15-319 / 15-619
Cloud Computing

Recitation 2
September 4 & 6, 2018

Accessing the Course

® Open Learning Initiative (OLI) Course
o Access via canvas.cmu.edu

® hitp://theproject.zone (access through canvas)

o choose CMU as the identity provider

o AWS Account Setup

O Azure Account Setup

o GCP Account Setup

o Update your TPZ profile with AWS, Azure & GCP info
o Complete the Primers on AWS, Azure and GCP

® Piazza

http://canvas.cmu.edu
http://theproject.zone/
https://theproject.zone/profile
https://piazza.com/class/jccgr24hou2186

Piazza

Suggestions for using Piazza

o Discussion forum, contribute questions and answers

o Read the Piazza Post Guidelines (@6) before asking
When you have a (project-specific) problem, follow the order
below!

o Try to solve the problem by yourself (Search, Stack Overflow)
o Read Piazza questions & answers carefully to avoid duplicates
m Visit TA OHs: TA office hours are posted on Piazza and

Google calendar
m Create a piazza post
Please note:

o Try to ask a public question if possible
o Provide your andrewlID privately if you think we need it to help
o Don’t ask a public question about a quiz question

https://piazza.com/class/jkvtywetsu35vh?cid=6
http://goo.gl/DwR9re

Reflecting on Last Week

AWS, Azure and GCP

o Create accounts

o Use web consoles or APIs to launch VMs on AWS, Azure and
GCP

o (AWS) Spot instances and S3

In PO, run a web server, test to access the server over a browser

o Launch, connect to and terminate VMs

o Install & run software on a VM

o Vertical scaling

Basic SSH skills

In OMP primer, set up configuration for AWS Cloud 9

o Read it ASAP if you have not done so

Terraform primers

o Read it if you have not done so

Programming Experience Expected

° in at least one of the following, with
some fair comprehension of the others:
o Java 8
o Python 2/3
© Bash

Java is required to complete parts of Projects.

Use the time now to brush up
Please read Maven primer!

Do not fear bash/python scripting, it will make your life
easier!

Completing Projects in this Course

Provision AWS, Azure or GCP Resources

o Use the AMIs/VHDs/OS Images we provide for the project
o Tag all instances!

Monitor your cost
o Calculate costs before you provision!

Complete tasks for each project module
Project writeup has several sections unlocked by AssessMe

Submit your work
o Pledge of integrity
o Results in scoreboard

Terminate all resources when you have verified your score
and kept a copy of your work (e.g. git private repo)

Tagging

o Before you make a resource request, read the
docs/specifications to find out if tagging is supported

o We will specify which resources are required to be tagged
in each project

o Apply the tags during resource provisioning

o We need tags to track usage, a grade penalty will be applied
automatically if you do not tag!

® Tagging Format
o Key: Project
o Value: 0,1.1, 1.2....etc.

Budgets and Penalties

No proper tags => grade penalty
Provision resources in regions other than us-east-1 =>
grade penalty

Budget

o For P1.1, each student’s budget is $20

o Exceeding Budget => project penalty

o Exceeding Budgetx 2 => project penalty (no score)
o You can see Cost and Penalties in TPZ.

No exceptions.

Academic Integrity Violation

® Cheating => the lowest penalty is a penalty & or

R in the course

O

O O O O

Other students, previous students, Internet (e.g.
Stackoverflow), etc.

Do not work on code together

This is about you struggling with something and learning
Penalty for cheating is SEVERE — don’t do it!

Ask us if you are unsure

Compromised Accounts

e If you put any of your credentials in files on

o Github, Dropbox, Google Drive, Box, etc.

o You are vulnerable to getting your account
compromised.

o Going over 2x the project budget = 100% penalty!

® People are scanning publicly available files for
cloud credentials.

o They compromise your account and launch resources
in other regions.

Deadlines!

o No late days, no extensions

o Start early!
o Plan your activities, interviews and other

commitments around the deadlines.

