15-319 / 15-619
Cloud Computing

Course Overview 4
September 20", 2022

Reflection of Last Week

e Conceptual content on OLI
o Modules 3, 4 and Quiz 2
e Project theme - Horizontal Scaling and Advanced Resource
Scaling
o AWS Horizontal Scaling
m Launch cloud resources via the AWS APIs (EC2)
m Horizontally scale instances to reach a target RPS
o AWS Autoscaling
m Launch cloud resources via the AWS APIs (ALB / ASG...)
m Design autoscaling policies to achieve RPS targets within
instance hour limits
m Handle instance failures
o AWS Autoscaling with Terraform
m Develop a Terraform template to launch cloud resources
m Contrast infrastructure as code (laC) and cloud APls

This Week

e Quiz 3 (OLI Modules 5, 6)
o Due on Friday, September 23rd, 2022, 11:59PM ET

e Project 1 Discussion
o Due on Sunday, September 25th, 2022, 11:59PM ET

e Project 2
o Due on next Sunday, October 2nd, 2022, 11:59PM ET

Primers Available this Week:
e Intro to Containers and Docker

e Kubernetes and Container Orchestration

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning, monitoring
and metering of virtual user “resources” on top of the
Cloud Service Provider’s (CSP) infrastructure.

Cloud middleware

Provisioning

Metering

Orchestration and automation

Case Study: Openstack - Open-source cloud stack
implementation

OLI Module 6 - Cloud Software
Deployment Considerations

® Programming on the cloud

e Deploying applications on the cloud

O

O O O O

Build fault-tolerant cloud services
Load balancing

Scaling resources

Dealing with tail latency
Economics for cloud applications

Cloud & Cloud Native

Cloud-native technologies are

used to describe applications

built with services packaged in y i\
t . d I d :I" ; / / /////—:\\\\\ \ . \.‘ \
containers, deployed as 2 ’ ' | CLOUD-NATIVE | \ i

y NS N

microservices and managed on

elastic infrastructure through
agile DevOps processes and
continuous delivery workflows.

Cloud Native

e software is more stable than the infrastructure it runs on.

e software is designed to anticipate failure.

e software remains stable even when the infrastructure it is.
running on experiences outages or changes.

e software is scalable by design.

e software must operate in a constantly changing environment.

Cloud—Native Applications: Platforms

e New platforms emerged, offering common services
(features) that make it easier to develop cloud-native
applications
o Auto-scaling, replication, load balancing, health

monitoring, service discovery, application-level routing,
programmability
o Commonly referred as “Platform as a Service” (PaaS)

© G 2 ==

Google App Engine opENSHIFT cLOUDFOUNDRY — docker

Kubernetes

[e]l[[e]e]][e]]]][e

Project 2 SR
Containers: Docker and
Kubernetes

IO1NOIIOINIOI

Docker containers

Building your own container-based
microservices

Manage multiple Kubernetes Cluster
Multi-Cloud deployments

Containers

® Provides OS-level virtualization.

® Provides private namespace, network
interface and IP address, etc.
e A big difference with VMs is t

share the host system’s

nat containers
Kerne

Containerized Applications

Virtual Machine

Virtual Machine | | Virtual Machine
ues ues ues
Operating

App A
App B
App C
App E
App F

Operating Operating
System System System
Host Operating System

10

Why Containers?

Faster deployment
Portable

Modularity

Consistent Environment

Build once, run anywhere

11

Docker

&

docker

Docker is an open platform for developing,
shipping, and running applications.

Dockerfile
Docker Image
Docker Container

.

Vs
Py
-

Dockerfile

e

build

Image

&

Docker Image

Single Container Docker Workflow

Docker Container

12

O

il

il
(I (I [,

Dockerfile =
docker
e Dockerfile tells Docker how to build an image:
Base Image
Commands
Files
Ports

O O O O

Startup Command

e In short, a Dockerfile is a recipe for Docker images

Let’s go through a sample Dockerfile!

