15-319 / 15-619
Cloud Computing

Recitation 12
November 14t 2017

Overview

e Last week’s reflection

— Team project phase 2
— Quiz 10

e This week’s schedule
— Project 4.2
— OLI Modules 19 & 20
— Quiz 11
e Twitter Analytics: The Team Project
— Phase 3

Conceptual Modules to Read on OLI

 UNIT 5: Distributed Programming and Analytics
Engines for the Cloud

— Module 19: Distributed Analytics Engines for the
Cloud: MapReduce

— Module 20: Distributed Analytics Engines for the
Cloud: Spark ‘

Project 4

* Project 4.2

— Iterative Batch Processing Using Apache «
Spark

Typical MapReduce Batch Job

e Simplistic view of a MapReduce job

Input

[HDFS }——* Mapper

* You simply write code for the

— Mapper
— Reducer

Reducer

Output

(o)

e |nputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk

Iterative MapReduce Jobs

 Some applications require iterative processing

* Eg: Machine Learning, etc.

->[HDFS]—' Mapper

Reducer

Prepare data for the next iteration

e MapReduce: Data is always spilled to disk

Output

-

— This leaded to added overhead for each iteration

— Can we keep data in memory? Across lterations?

— How do you manage this?

Resilient Distributed Datasets (RDDs)

® New data abstraction, RDDs
O can be in-memory or on disk
o are read-only objects
O are partitioned across the cluster
m partitioned across machines based on a range
or the hash of a key in each record

Operations on RDDs

e Loading data
>>>input_RDD = sc.textFile("text.file")

e Transformation

— Apply an operation and derive a new RDD
>>>transform RDD = input RDD.filter(lambda x: "abcd" in x)

e Action

— Computations on an RDD and return a single object
>>>print "Number of “abcd”:" + transform RDD.count()

DataFrames

e Like an RDD, a DataFrame is an immutable
distributed collection of data, organized into named
columns, like a table in a relational database.

Unified Apache Spark 2.0 API

Untyped AP!

- DataFrame = Dataset[Row]
» Alias

DataFrame

- Dataset[T]

®databricks

e Json:

{"name" : "Michael" }{"name" : "Andy",

e Load

DataFrames

val df = spark.read.json("people.json")

e Convert dataframe to dataset:

case class Person(name: String, age: Long)

val ds = df.as[Person]

e SQL:
val sqlDF
/] +----+
// |name|
/] +----+
// |Andy|
/] +----+

spark.sql("SELECT name FROM people where age >

"age":30} {"name":"Justin", "age":19}

20") .show()

10

DataFrames

e Json:

{"name" :"Michael" }{"name" :"Andy", "age":30} {"name":"Justin", "age":19}

e Load:

val df = spark.read.json("people.json")

e Convert dataframe to dataset:

case class Person(name: String, age: Long)

val ds = df.as[Person]

e SQL:

val sqlDF = spark.sql("SELECT name FROM people where age >

o API:

df.select("name").filter($"age" > 20).show()

20") .show()

11

RDDs and Fault Tolerance

e Actions create new RDDs
e |nstead of replication, recreate RDDs on failure
e Recreate RDDs using lineage
— RDDs store the transformations required to bring
them to current state
— Provides a form of resilience even though they

log_lines_RDD

fes

owasp_attacks RDD

The Spark Framework

RDD Objects

=

rddl.join (rdd2)

.groupBy (...)
.filter (..}

Spark Client
(Application Master)

Scheduler and
RDD Graph

-

3

-
-/ :