Project modules are typically due on Sundays at

23:59 ET
Quizzes are typically due on Fridays at 23:59 ET

Deadlines!

® Project deadlines
© On TheProject.Zone

® Quiz deadlines
o On OLI

OLI: Quiz 1 Preparation

® Tests your understanding in Modules 1 and 2
o Cloud computing fundamentals, service models,
economics, SLAs, security
o Use the activities in each page for practice
o You will be tested on you ability to perform the
stated learning objectives on OLI

Module 1/ Cloud Compt

ting Overview I .))) - ‘)
wle2/ Economics, Benefits, Risks, Challenges and Solutions

s

Explain the concept of cloud
computing

nderstand how computing Briefly recall the recent history
s across domains dealt with cloud computing, illustrating its
scale before the coud evolution

Articulate the economic benefi
well as the issues/risks of the cloud
paradigm for cloud service
providers

Dist ome of the advantages Articulate the economic benefits as
and disadvantages of the cloud well as the f
paradigm paradigm for use

a

ome of the enabling
gies in cloud computing

ome of the common cloud
P nd their associated
cloud stacks

Differentiate cloud service models,
such as IaaS, Paa$, and Saa$

Recall popular cloud use case
scenarios

Enumerate the different types of
clouds, and compare and contrast
them

Define SLAs and SLOs and
illustrate their importance in Cloud
Computing

Enumerate and explain various
threats in cloud security

Enumerate and explain various
controls in cloud security

OLI: Quiz 1 Logistics

e Quiz 1 will be open on OLI for 24 hours, Friday, Sep 7
o Quiz 1 becomes available on

Deadline for submission is

Once open, you have to complete the quiz.

You may not start the quiz after the deadline has passed.

Every 15 minutes you will be prompted to save.

O O O O

Quiz Duration (2 Hours)

-~ -
e e — o ——
N~

Quiz Open Quiz Deadline
24 Hours (Quiz Window)

Submit Before Deadline

e When you start the Quiz, you cannot stop the clock

o You have 120 minutes to click on submit
o You have to keep track of the time yourself
o |f you don’t click on submit you will not receive a grade

YOU MUST SUBMIT
WITHIN 120 MINUTES
AND
BEFORE THE DEADLINE

Project 1 Motivation: Big Data

What is Big Data?
It is high volume, high velocity, and/or high variety

O

information assets.

There is a lot of value in the analysis of big data for

organizations

Big Data = Transactions + Interactions + Observations

Sensors / RFID / Devices

BIG DATA

5
|

R SERapet Social Interactions & Feeds
User Click Stream

Web logs AJB testing
s—
Tosmuu.s Offer history ' Dynamic Pricing
Affiliate Networks
Gigabytes Segmentation Search Marketing
Offer details
ERP vioral
Binchinsn daiall Customer Touches Benis | Targeting
Megabytes Purchase record Support Contacts Dynamic Funnels

Payment record

User Generated Content

Spatial & GPS Coordinates
External Demographics
Business Data Feeds
HD Video, Audio, Images
Speech to Text

Product/Service Logs

SMS/MMS

Increasing Data Variety and

Source: Contents of above graphic created in partnership with Teradata, Inc.

Use Cases: Big Data Analysis

® Online retailers are analyzing consumer spending
habits to learn trends and offer personalized
recommendations and offers to individual customers

e Companies such as Youtube, etc. are using big data
to track media consumption habits of their
subscribers and trends to provide value-added
information to advertisers and customers

Trending Topics are Everywhere!

TRENDING _
» AMBER Alert

e

Trends - Back to Discover
#EveryVillainNeeds [EJ Promoted

Unjg,

#ElderlyTVShows ‘ed gy
Stateg

#0scarNoms
#Empire
Lego Movie
Unfriended
Pittsburgh

#KiranBedi

Xbox One

#MyLastWordsin5Words

Why Trending Topics?

|dentify trends and viral content

Maximize advertisement placement opportunities
Search Engine Optimization (SEO)

And more....

