
15-319 / 15-619
Cloud Computing

Course Overview 2

September 6, 2022

Agenda

● Course Logistics

● Project 0 Recap

● Quiz 1 Overview

● Project 1 Overview

2

Accessing the Course

● Course website
○ https://www.cs.cmu.edu/~msakr/15619-f22/index.html

● Open Learning Initiative (OLI) Course
○ Access via canvas.cmu.edu

● The Sail() Platform
○ Choose CMU as the identity provider

○ Cloud Account Setup (AWS, Azure, GCP)

○ Update your course profile with AWS, Azure & GCP info

○ Complete the Primers on AWS, Azure and GCP

● Piazza

3

https://www.cs.cmu.edu/~msakr/15619-f22/index.html
http://canvas.cmu.edu
http://projects.sailplatform.org/
https://piazza.com/class/l6wqwdeh5vl3sg

Amazon Web Services (AWS) Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Follow the instructions in the Account Setup Primer
● Wait to receive a Consolidated Billing Request email

from Amazon
○ The linking email is sent automatically, waiting

time varies
● When you receive the linking email, click the link to

verify the linked billing
○ You need to manually accept the linking request
○ Remember to check your SPAM folder
○ You won’t be able to complete the projects

without a linked account.

4

Google Cloud Platform (GCP) Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Follow the instructions in the Account Setup

Primer
● Receive a $50 coupon on the Sail() platform
● Redeem the coupon

5

Microsoft Azure Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Do not use your @andrew.cmu.edu or other CMU

issued email address
• You can use the GCP email you created

● Update the course profile your Azure email
address for the invitation code to set up Azure
subscription

6

Piazza

● Piazza is a discussion forum for our learning community.
○ Asking questions itself is a learning activity in this

course.
○ Please contribute good questions and answers!

● Check out Piazza Post Guidelines and Ask Good Technical
Questions Primer for best practices when asking questions

● When you encounter a (project-specific) problem:
○ Attempt to solve the problem by yourself (check the

hints and grader feedback, search online, etc.)
○ Check current Piazza questions & answers carefully to

avoid duplicates
■ Utilize of Piazza’s search and tag features

○ Visit TA OHs: OH schedule are posted on Piazza and
Google calendar

○ Create a Piazza post 7

https://piazza.com/class/l6wqwdeh5vl3sg/post/6
http://goo.gl/DwR9re

Piazza Notes

• Ask a public question IF possible
• DON’T ask a public question about a quiz question
• Read the Piazza Post Guidelines before asking
• Show your attempt and effort to solve the problem
• Practice how to communicate effectively in a

technical setting
• The key to effective communication is to provide

the full context.

8

https://piazza.com/class/l6wqwdeh5vl3sg/post/6

Piazza - Provide the full context

● Which project module are you working on?
● Which task/section are you working on?
● If relevant, please provide the information of the cloud

account and resources.
● Example code/commands/error messages
● How to reproduce?
● Expected behavior v.s. Actual behavior
● Environment summary
● What you have tried to solve the issue?

9

Do not use screenshots to share
text-based information

• Sharing code/error logs/ terminal commands using a
screenshot makes it very difficult for the readers to
consume

• In Piazza, use the backticks (```) to put code
block/error logs/…

10

Please share
code/commands/error

messages in the plain text
format. NEVER share
code/commands/error

messages using screenshots!

Piazza - Articulate technical questions

• There are common patterns to communicate effectively in a

technical setting.

• Our course not only aims at building your technical skills, but

also training your communication skills.

• Each time you ask a question, please mindfully attempt to

articulate the question. You will receive feedback from the

teaching staff on how your question may be better

articulated.

• We provided a template in the Ask Good Technical Questions

Primer for you to structure your questions.

11

Deadlines

● Project deadlines
○ On the Sail() Platform

● Quiz deadlines
○ On OLI

12

Deadlines

● Hard Deadlines
○ NO late days, NO extensions

○ Start early!