Trackers

Task Scheduler

Cluster Manager
—
B S

Worker

Threads

Block Manager

Blockinfo

MemoryStore

DiskStore

ShuffleBlockManager

13

@ﬁ

Spark Ecosystem SporK**’“

Spark SQL
— Allows running of SQL-like queries against RDDs

Spark Streaming
— Run spark jobs against streaming data

MLlib
— Machine learning library

GraphX
— Graph-parallel framework

14

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Project 4.2

e Use Spark to analyze a Twitter social graph
o Task O
m Some basic conceptual questions
about Spark
o Task1
m Number of nodes and edges
m Number of followers for
each user
m Spark shell, RDD, Dataframe
o Task?2
m Run PageRank to compute
the influence of users
m Fastruns getabonus
o Task3
m 2nd-degree centrality on
the graph using GraphX

15

Project 4.2 - Three Main Tasks

1. Enumerate the Twitter Social Graph
— Find the number of nodes and edges
— Edges in the graph are directed. (u, v) and (v, u) should be
counted as two edges
— Find the number of followers for each user
— Compare RDD/Dataframe implementations

2. Rank each user by influence
— Run PageRank with 10 iterations

— All users’ scores need to sum up to 1.0 at every iteration.

3. Second degree centrality
— Need to use GraphX with Scala.

16

Task 2: The PageRank Algorithm

e Give ranks (scores) based on links to them

e A page that has:
— Links from many nodes = high rank
— Link from a high-ranking node = high rank

PageRank

"PageRank-hi-res". Licensed under CC BY-SA 2.5 via Wikimedia1(37ommons -
http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#/media/File:PageRank-hi-res.png

The PageRank Algorithm

The PageRank algorithm can find important or influential
vertices in a graph.

Which node is more important or influential?

%

2)

18

The PageRank Algorithm

Node 0 passes its score to Node 2.
Node 1 passes its score to Node 0 and Node 2.
Node 2 passes its score to Node 1.

Iteration 0 Iteration 1

0. 333 " 0. 191 0.475

- 7

0.333 0.333

19

The PageRank Algorithm

When the score of every node does not change across iterations,
we refer to it as the algorithm converged.

Iteration k Iteration k+1

0217 0396 0217 0396

\// » \//

0.386 0.386

20

The PageRank Algorithm

0 0 1
e Adjacency matrix G = [1 0 1}
0 1 0

e Transition matrix: (row sums to 1)

; 0 0 1]
M;; = _,F*:j (when Z G #0) M= |05 0 05
=1 Gt 1 I 0 1 0]

What if a node has zero outgoing links?
Set each element of that row to 1/n,
where n is the number of nodes in the graph.

\11 _: /

21

The PageRank Algorithm

Algorithm 1: PageRank algorithm

input : the transition matrix M, the number of nodes in graph n,
and the damping factor d
output: the converged PageRank score vector r

1 r{{}j - [:-_l.]nxl ;
2 while §d > e ¥ and k < 10 do

3 | update r'*Y using r® ;

4 | &= | —x®)2 . // calculate the difference
5 k43

6 end

PageRank algorithm can usually converge in 10 iterations.
Two ways to implement Step 3:

e matrix solver

e for-loop solver (what you will be implementing)

22

Matrix Solver

1.1 Matrix Multiplication Solver

We can update the score by the matrix multiplication:

Y = dM ™ 4+ (1 = drY, (2)
where r'*) indicates the score vector at iteration k& and r'” = [%]ﬂxl is the
initial score vector. Recall n is the number of nodes in &. d is the damping
factor used to jump out of isolated nodes or clusters during the random walk.

The interpretation of Equation (2) is that an agent has probability d
to follow an edge in the graph and probability 1 — d to jump to a random
node, where d controls the frequency of the random jump. It guarantees
the algorithm does not get trapped into any isolated node cluster during the
walking, and thus guarantee the process will eventually converge. In this
project, we set d = (.85.

e Matrix implementation can be very fast... but we might not want to
Implement this here due to memory constraints

e Use sparse matrix implementations to store M.
23

For-loop Solver

1.2 For-loop Solver

In this alternative implementation, for each node v;, we have the following
update equation:

rE) = g Z ””:' Mj; + (1 — d)r?, (3)

i
;e N

where A'(v;) represents a set of nodes that point to v;. Recall M;; is an
element in the transition matrix. See Eq. (1). Incorporating Eq. (1), we
have an equivalent update equation:

{H
a+1]| : 1 ;
=d Y E + (=)= (4)
vy EN (v,
Note that >, _, G cannot become 0.