P1.1: Big Data Analytics

Sequential Computing S Ju pyter

Maven |Unit®

pandas

.I:~//

WIKIMEDIA

FOUNDATION matp’t,ib
oty | A e grep

Parallel Computing

R.elal Wo.rld d-a t_aset.: Data pre-processing using Data analysis & visualization
- Wikimedia Wikipedia Test-Driven Development (TDD) = |
: Pageviews : :

Project 1.1 Datasets

e Wikimedia Wikipedia pageviews dataset
o Hourly: Start with filtering/pre-processing the
hourly pageviews dataset

o Monthly: Implement the
filtering/pre-processing of the 30-day dataset
using MapReduce
m Data from March 8 to April 6in 2018

The Wikimedia Dataset

® Data set
o Wikimedia page views dataset
o One file per hour
o One month (30 days) = 720 files

e Data format:

<domain code> <page title> <number of accesses> <total data returned>

<Language>.<ProjectName>

en = English Wikipedia (Desktop)
en.b = English Wikibooks
fr.v = French Wikiversity

https://dumps.wikimedia.org/other/pageviews/

Project 1.1 Tasks

Task 1: Sequential data filtering or pre-processing

o Implement sequential data filter in Java with JUnit

Task 2: Practice parallel processing with MapReduce

o Implement Word Count as an example in MapReduce

Task 3: Data Preprocessing with MapReduce

o Implement the filter and keep the popular articles from
Wikipedia pageviews in MapReduce using AWS EMR

Task 4: Data analysis

o Use Jupyter Notebook and Pandas library to analyze
the output of Task 3

Data Pre-processing is Important

® Impossible: Raw Dataset — Data analysis
e Raw Dataset — Data pre-processing — Data analysis

raw data: after data pre-processing

e L o

i

I
Il

reference: Nishant Neeraj

https://www.quora.com/profile/Nishant-Neeraj-1

Task 1: Data Pre-processing

We are only interested in English Wikipedia desktop/mobile

pages (Kdomain code>: en,en.m)

This dataset is raw, real-world

o Never assume that the dataset is perfectly clean and
well formed

Use the filtering rules specified in the writeup

If there are records from both desktop and mobile sites for

the same page title, sum the accesses into one record

Sort the pages by number of pageviews, break ties by

ascending lexicographical order

Output: <page title> <number of accesses>

Bad Coding Practices!

No modularity in code, hard to debug:

public static void main(final String[] args) {
read the records from the input
for record in records:
if it violates the rule A: (20 lines)
continue
if it violates the rule B: (20 lines)
continue
. 5 other rules (100 lines)
put record into a map <title, pageview>
sort the map

print output

Good Coding Practice:
Test-Driven Development (TDD)

What is TDD?

divide the problem into a series of small steps
start by writing test cases
then refactor the code to pass the test

and repeat
o Test case = code = pass = another test case = ...

TDD emphasizes writing unit tests ahead of writing the code.

TDD lets you treat failures as a norm instead of an exception.

Test-Driven Development (TDD)

Why TDD?

Helps to structure your code in a way that easily facilitates
testing

Separates the concerns and makes your code clean,
easy-to-read and robust

Ensures that your changes won’t break existing
functionality

Achieves safer refactoring, increasing returns and
effective collaborations

TDD is an industry best practice!!!

TDD w/ JUnit 5

public class Filter {

public static boolean containsCloud(final String record) {
// it is okay to start with an incorrect solution
// the method signature is what matters

return false;

TDD w/ JUnit 5

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

class FilterTest {
@Test
void testContainsCloud() {
// positive
assertTrue(Filter.containsCloud("cloud computing"));
// negative

assertFalse(Filter.containsCloud("mapreduce"));

TDD w/ JUnit 5

[INFO] Running FilterTest
[ERROR] Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.021 s <<< FAILURE! - in FilterTest
[ERROR] testContainsCloud Time elapsed: ©.017 s <<< FAILURE!
org.opentestd4j.AssertionFailedError: expected: <true> but was: <false>
at FilterTest.testContainsCloud(FilterTest.java:9)
[INFO] Results:
[ERROR] Failures:
[ERROR] FilterTest.testContainsCloud:9 expected: <true> but was: <false>
[ERROR] Tests run: 1, Failures: 1, Errors: O, Skipped: ©