○ Plan your activities, interviews and other

commitments around the deadlines.

○ NO exceptions!

● Projects are typically due on Sundays at 23:59 ET

● Quizzes are typically due on Fridays at 23:59 ET

13

Project 0 Recap

● Learning with the Sail() platform

● Get familiar with AWS, Azure and GCP accounts
○ AWS EC2, S3, CloudWatch
○ Azure Virtual Machines, Azure Storage
○ GCP Compute, GCP Storage
○ Web consoles, CLIs, SDKs

● Basic SSH skills
● Jupyter Notebook primer
● Maven primer (important!)
● Infrastructure as Code (Terraform) primer (important!)
● How to Ask Good Technical Questions primer (important!)

14

Project 0 Recap

● You experimented with how to complete project-based learning with
the solution-feedback cycle

● You experimented with how to provision cloud resources using
multiple cloud service providers.

● You experimented with the cloud-based development and
deployment workflow.

● You quickly studied diverse topics within a short timeframe (i.e., a
week), and transferred your learning to complete hands-on tasks with
real-world scenarios:
○ tools (e.g., cloud platforms, Maven, Terraform, JUnit, JaCoCo,

Jupyter Notebook, Pandas, Linux tools such as awk and grep, etc.)
○ practices (e.g., test-driven development, code coverage,

encoding-aware I/O, etc.)
○ processes (e.g., budget, tagging and lifecycle management for

cloud resources, etc.)
15

Quiz 1 Logistics

● Quiz 1 will be open for 24 hours, Friday, Sep 9
○ All quizzes are open-book tests.

○ Quiz 1 becomes available on Sep 9, 00:00 AM ET.

○ Deadline for submission is Sep 9, 11:59 PM ET.

○ Once open, you have 120 min to complete the quiz.

○ You may not start the quiz after the deadline has passed.

○ Every 15 minutes you will be prompted to save.

○ Maintain your own timer from when you start the quiz.

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (2 Hours)

Quiz Open Quiz Deadline

16

Start BEFORE Deadline

● After you start the Quiz, you cannot stop the clock.
○ You have 120 minutes to click on submit.

○ You have to keep track of the time yourself.

○ If you don’t click on submit, the quiz will be automatically submitted

after 2 hours.

○ You will only receive a grade if the manual/automated submission

is before the deadline.

17

THE QUIZ MUST BE SUBMITTED
BEFORE THE DEADLINE

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (2 Hours)

Quiz Open Quiz Deadline

Quiz 1 Preparation

● Test your understanding in Modules 1 and 2
○ Cloud computing fundamentals, service models,

economics, SLAs, security
○ Use the activities in each page for practice.
○ You will be tested on you ability to perform the

stated learning objectives on OLI:

18

Do NOT collaborate on quizzes

● In previous semesters, there is always a significant

minority who decided to collaborate on quizzes,

especially at the semester start and when the

team project began.

● We have to emphasize again that unauthorized

collaboration on quizzes is also AIV.

19

Programming Experience Expected

● Strong proficiency in at least one of the following, with

some fair comprehension of the others:

○ Java 8

○ Python 3

○ Bash

● Java and Python are required to complete the projects

○ Use the time now to brush up

○ Please read the Maven primer!

● Do not fear Bash/Python scripting, it will make your life

easier!

20

Tagging

● Tag ALL tag-able resources on AWS
○ Before you make a resource request, read the

docs/specifications to find out if tagging is supported
○ We will specify which resources are required to be

tagged in each project
○ Apply the tags during resource provisioning
○ We need tags to track usage, a grade penalty will be

applied automatically if you do not tag!

● Tagging Format
○ Key: project/Project
○ Value: getting-started-with-cloud-computing,

vm-scaling, containers, etc.