You need tu implement the for-loop solver in this project. The
for-loop solver cloud be slower as matrix multiplication operations are usually
optimized in its system library. But anyway the for-loop solver is easier to
implement for very large graphs.

e Less efficient but scalable to very large graphs.
e You are required to implement the for-loop solver.

A Toy Example - 1

Adjacent matrix G:

Transition matrix M

My =

(4
Zf 1 tﬂ

(when ZF;; #0) [ﬂ 0 1]

25

A Toy Example - 1

{R+L = 3 Z [1_(”?‘5{}]:

1
(1)“73“ + (1 —d)—
n
(ﬂ)
1) _ "
1 — +()n.
(UJ 1

P _//’,—___—‘\,
(0) [2
Lz
oL

26

A Toy Example - 1

v EN ()

i \/ﬁ\,zf Oy
(0) -
p o d / T
=g 3 O+ (1 dpr®, \/
(F
.

d = 0.85 0 0 1
M= 1|05 0 0.5
1 1 & 1 8
i = 0.85- +0.155 = 0.191
e 1 L
= 0.85= + 0.15= = 0.333
gty
A 1 L _ 4 jos
= 4+ 2) +0.15= = 0.47!
[}85(3-1-6)4-0 53 =0.475

27

A Toy Example - 1

v EN ()

i \/ﬁ\,zf Oy
(0) -
p o d / T
=g 3 O+ (1 dpr®, \/
(F
.

The converged result is
©) = 0.217
r*) = 0.386
ri = 0.396

28

A Toy Example - 2

isolated user
Adjacent matrix G:

O - O O
O = O

Transition matrix M

0.25 0.25 0.25 0.25]
0.5 0 05 0
0 1 0 0
025 925 025 025

A Toy Example - 2

D) _ g Z ?,{_ﬁﬂlﬂ_fﬁ +(1-d)y?,

J
v EN ()

(0) (0) (0)

@ _ g 7o "3 f - o 1
(0) (0) (0)

1) _ g2, To r3 1_4d 1

=g+ 21 By (1-a)-
(0) (0) (0)

o W Lt

(0) (0) 1

r{M dfi—+2)+{1—@—

o~ 5 -~ _-"'.

P 9 Y
7 W Fi 1
I 0) boigk. o
j / e

\ " i ot / B %
’ / %\

| - 1 ¥

R T

-H"'-\._ _.-"'; \"'*-.__ _..-"'I

0.25 0.25 0.25 0.25]
05 0 05 0O

M (0 1 g 0

0.25 0.25 0.25 0.25]

30

A Toy Example 2

?

{a+1 = 3 Z

v EAN(v)

e = 0.85 x (0.25/4 +0.25/4) = 0.106

ri = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25

V=085

x 0.20 4+ 0.106 + 0.15 X 0.25 = 0.356

i = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25

U — 0.106 + 0.15 x 0.25 = 0.144

31

PageRank in Spark (Scala)

(Note: This is a pseudocode of PageRank, simpler than P4.2)

val links = spark.textFile(...) .map(...) .persist()
var ranks = // RDD of (URL, rank) pairs
for (1 <- 1 to ITERATIONS)

{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{

(url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey ((x,y) => x+y)
.mapValues (sum => a/N + (1l-a)*sum)

32

Bonus Task: Speed up Spark

Hints:

Eliminate repeated calculations in PageRank.

Monitor your instances to make sure they are fully utilized.
Develop a better understanding of RDD manipulations.
Understand the "lazy" transformation in Spark.