13

Example Dockerfile

Debian as the base image
FROM debian:latest

references
parent
image
Install additional packages
RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory
ADD index.html /home/demo/

Define the command which runs when the container starts
CMD ["cat /home/demo/index.html"]

Us$ bash as the container's entry point. CMD is the argument to this entry
poin

ENTRYPOINT ["/bin/bash", "-c"]

14

Example Dockerfile

Debian Linux as the base image
FROM debian:latest

S

15

Example Dockerfile

Install additional packages
RUN apk add --update emacs
RUN apk add --update apache

16

Example Dockerfile

references
parent
image

index.html must be in the current directory
ADD index.html /home/demo/

17

Example Dockerfile

references
parent
image

Define the command which runs when the container starts
CMD ["cat /home/demo/index.html"]

Usg bash as the container's entry point. CMD is the argument to this entry
poin

ENTRYPOINT ["/bin/bash", "-c"]

18

Images & Containers

® docker build
o Builds an image

® docker run
o Runs a container based on an image

® Images are the blueprints (Like a Class)
o View these with docker images

e Containeris a ‘running instance of an Image’ (Like

an Object)
o View these with docker ps

® Docker cheat sheet

https://www.docker.com/sites/default/files/d8/2019-09/docker-cheat-sheet.pdf

Docker Engine ‘*

docker

® A client-server application
O Docker Daemon

o Docker CLI

o REST API — -

I
manages manages —J

Client

docker CLI
network data volumes
l REST API j
manages server manages

docker daemon

20

il

i ()
reararwy
(¢}

NN

docker

Docker Daemon

e Listens for Docker APl requests

e Manages Docker objects

e The Daemon does not have to be on the same
machine as the Client

Docker Host

Docker Client

Images Containers
docker build [::> nede 2%V g
docker run @ @
docker pull & ubuntu
docker push
[Daemon
|
Dockerfile

&

21

il

il
(I (I [’

O

N
docker
e Communicates with Daemon using an API
e When you type:
docker build nginx
You are telling the Docker client to forward the
puild nginx instruction to the Daemon

Docker CLI

Docker Host

Docker Client Images Containers

docker build || " de Tl
H)

docker run (hY)
docker pull 2 A‘ ub?r?tu
docker push

[Daemon

i

Dockerfile

2222

Docker Registries

» Store Docker images

« Examples
— Docker Hub and Docker Cloud
— GCP Container Registry
— Azure Container Registry

* docker pull

* docker push

New to Docker?
Create your free Docker ID to get started.

Docker Hub

Dev-test pipeline automation, 100,000+ free apps, public and private registries

Containers are userful, but how
to manage containers?

Containers provide many benefits
o Fast and lightweight
o Sandboxed and consistency

However, using containers introduces its

own complexity, e.g.,
o Load Balancing
o Fault Tolerance

How should we deploy, scale and manage
containers efficiently?

Kubernetes

e Kubernetes is an open-source platform for automating

deployment, scaling, and operations of application

containers.

O

O O O O

Horizontally Scalable
Self-Healing

Service Discovery
Automated Rollbacks

Utilization

kubernetes

25

https://kubernetes.io/docs/whatisk8s/

Kubernetes Overview %

e API Objects

o Pods - Collection of Containers
o Deployment - Manages Pods
o Service - Network Endpoint

e Desired State Management
o YAML (YAML Ain’t a Markdown Language)

e Kubectl| - CLI for Kubernetes
o kubectl create config.yaml

26

https://kubernetes.io/docs/user-guide/kubectl-overview/

Kubernetes Cluster - Master

e Master Node
o APl Server
o Controller Manager
o Scheduler

Kubernetes Node Kubernetes Node

Kubernetes Cluster - Worker

e Worker Nodes
O Kubelet Daemon
o Kube-Proxy

Kubernetes Node Kubernetes Node
28

Sample Kubernetes Config YAML %

apiVersion: vl

kind: Pod

metadata:
name: Sample-Pod ~
oot Sample-Pod

app: web

spec:
containers: front-end

- name: front-end —> -
image:
gcr.io/samples/hello-frontend:1.0 heIIo-app

ports:
- containerPort: 80
- name: hello-app
image:
gcr.io/samples/hello-app:1.0
ports:
- containerPort: 8080

*Take note of indentation

29

Y
Helm HELM

—

e A tool for managing Kubernetes applications
e Helm Charts help you define, install, and upgrade
complex Kubernetes application

e Chart structure:
o Chart.yaml
m A YAML file that contains chart information (name, version, description, etc.)
o Values.yaml

m The default configuration of this chart. The values listed in this file will be
substituted in the files under the templates/ directory.

o templates/

m Adirectory of template files that will be combined with the values defined in
Values.yaml. The files under this directory will be used to define all of the
Kubernetes objects required to deploy the application.