21

Budgets and Penalties

● No proper tags ➔ 10% grade penalty
● Provision resources in regions other than us-east-1 ➔ 10%

grade penalty
● Budget:

○ For P1, each student’s budget is $20
○ Exceeding Budget ➔ 10% project penalty
○ Exceeding Budget x 2 ➔ 100% project penalty (no score)
○ You can see Cost and Penalties in the Sail() platform

● NO exceptions
● We gave you an opportunity to learn in Project 0 without

affecting your grade
● We enforce these penalties automatically starting from

Project 1!
22

Academic Integrity Violation

● Cheating ➔ the lowest penalty is a 200% penalty

& potential dismissal
○ Other students, previous students, Internet (e.g.,

StackOverflow)

○ Do NOT work on code together

○ This is about you struggling with something and

learning

○ Penalty for cheating is SEVERE – don’t do it!

○ Ask us if you are unsure

23

Compromised Accounts

● People are scanning publicly available files for

cloud credentials.
○ They compromise your account and launch resources

in other regions.

● If you put any of your credentials in files on

Github, Dropbox, Google Drive, Box, etc.
○ You are vulnerable to getting your account

compromised.

○ Going over 2x the project budget ➔ 100% penalty!

24

Quality of Service (QoS)

Quantitatively Measure QoS

● Performance: Throughput, Latency

(Very helpful in Project 1 & Team Project)

● Availability: the probability that a system is

operational at a given time (Project 1)

● Reliability: the probability that a system will

produce the correct output

25

QoS Matters!

• Amazon found every 100ms of latency cost them

1% in sales (~$1B)

• Meta lost about $65 million in advertising

revenue because of a 7-hour outage in 2021

26

Traffic patterns in the real-world

27

● Daily
● Weekly
● Monthly
● Yearly
● ...

The Ferenstein Wire

Vertical Scaling

Load
Generator

Small

Medium

Large

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

28

Vertical Scaling Limitation

Load
Generator

WS1

WS2

WS3

● However, one
instance will always
have limited
resources

● Reboot/Downtime

29

Horizontal Scaling

WS

WS

WS

Load
Generator

30

How do we distribute load?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

31

How to handle instance failure?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

32

Make good use of horizontal scaling…
• Make sure that the workload is even on each server

• Do not assign load to servers that are down

• Add/remove servers according to a changing load

How does a cloud service provider help resolve these problems?

Server2

Server3

Server1

Server4

Managed group of servers

Load Balancer

33

Load Balancer

● “Evenly” distribute the load?
○ Round Robin distribution
○ Also consider:

■ Load checks
■ Health checks

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer (ELB)

■ Scale up based on load
○ Elastic, but it still takes time

■ Require the warm-up process

Load Balancer

34

Scaling

Manual Scaling:

● Tend to lead to
over-provisioning and
low-utilization

● Tend to lead to insufficient
capacity and lose customers

● Expensive on manpower

Autoscaling:

● Automatically adjust the
capacity based on metrics and
rules

● Save cost

35

Amazon Auto Scaling Group

User Load

Auto Scaling Group

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

E
L
B

Elastic Load
Balancer

36

Amazon CloudWatch Alarm

• Monitor CloudWatch metrics for some specified
alarm conditions

• Take automated action when the condition is met

CloudWatch
Metrics Repository

CPU Utilization

Other Metrics… CloudWatch
Alarm

Amazon
CloudWatch

User-Defined
Action

Resources with
CloudWatch

Enabled

37

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

fig. horizontal scaling

Load
Generator

WS

WS

WS

38

Project 1 Task 1: Horizontal
Scaling on AWS

● Write a program that
launches web service
instances and ensures
that the target total RPS
is reached

● Your program should be
fully automated: launch
LG → submit password
→ Launch WS → start
test → parse log → add
more WS...

fig. horizontal scaling

Load
Generator

WS

WS

WS

39

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

Auto Scaling
Group

Load
Generator

WS

WS

WS

LB

40

• Programmatically create LG, Load Balancer (ELB), Auto-Scaling
Group (ASG) with Auto Scaling Policies and Launch Templates

• Fine-tune Scale-Out and Scale-In policies
• Your solution also needs to be fault tolerant
• Health configurations are important

Elastic Load Balancer

Target Group

Launch Configuration

Auto Scaling Group

CloudWatch Alarm

41

Project 1 Task 2: AWS Autoscaling

Hints for Project 1 Task 2

● Do a dry run via the web console to make sure you
understand the workflow

● The Autoscaling test could be expensive!