Spark is a tunable framework where there are many
parameters that you can configure to make the best use of
the resources.

Be careful with repartition on your RDDs.

33

Graph Processing using GraphX
Task 3: Second-degree Centrality

e PageRank score is a type of centrality score.
o Importance of a node in a graph.
e However, the PageRank score for Node0O and Node4
Is the same: 0.0306.
o Does not make sense! .
e Use PageRank to)
measure a 2nd degree

' .“‘M\\mf’ e "“‘-.\\

: =i L 2)
centrality score. \ //'
(1) (4)

. g -
."r’ "‘.
\ 3)
\ |

% - //

34

Graph Processing using GraphX
Task 3. Second-degree Centrality

« From all the people your followees follow (i.e. your 2nd degree
followees), find the 2nd-degree centrality score which is the highest
PageRank score within the reach of 1 or 2 jumps.

10

Al 8

A2

max is 10 from A1

max is 10 from A1l

9 B1 N4 ci 5

B C

max is 9 from B1 max is 8 from C2

B2 C2

35

Graph Processing using GraphX

Task 3. Second-degree Centrality

From all the people your followees follow
(i.e. your 2nd degree followees), find the
one with the highest PageRank score.

* First calculate this score and then average
this score with its original pagerank score.

new_influencial_score = 0.5 * pagerank_score +
0.5 * most_influential_second_degree_user_score

B2

36

Hints for Launching a Spark Cluster

e Spark is an in-memory system
— Develop and test your scripts on a portion
of the dataset before launching a big
cluster.
— Look at examples in the writeups.
e Aregular runin Task 2 would take 45 min
using 5 r3.xlarge.
e |t is possible to test Spark on your local
machine

37

Spark Shell

e Like the python shell
e Run commands interactively
e On the master, execute (from /root)

— ./spark/bin/spark-shell
— ./spark/bin/pyspark

38

P4.2 Grading - 1

e Jask O

O

O O O

Use the student AMI
Authenticate via port 15319 or 15619
5 questions are in the write up

Put your answers in the answers file on the student
AMI

39

P4.2 Grading - 2

Submit your work from the EMR instance

Don’t forget to submit your code
Task 1

o Put the number of nodes and edges in the answer file

o Put your Spark programs that count the number of followers
for each user in the given folder

o Run the submitter to submit

Task 2

o Put your Spark program that calculates the pagerank score
for each user in the given folder

o Run the submitter to submit

o Check if the sum of PageRank score is 1.0 at each iteration

o Bonus: tune your system to run as fast as possible

40

P4.2 Grading - 3

e Submit your work from the EMR instance
e Don't forget to submit your code
e Jask 3
o Put your GraphX program to calculate the
new centrality score in the given folder
o Run the submitter to submit

41

Upcoming Deadlines

Quiz 11: OLI Modules 19 and 20
o Quiz 11 due: 11/17/2017 11:59 PM Pittsburgh «

Team Project : Phase 2

O Code and report due: 11/14/2017 11:59 PM Pittsburgh «

Project 4.2 : Iterative Programming with Spark
O Due: 11/19/2017 11:59 PM Pittsburgh «

Team Project : Phase 3
O Live-test due: 12/03/2017 3:59 PM Pittsburgh

O Code and report due: 12/05/2017 11:59 PM Pittsburgh

42

Questions?

43

TWIT]

|l
AJ

BYANWANWANNVANIR A BG5S
—AM PROJECT

Team Project Phase 2 MySQL Live Test
Honor Board

The Brogrammers 40
AotianLong 40
squirrel 40
BVW 38.92
Targaryen 38.77
CrispyChicken 38.61
Tricorn 37.27
Tourists 36.07
MyHeartlsInCC 35.02

Steelers 34.85

Team Project Phase 2 HBase Live Test
Honor Board

Tricorn 40
Steelers 37.5
The Brogrammers 35.24
hkJournalist 34.46
MyHeartlsInCC 33.15
CrispyChicken 32.77
Targaryen 28.13
AotianLong 26.88
Tourists 26.58