30

https://helm.sh/

Docker, Kubernetes Workflow

CLOUD

CONTAINER
REGISTRY

LOG ANALYSIS

adl

MONITORING

CONTAINER

IMAGE

DEV

@ E docker < ‘

SCAFFOLD
APPLICATION

Microservice Architecture (IMSA)

e An architectural development style of software systems to
structure a single application as a collection of loosely
coupled services.

e This architecture allows each service to exist independently
of each other and generally communicates over a network.

e The most common type of communication is by invoking a
regular web API service. It can also adopt messaging

protocols for asynchronous communication.

https://microservices.io/

Microservice Architecture (IMSA)

e Each microservice has:
o own CPU
o own runtime environment
o often, a team working on it
e Each service can:
o run its own unigue process

o communicate autonomously

https://microservices.io/

Microservice Architecture (IMSA)

e \Why adopt a Microservice architecture?
o Application Size
o Scalability
o Modifiability
o Highly Maintainable

o Fault-tolerance

https://microservices.io/

An Industrial Example

USER

USER (3)

CLOUD

KUBERNETES

-,

Ca

++

g

ffe?2

PYTHRCH

Caffe Keras

REST
API

TRAINER
—> SERVICE =

LIFECYCLE
MANAGER

4@7

TRAINING
JOB

)

LEARNER
POD

LEARNER

(e.g. Tensorflow, Caffe,
PyTorch, Keras etc)

CONTROLLER

EXTERNAL

©)-o0

BROWSER

WEB

©

: :

HELM

O

MONGO

DB

PROMETHEUS

TRAINING
DATA SERVICE

o

EtcD

LOG
COLLECTOR
JOB
MONITOR
PARAMETER
SERVER

CLOUD HARDWARE (GPUs and CPUs

SSD BACKED NFS VOLUMES

\

ATV

OBJECT
STORAGE

MODEL
DIFINITION
TRAINING
DATA

TRAINED
MODELS

J

35

Project 2 - Containers: Docker & Kubernetes

Architecture: WeCloud Chat Microservices - Auto Scaling and Multi-Cloud

Kubernetes Engine Kubernetes Service
) Google Cloud Platform «C:JKSH gne /AAzure (‘AKS,' !
Profile Service Profile Service
Q) poiie = —a < o Q) poie = *a
i : MysaL i MySQL
Iprofile Iprofile
f

Chat Service @

@ MySQL
@ Chat HPA

Ingress Ingress
Redis Pub/Sub ‘
Login Service Login Service —————> HTTP Requests
Nlogin Nlogin
| ' —_—e QL Connections
@ Login oA }—a Login oA J
= i T = MyBOL —————o Redis Pub/Sub

WeCloud Chat

36

Project 2 - Containers: Docker & Kubernetes

& & &

Profile LOgin Chat

1 | i

Project 2 - Containers & Kubernetes

e Build a chat room application using the microservice
pattern
® Project overview:

o Task 1: Containerize the profile service and run it locally
o Task 2: Deploy the profile service to GKE

o Task 3: Migrate the profile service database from H2 to
MySQL. Use Helm to manage the Kubernetes application.

o Task 4: Install the chat service and login service using Helm
charts. Connect the microservices to build an application.

o Task 5: Replicate the profile and login services to AKS.
Implement auto scaling rules to horizontally scale pods.

o Task 6: DNS using Azure front door service

Task 1 - Containerize Profile Service

® Introduction to Dockerfiles

® Become familiarize with the Docker CLI

0 docker build
0 docker 1mages
O docker run

O docker ps

e Containerize a Java application (a REST service)
e Consider the interactions between the host
machine and the container

O See the next slide

Task 1 - Containerize Profile Service

e Run a Docker container to host the profile service

o The Profile service exposes port 8080 on the container
o Port 8000 of VM is mapped to the container port

e How do we achieve this port mapping?

£<GCPIP:8000> {<profile-service:8080> }

-/

Task 2 - Using GCR and GKE to
Deploy the Profile Service

e Push your image to a private registry

O Push the profile service Docker image to Google
Container Registry (GCR)

e Define a Kubernetes YAML configuration to

o Create a deployment based on the image pushed
to GCR
o Expose the profile service via a (GCP) load balancer

Task 2 - Using GCR and GKE to
Deploy the Profile Service

- cory
e Profile service

architecture

) Google Cloud Platform @ .Km;””“ Engine

e The backend ‘ ,

application Profile Service A

accepts GET QO Profite H%B

requests at L 4 _T

/p rofile -3 |- tcp:80 — tcp:8080

A Load Balancer

e Theload

balancer will map GET /profie

port 80 to port
8080

42

Task 3 - Introduction to Helm Charts

e Deploy a MySQL database using Helm
o Update the profile service to use MySQL instead of
the embedded H2 database
o Remember to push your updated profile image to

GCR!

e Develop a Helm chart for the profile service
o Release the profile service via helm

Task 3 - Use Helm Charts and Migrate
to MySQL

* Profile service

architecture
(MySQL)