○ On-demand, charged by per second, do not blindly

launch tests

● CloudWatch monitoring is helpful for policy tuning
○ Observe and analyze the pattern, experiment with a

policy, collect data to verify why it achieved a certain
performance, and iterate until you achieve your goal

● You may need a lot of time to understand the AWS SDK
documentations

42

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

Auto Scaling
Group

Load
Generator

WS

WS

WS

LB

43

Project 1 Task 3: AWS Autoscaling
with Terraform

● Read P0. Infrastructure as Code Primer

● Make sure that terraform plan generates

the required resources

● Consider trying task 3 before spending time

fine-tuning your policies for task 2 as task 3

usually takes less time

fig. horizontal scaling

44

Penalties for Project 1

Violation
Penalty of
the project

grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $40 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances,
ELB, ASG) for this project with the tag: key=Project,
value=vm-scaling

-10%

Submitting your cloud/submission credentials or any Personal
Identifiable Information (PII) in your code for grading -100%

Using instances other than m5.large for Horizontal
scaling/Autoscaling on AWS -100%

45

Penalties for Project 1 (cont.)

Violation
Penalty of
the project

grade

Submitting only executables (.jar, .pyc, etc.) instead of
human-readable code (.py,.java, .sh, etc.)

-100%

Attempting to hack/tamper the autograder in any way -200%

Cheating, plagiarism or unauthorized assistance (please refer to
the university policy on academic integrity and our syllabus)

-200% &
potential
dismissal

46

Read the
primers

Read the relevant
documentation

Read the
writeup

Make a
submission

Work on the
task

Review grader
feedback

Budget cloud
resources

Validate your
work

Go to OHSearch Piazza

Keep a local backup
of the code

Debug Post on Piazza

Complete project
reflection

Clean up code

Complete end-of-project
survey

Complete
reflection

feedback task

Review manual
grading feedback

Review the weekly
course overview

Provision and tag
cloud resources

Terminate cloud
resources

Complete all
tasks

47

Project 1 Deliverables

● Complete the Horizontal Scaling Task
● Complete the Autoscaling Task

○ Submit the patterns.pdf file
● Complete the Autoscaling with Terraform Task
● Submit your code for grading

○ Complete the references file for citation
○ Execute submitter on your student VM to submit your code

● Finish Project Reflection (graded) before the deadline
● Finish Project Discussion (graded) within 7 days after the

project deadline
○ Reply and provide feedback to 3 reflection posts

48

Grading of Your Projects

● Code submissions are auto-graded
● Scores will be available on the Sail() platform

submission tab
○ it may take several minutes for your score to

show
○ the submissions table is updated with every

submission
● We will grade all the code (both auto and manually

graded)

49

Manual Grading of Your Projects

● Hard to read code of poor quality will lead to a loss of
points during manual grading.

● Poor indentation will lead to a loss of points during
manual grading

● Lack of comments, especially in complicated code, will
lead to a loss of points during manual grading.
○ The idea is also NOT to comment every line of code!

● General advice:
○ Preface each function with a header that describes

what it does
○ Use descriptive variable and function names
○ Utilize Checkstyle, PEP8, or other tools to check your

coding style 50

Reminder: Deadlines

● Sep 9 at 23:59 ET
○ Quiz 1

● Sep 18 at 23:59 ET
○ Project 1 (including Project Reflection)

● Sep 25 at 23:59 ET
○ Project 1 Project Discussion

● ASAP
○ Academic Integrity Course Quiz

51