[INFO]

TDD w/ JUnit 5

public class Filter {
public static boolean containsCloud(final String record) {

return record.contains("cloud");

TDD w/ JUnit 5

[INFO] TESTS

[INFO] === === mmmm oo mm oo oo o oo

[INFO] Running FilterTest

[INFO] Tests run: 1, Failures: @, Errors: 0, Skipped: @, Time elapsed: ©0.012 s - in FilterTest
[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: @, Errors: 0, Skipped: ©

[INFO]

[INFO] === === m == oo oo o oo o oo
[INFO] BUILD SUCCESS

[INFO] === === m == o m oo oo oo o oo

P1.1 Task 1: Data Pre-processing
Code Template

e In this task, we provide a code template:
o Merges both desktop and mobile sites for the same page title if any
o Sorts the output in descending numerical order of the number of
accesses and break ties by ascending lexicographical order
o Outputs the results into a file named as exactly “output”
e |t also defines a set of filter methods that you need to implement

e \We provide you with a set of test cases for the first several filter

methods

e Your taskis to:
o add the test cases for the rest of the required methods

o implement the methods and pass the test

Limitations of sequential programs

e Your data-preprocessing program might work well with an hourly
dataset, but will fall short to process a large dataset
e Methods to scale your solution
o Sequential program might not scale = a parallel solution
o A single EC2 machine might not have adequate memory
and computational capabillities either = a large distributed
cluster
e Challenges to overcome for your program to work in a
distributed system
o How would you partition and distribute the tasks and data?
o How would the nodes communicate?
o What if a node fails?

The MapReduce programming model

e The MapReduce programming model simplifies parallel
processing by abstracting away the complexities involved in
working with distributed systems

o parallel computing
o work distribution
o dealing with unreliable hardware and software
e MapReduce allows the programmers to focus on writing and

running the code rather than implementing your own distributed
system framework

Motivation for MapReduce

e How do you perform batch processing of large
data sets using low cost clusters with thousands
of machines which frequently experience partial
failure or slowdowns?

e The MapReduce programming model is
designed for processing large data sets with a
parallel, distributed algorithm on a cluster

Introduction to MapReduce

e Map: Process the input data in chunks in parallel

e Shuffle and sort
e Reduce: Aggregate or summarize intermediate data in

parallel and output the result

Input data
Output data

Introduction to MapReduce

e Map map(ki,vi) --> list(k2,v2)
o Map function takes input as Key-Value pairs k1, va.
o The map function produces zero or more output

Key-Value pairs for one input pair. 1ist(k2,v2)

Input data
Output data

Introduction to MapReduce

e Map

o map(kl,vl) --> list(k2,v2)

If the input is a file, the input Key-Value pair could represent a
line in the file

e keys are the position in the file
® values are the line of text

Word Count Example:

® Input = Word Count = output

e Content of one or more input files:
O cat cow
o duck
o dog cat
O cat

e OQutput:
O cat, 3
o cow, 1
o dog, 1
o duck, 1

Introduction to
MapReduce

e Map in the Word Count Example

Input:
filel.txt

cat cow
duck
dog cat

ki,vl pairs:

(pos, “cat cow”)

Input data

& & &

=\
|

Reduce()

)
©

Reduce()

\. 4 ‘\/;/

07

)

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)

(pos, “duck”)
(pos, “dog cat”)

Input:
file2.txt

cat

kl,vl pairs:

(pos, “cat”)

Mapperl

(dog, 1)
(cat, 1)

k2,v2 pairs:

Mapper2

(cat, 1)

Output data

Introduction to MapReduce

e Shuffle and sort

’
—’

Reduce()