") Google Cloud Platform @ gﬁgr:ﬂeies Engine
e The backend Profile Service
application © Frofie ___,@
accepts GET
L e _T MySQL
requests at ~O% | top80 - tep:8080
/prOfile A Load Balancer
e [heload GET /profile
balancer
should map 80
to 8080

44

Task 4 - Cloud Chat Microservices

e Builds on Task 3
o Additional login and group chat services

e Login service

O

Requires a separate MySQL database to store user
login information

e Group chat service

O

Requires Redis Pub/Sub messaging channel for
scalability and real time communication
Requires a separate MySQL database to persist
messages

Task 4 - Cloud Chat Microservices

Architecture: WeCloud Chat Microservices

") Google Cloud Platform @ Kubernetes Engine

(GKE)

Profile Service

@ Profile —@ Zal.

MySQL
Iprofile
Chat Service @
M L
@ Chat ySQ o
- Ingress
Redis Pub/Sub
T — > HTTP Requests
Login Service
/login — = MySQL Connections

@ Login | E o — 5 Redis Pub/Sub

MySQL

Task 4 - Cloud Chat Microservices

* |ngress: An API object that manages external access
to the services in a cluster, typically HTTP.

* |Ingress exposes HTTP and HTTPS routes from
outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the
Ingress resource.

* |n our case for Task 4, we have the following port
mapping:

Task 4 - Cloud Chat Microservices

* You must have an ingress controller to satisfy an Ingress.
Only creating an Ingress resource has no effect. An Ingress
controller is responsible for fulfilling the Ingress, usually
with a load balancer. You may need to deploy an Ingress
controller such as ingress-nginx.

r
| kubernetes

: Service 1 Service 2
: = ,'rz—n
' =3 =3

. m : Serwces Service 4
Ingress

Controller '

l App

—————————————————————— 48

L U U U U I U I I RS MU ————— 4

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.github.io/ingress-nginx/deploy/

Task 5 - Autoscaling, Multiple Cloud
Deployment and Fault Tolerance

e Build upon Task 4

o Consider how to handle downstream service failures

e Achieve high availability

o Multi cloud deployments!

o Autoscaling Kubernetes deployments to
accommodated increased traffic

o Use the HorizontalPodAutoscaler Kubernetes
object to scale the pods

Task 5 - Auto-scaling, Multiple Cloud
Deployment and Fault-tolerance

Architecture: WeCloud Chat Microservices - Auto Scaling and Multi-Cloud

) Google Cloud Platform

Profile Service

@ Profile

Chat Service

@ Chat

HPA

Login Service

@ Login

<

._EH

HPA

MySQL

2=

MySQL

@ Login

Profile Service
ﬂ e @ Profile
MysQL
Iprofile Iprofile
2
|
MySQL
i Ingress Ingress
Redis Pub/Sub ’
Login Service
flogin Nlogin

°—u

MysQL

>

—_ o

HTTP Requests

MySQL Connections

Redis Pub/Sub

50

Task 6 - Domain Name and Azure
Front Door Service

e In this task, you will use Azure Front Door Service to
achieve a path-based routing to the web application
deployed on Azure and GCP.

e We will define Domain Name System (DNS) to map
two IP address from previous tasks, to a single
domain name.

51

Tips, Trips, and Tricks

e ook through all the project 2 primers again
e Read the project explanations again
e Debug, debug, debug

o This project has many moving pieces!
o Where is the issue occurring?
o What is the expected behavior of the system?

e Pods and Logs

o Did my pod start?
m (kubectl get pods , kubectl describe pods)

o Is my pod generating any logs?
m (kubectl logs ..)

® Some tasks may take a couple of minutes before they
fully work (especially tasks 5 and 6).

Project 2 Penalties

Project Grading Penalties

The following table outlines the violations of the project rules and their corresponding grade penalties for this project.

Note that a penalty is the absolute value as per the table, not calculated by a percentage of your total score.

Violation Penalty of the project
grade

Incomplete submission of required files -10%

Submitting your credentials, other secrets, or Andrew Id in your code for grading -100%

Submitting only executables (. jar, .pyc, etc.) without human-readable code (.py, .java, .sh, -100%

etc.)

Attempting to hack/tamper the grader -100%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on academic -200% or R in the

integrity and our syllabus) course

53

Upcoming Deadlines .

e Quiz 3 (OLI Modules 5, 6)
o Due on Friday, September 23rd, 2022, 11:59PM ET

e Project 1 Discussion
o Due on Sunday, September 25th, 2022, 11:59PM ET

e Project 2
o Due on next Sunday, October 2nd, 2022, 11:59PM ET

54

Please start early!!!

Manage your time well

99

