

–

2

•

–

–

–

3

•
–

•
–

•
–

4

•

•
–
–

5

•
•

Prepare data for the next iteration

6

●
○
○
○

■

7

>>>input_RDD = sc.textFile("text.file")

>>>transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

>>>print "Number of “abcd”:" + transform_RDD.count()

8

●

9

{"name":"Michael"}{"name":"Andy", "age":30} {"name":"Justin", "age":19}

val df = spark.read.json("people.json")

case class Person(name: String, age: Long)

val ds = df.as[Person]

val sqlDF = spark.sql("SELECT name FROM people where age > 20").show()

// +----+

// |name|

// +----+

// |Andy|

// +----+ 10

{"name":"Michael"}{"name":"Andy", "age":30} {"name":"Justin", "age":19}

val df = spark.read.json("people.json")

case class Person(name: String, age: Long)

val ds = df.as[Person]

val sqlDF = spark.sql("SELECT name FROM people where age > 20").show()

df.select("name").filter($"age" > 20).show()

11

12

13

14

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

●
○

■

○
■
■

■
○

■

■
○

■

15

16

⇒
⇒

"PageRank-hi-res". Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#/media/File:PageRank-hi-res.png

17

18

The PageRank algorithm can find important or influential
vertices in a graph.

Which node is more important or influential?

19

0.333 0.333

0.333

Node 0 passes its score to Node 2.
Node 1 passes its score to Node 0 and Node 2.
Node 2 passes its score to Node 1.

0.191 0.475

0.333

Iteration 0 Iteration 1

20

0.217 0.396

0.386

0.217 0.396

0.386

Iteration k Iteration k+1

When the score of every node does not change across iterations,
we refer to it as the algorithm converged.

● Adjacency matrix:

● Transition matrix: (row sums to 1)

What if a node has zero outgoing links?
Set each element of that row to 1/n,
where n is the number of nodes in the graph.

21

22

PageRank algorithm can usually converge in 10 iterations.
Two ways to implement Step 3:
● matrix solver
● for-loop solver (what you will be implementing)

23

● Matrix implementation can be very fast… but we might not want to
implement this here due to memory constraints

● Use sparse matrix implementations to store M.

24

● Less efficient but scalable to very large graphs.
● You are required to implement the for-loop solver.

25

26

27

28

29

dangling user

isolated user

30

31

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

32

Hints:
● Eliminate repeated calculations in PageRank.
● Monitor your instances to make sure they are fully utilized.
● Develop a better understanding of RDD manipulations.

Understand the "lazy" transformation in Spark.
● Spark is a tunable framework where there are many

parameters that you can configure to make the best use of
the resources.

● Be careful with repartition on your RDDs.

33

Task 3: Second-degree Centrality
● PageRank score is a type of centrality score.

○ Importance of a node in a graph.
● However, the PageRank score for Node0 and Node4

is the same: 0.0306.
○ Does not make sense!

● Use PageRank to
measure a 2nd degree
centrality score.

34

Task 3: Second-degree Centrality
• From all the people your followees follow (i.e. your 2nd degree

followees), find the 2nd-degree centrality score which is the highest
PageRank score within the reach of 1 or 2 jumps.

35

36

new_influencial_score = 0.5 * pagerank_score +
 0.5 * most_influential_second_degree_user_score

Task 3: Second-degree Centrality
• From all the people your followees follow

(i.e. your 2nd degree followees), find the
one with the highest PageRank score.

• First calculate this score and then average
this score with its original pagerank score.

37

38

● Task 0
○ Use the student AMI
○ Authenticate via port 15319 or 15619
○ 5 questions are in the write up
○ Put your answers in the answers file on the student

AMI

39

● Submit your work from the EMR instance
● Don’t forget to submit your code
● Task 1

○ Put the number of nodes and edges in the answer file
○ Put your Spark programs that count the number of followers

for each user in the given folder
○ Run the submitter to submit

● Task 2
○ Put your Spark program that calculates the pagerank score

for each user in the given folder
○ Run the submitter to submit
○ Check if the sum of PageRank score is 1.0 at each iteration
○ Bonus: tune your system to run as fast as possible

40

● Submit your work from the EMR instance
● Don’t forget to submit your code
● Task 3

○ Put your GraphX program to calculate the
new centrality score in the given folder

○ Run the submitter to submit

41

●
○

●

○
●

○
●

○
○

42

Questions?

43

tWITTER DATA ANALYTICS:
TEAM PROJECT

44

The Brogrammers 40

AotianLong 40

squirrel 40

BVW 38.92

Targaryen 38.77

CrispyChicken 38.61

Tricorn 37.27

Tourists 36.07

MyHeartIsInCC 35.02

Steelers 34.85

Tricorn 40

Steelers 37.5

The Brogrammers 35.24

hkJournalist 34.46

MyHeartIsInCC 33.15

CrispyChicken 32.77

Targaryen 28.13

AotianLong 26.88

Tourists 26.58

THL 25

●

48

 | field | type | example |

|-----------------|------------------------|---|

| tweetid | long int | 15213 |

| userid | long int | 156190000001 |

| username | string | CloudComputing |

| timestamp | string | Mon Feb 15 19:19:57 2017 |

| text | string | Welcome to P4!#CC15619#P3 |

 | favorite_count | int | 22 |

 | retweet_count | int | 33 |

49

●
/q4?op=write&payload=json_string&uuid=unique_id&s
eq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

● payload

50

● Read Request
/q4?op=read&uid1=userid_1&uid2=userid_2&n=max_num
ber_of_tweets&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

tid_n\ttimestamp_n\tuid_n\tusername_n\ttext_n\tfavo
rite_count_n\tretweet_count_n\n

●

51

● Delete Request
/q4?op=delete&tid=tweet_id&uuid=unique_id&seq=seq
uence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

●

52

● Set Request
/q4?op=set&field=field_to_set&tid=tweet_id&payloa
d=string&uuid=unique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

●
●

53

● Malformed Request
/q4?op=set&field=field_to_set&tid1=tweet_id&tid2=
<empty>&payload=0;drop+tables+littlebobby&uuid=un
ique_id&seq=sequence_number

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

54

● Identify the bottlenecks using fine-grained profiling.
● Do not cache naively.
● Review what we have learned in previous project modules

○ Scale out
○ Load balancing (are requests balanced?)
○ Replication and sharding

● Look at the feedback of your Phase 1 and Phase 2 reports!
● To test mixed queries, run your own load generator.

○ Use jmeter/ab/etc.

55

● Start with one machine if you are not sure that your
concurrency model is correct. Pay attention to scalability.

● Adopt a forwarding mechanism or a non-forwarding
mechanism
○ You may need a custom load balancer

● May need many connections at the same time, in the case
of out of order sequence numbers.

● Consider batch writes. Writes and reads are exclusive due
to the consistency model.

56

Phase Query Start Deadline Code and Report
Due

-

Questions?

58