Input data

Reduce()

i

8K >

Output data

Introduction to MapReduce

e Shuffle and sort
o shuffle: transfers data from the mappers to
the reducers
o sort: ensures that all the input keys for a
given reducer are sorted

Introduction to MapReduce

e Shuffle and sort in the Word Count Example

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

(cat, 1)

Partition

Shuffle

Reducer
(cat, 1) _
(cow, 1) (cat, list(1,1,1)) —— reduce()
(cat, 1) — _
(cat, 1) (cow, list(1)) —— reduce()
Reducer2
(duck, 1) (dog, list(1)) —— reduce()
(dog, 1) (duck, list(1)) —— reduce()

Sort

Introduction to
MapReduce

Input data

e Reduce:
o reduce(k2, list(v2)) --> list(v3)

e The reduce function is called once for each unique
key emitted from the Mapper.

e The Reducer has an iterator for all values for each
key.

e Produce the output to the output directory defined by
the MapReduce job.

Output data

Introduction to MapReduce

e Reduce in the Word Count example

Reducer1
(cat, list(1,1,1)) reduce() (cat, 3)
(cow, list(1)) reduce() (cow, 1)
Reducer2
(dog, list(1)) reduce() (dog, 1)
(duck, list(1)) reduce() (duck,1)

MapReduce In a Nutshell

e MapReduce incorporates two phases
o Map Phase

o Reduce phase

spit0
artition
) W Reduce
Partltlon Task

Partition

Split 1

Partition

Partition Partition =g R;e_duli:e —> To
as

Split 2 Partition \ g HDFS
Partition [e R_erg;fe
Split 3 -PM Merge &
Sort
Shuffle Stage || Stage Reduce Stage

Map Phase Reduce Phase

Parallelism in MapReduce

e Mappers run in parallel, processing different
input splits and creating intermediate Key-Value
pairs

e Reducers also run in parallel, each working on a
set of keys based on the partitioning function
o By default, the partitioning function is a hash

function

e Although the shuffle can start early, however, the
reduce function cannot start until all mappers
finish and all data is shuffled, i.e. barrier

MRUnit: TDD for MapReduce

e MRUnit is a unit test framework for MapReduce

e Allows you to define your input and expected
output for the map and reduce functions

e This will allow you to test your map and reduce

functions
e The MRUnit test cases are provided for the Word

Count task

Using MRUnit

® Tests supported

o Map Test to test map()

o Reduce Test to test reduce()

o MapReduce Test to test both
® Stepsto Map Test

o Step 1: Create your Mapper
Step 2: Create map test using MRUnit
Step 3: Set the input and output records
Step 4: Implement your map function
Step 4: Run locally to evaluate the test

O O O O

MRUnit: Example map() test

/I the test code is under the test source folder, similar to JUnit 5 test code
// run “mvn test” to run the test
public class WordCountMapTest extends TestCase {

@Test

public void testWordCountMapper() throws IOException {

driver.withinput(new Text(""
withOutput(new Text("cat"), new VIntWritable(1))
withOutput(new Text("cat"), new VIntWritable(1))

withOutput(new Text("dog"), new VIntWritable(1))

), new Text("cat cat dog"))

runTest(false);

MRUnit: Test the MR workflow

e Use LocallobRunner to test the whole MR workflow
o Runs the MapReduce workflow in memory
e Steps to follow:
o Define the configurations similar to the
configurations of a real MapReduce job
m [nput path, output path
m Mapper class, reducer class
m etc.
o Test if the job can be successful

Task 2: Word Count in MapReduce

e Implement Word Count as an example in MapReduce
using MRUnit
e We provide you with the MRUnit test cases
o to test the implementation of map and reduce
functions
o to test if the MapReduce application can run
successfully w/ LocallobRunner on a local dataset
® Your task is to pass the test cases
e If you can pass the test cases, the LocalJobRunner will
generate the output to a local path

Running a Hadoop MR Job from
the Command Line

® Create a cluster as per the AWS EMR section

o created via Terraform (recommended) or
web console

SSH into the master node

e Run the MapReduce job in hadoop

> hadoop jar projectl.jar
edu.cmu.scs.cc.projectl.WordCount input-path
output-path