THL 25

Team Project Phase 2 Live Test
Honor Board

Tricorn 77
The Brogrammers 74
Steelers 71
CrispyChicken 69
MyHeartlsInCC 66
AotianLong 66
Targaryen 65
squirrel 62
Tourists 60

hkJournalist 60

Query 4: Interactive Tweet Server

In this query, you are going to build a web service that supports
READ, WRITE, SET and DELETE requests on tweets. Our server
will send a mix of read, write, set and delete requests to your
web service to test for correctness and performance.

General Info:

1. Four operations:
® write, set, read and delete

2. Operations under the same uuid should be executed in the
order of the sequence number.

3. Be wary of malformed queries.

48

Query 4: Interactive Tweet Server

| userid

| username

| timestamp

| text

| favorite_count

| retweet_count

long int
long int
string
string
string
int

int

example |

156190000001 |
CloudComputing |
Mon Feb 15 19:19:57 2017 |
Welcome to P4!'#CC15619#P3 |
22 |
33 |

49

Query 4: Interactive Tweet Server

® Write Request
/gd4?op=write&payload=json string&uuid=unique idé&s
eg=sequence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n
® pavyload isthe url-encoded json string; same structure as the original

tweet json; only contains the seven fields needed. For tid and uid, don’t
get them from the “id_str” field, only get them from the “id” field.

50

Query 4: Interactive Tweet Server

e Read Request
/g4?op=read&uidl=userid l&uid2=userid 2&n=max num
ber of tweets&uuld=unique id&seg=sequence number

e Response

TEAMID, TEAM AWS ACCOUNT ID\n
tid n\ttimestamp n\tuid n\tusername n\ttext n\tfavo
rite count n\tretweet count n\n

e Range read

51

Query 4: Tweet Server

e Delete Request
/g4?op=delete&tid=tweet id&uuid=unique id&seg=seq
uence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

® Delete the whole tweet

52

Query 4: Tweet Server

Set Request
/g4?op=set&field=field to set&tid=tweet id&payloa
d=string&uuilid=unique 1dé&seg=sequence number

Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

Set one of the text, favorite_count, retweet_count of a particular tweet
Payload is url-encoded

53

Query 4: Tweet Server

e Malformed Request
/g4?op=set&field=field to set&tidl=tweet id&tid2=
<empty>&payload=0;drop+tables+littlebobby&uuid=un
ique 1dé&seg=sequence number

e Response
TEAMID, TEAM AWS ACCOUNT ID\n

success\n

54

Team Project General Hints

|dentify the bottlenecks using fine-grained profiling.

Do not cache naively.

Review what we have learned in previous project modules
o Scale out

o Load balancing (are requests balanced?)

o Replication and sharding

Look at the feedback of your Phase 1 and Phase 2 reports!
To test mixed queries, run your own load generator.

o Use jmeter/abl/etc.

95

Team Project, Q4 Hints

Start with one machine if you are not sure that your
concurrency model is correct. Pay attention to scalability.
Adopt a forwarding mechanism or a non-forwarding
mechanism

o You may need a custom load balancer

May need many connections at the same time, in the case
of out of order sequence numbers.

Consider batch writes. Writes and reads are exclusive due
to the consistency model.

56

Team Project Time Table

Phase Query Start Deadline Code and Report
Due

Phase 2 -

Tuesday 11/14/2017

23:59:59 EST
Phase 3 Q1, Q2, Q3,Q4 Monday 11/13/2017 | Sunday 12/03/2017 -
00:00:01 ET 15:59:59 EST
Live Test Sunday 12/03/2017 Sunday 12/03/2017 Tuesday 12/05/2017

Q1,Q2,Q3,Q4 18:00:01 ET 21:00:00 EST 23:59:59 EST

Questions?

58

