Nodes

○ Relationships

○ Properties

● Cypher query language

○ Declarative, SQL-inspired language for describing patterns

in graphs visually
16

Task 3: Build Homepage using MongoDB

● Document Database

○ Schema-less model

● Highly Scalable

○ Automatically shards data among multiple servers

○ Does load-balancing

● Allows for Complex Queries

○ MapReduce style filter and aggregations

○ Geospatial queries

17

Task 4: Social Network Timeline
High Fanout in Data Fetching

18

Task 4: Social Network Timeline
High Fanout in Data Fetching

● Practice writing complex fan-out queries that

span multiple databases:

○ MySQL

○ Neo4j

○ MongoDB

19

Task 5: Social Network Timeline with Cache

● Fanout and Caching

○ Practice writing complex fan-out queries that span multiple

databases.

○ Also practice using a caching mechanism to boost your backend!

20

P3 - Reminders and Suggestions

● In Task 4 and 5, you will use the databases from tasks 1 to 3. Make sure

to have all the databases loaded and ready when working on Task 4 & 5.

● Make sure that you have written Modular code for tasks 1 to 3, since

you will need to re-use the code in tasks 4 and 5.

● You can submit one task at a time using the submitter. Remember to

have your back-end server running when submitting.

● Make sure to terminate all resources using “terraform destroy” after the

final submission. Double check on the Azure console that all resources

were terminated.

21

22

Best Wishes!!!