Troubleshooting EMR and MapReduce

® Asyou run the jobs with the large dataset, you can
still run into errors despite the tests because of:
o Resource limit, e.g., OutOfMemory
o Malformed input data
e Aggregate the distributed log chunks into a single file
will enable you to search all logs at once
® To retrieve the aggregated logs, run the following
command on the master node

yvarn logs -applicationlId <applicationId>

® The first 3 questions in runner.sh will help you
practice how to use grep to search the log files

Task 3: Wikipedia MapReduce
application

e Put what you have learned together
® Design and implement a MapReduce application to:

O

Filter out elements based on the filtering rules in the
data filtering task. Reuse your code.

Get the input filename from within a Mapper
Aggregate the pageviews from hourly views to daily
Views

Calculate the total pageviews for each article

Print the popular article that has over 100,000
page-views (100,000 excluded)

Task 4: Data Analysis with Pandas

e Now that you have filtered the monthly data, we
are ready to analyze the data to answer some
interesting analytics questions.

e The questions are in file runner. sh, and to
solve these analytics questions, you will need an
effective tool named pandas which is a Python
package providing fast data structures for data
analysis.

Progressively Solve Data Science
Problems with Jupyter Notebook

Why Jupyter Notebook?

® Interactive Computing
o "save'" your progress at the latest checkpoint

e Persisted Output and Reproducible Analysis
o write data analysis reports and share with others

Progressively Solve Data Science
Problems with Jupyter Notebook

® Finish the Jupyter Notebook primer

o Practice tutorials in the Azure Notebooks library
15-319/15-619: Cloud Computing Course

CloudComputingCourse > Libraries cloud-computing-course

D> Run + New & Settings & Share [CiClone 1 Clone 3 Star (0) Terminal ™

Search Show hidden items

FILE NAME v FILE TYPE
{1 DataAnalysisInBash.ipynb Notebook
{1 DataAnalysisInPython.ipynb Notebook
{] HeadFirstCommandLine.ipynb Notebook

[2 README.md Markdown

https://notebooks.azure.com/CloudComputingCourse/libraries/cloud-computing-course

Project 1.1 Workflow

Launch an EC2 instance with a specified AMI
o We recommend using Terraform

Finish tasks:

o Data Pre-processing

o Word Count in MapReduce
o Wikipedia MapReduce

o Data Analysis task

Complete and run the script

o /home/<andrew_id>/Projectl _1/runner.sh

o Answer a set of questions by providing the commands/code inside
runner.sh

Submit your code for grading
o Complete the references file in JSON format
o Execute submitter to submityour code

Finish Project Reflection (graded) before the deadline

Finish Project Reflection Feedback for 3 students
o Within 7 days after the project deadline

Grading of Your Projects

Code submissions are auto-graded

Scores will be made available on http://theproject.zone
o it may take several minutes for your score to show
o the submissions table is updated with every submission

We will grade all the code (both auto and manually)
We use Checkstyle, PEP8 and shellcheck to check your
coding style, which worths 5 points

http://theproject.zone/

Online Mob Programming

® Last week
o Completed the OMP Primer
m Created the AWS IAM role and assumed the role to get ready to
access Cloud 9
o Signed up with your available time slots

® This week

o Mob Programming Training Session

m Practice and get familiar with OMP workflow with an easy task

m You should have received the email from us about your scheduled
time to participate
Make sure that you set up Cloud 9 access successfully beforehand

u
e Follow the steps outlined in the OMP Primer

Reminder: Deadlines

Friday, September 7, 2018 at 23:59 ET

o Quiz1l

Sunday, September 9, 2018 at 23:59 ET

o Project 1.1 (including Project Reflection)
Sunday, September 16, 2018 at 23:59 ET

o Project 1.1 Reflection Feedback

ASAP, at the latest 9/10/2018 at 23:59 ET
o Academic Integrity Course Quiz

