
 1

15-319 / 15-619
Cloud Computing

Recitation 8

October 17th, 2017

Overview

● Last week’s reflection
○ Project 3.2 Done!

● This week’s schedule
○ Quiz 7 – due on Thursday, Oct 19th (Module 14)
○ Project 3.3 – due on Sunday, Oct 22nd

● Twitter Analytics: The Team Project Phase 1,
Query 1 is due Sunday Oct 22! Hurry up!

 2

This Week: Conceptual Content

OLI UNIT 4: Cloud Storage
● Module 14: Cloud Storage

○ File Systems and Databases
○ Scalability and Consistency
○ NoSQL, NewSQL and Object Storage

● Quiz 7
○ DUE on Thursday, October 19th

 3

Project 3 Weekly Modules

● P3.1: Files, SQL and NoSQL
● P3.2: Social network with heterogeneous

backend storage
● P3.3: Replication and Consistency Models

○ Primer: Intro. to Java Multithreading
○ Primer: Thread-safe Programming
○ Primer: Intro. to Consistency Models

 4

Scale of Data is Growing

International Data Corporation's (IDC) latest
Digital Universe Study predicts a 300-fold
increase in the amount of data created globally
from 130 exabytes (1028) in 2012 to 30,000
exabytes in 2020.

5

Users are Global

6

~26ms

~14ms

● Speed of Light (≈3.00×108 m/s)
● Inherent latencies

Pittsburgh

Moscow

San Francisco

● Typical end-to-end latency

○ Network latency (from client to backend)

○ Server response

■ Includes fetching and processing data from

backend

○ Network latency (from backend to client)

Typical End-To-End Latency

7

Latency with a Single Backend

8

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend
Storage

~10ms ~20ms

~160ms

Client Statistics:
Min Latency: 10ms
Max Latency: 160ms
Average Latency: 63ms

Replicate the Data Globally

9

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~10ms

Backend Storage 2:
Europe Central

~20ms

~10ms

Client Statistics:
Min Latency: 10ms
Max Latency: 20ms
Average Latency: 13.3ms

Replicate the Data Close to Users

10

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~10ms

Backend Storage 2:
Europe Central

~10ms

~10ms

Client Statistics:
Min Latency: 10ms
Max Latency: 10ms
Average Latency: 10ms

Backend Storage 3:
USA East

● As you can see, by adding replicas to strategic

locations in the world, we can significantly reduce

the latency seen by our global clients

● Each added datacenter decreases the average

latency seen by clients

● Note: Replicas also help in improving

performance, availability and disaster recovery.

● But how about the cost of using replicas?

Replicas

11

What If We Continue to Replicate?

12

Client Statistics:
Min Latency: ??
Max Latency: ??
Average Latency: ??

Cost: ?????

We have to consider cost as well as data consistency
across replicas, which increases the latency for writes.

Replication READ

13

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~10ms

Backend Storage 3:
Europe Central

~10ms

~10ms

Read Operation:

Min Latency: 10ms
Max Latency: 10ms
Average Latency: 10ms

Backend Storage 2:
USA East

Replication WRITE

14

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 3:
Europe Central

~10ms

Write Operation:

Latency for Client 2 =
MAX(10ms, 20ms, 120ms)
= 120ms

Same across all clients

Even worse if the operations
block each other!

Backend Storage 2:
USA East

~20ms
~120ms

● Read requests are very fast!

○ All clients have a replica close to them to
access

● Write requests are quite slow

○ Instead of updating a single data center, write
requests must now update all 3 replicas

○ If multiple write requests for a certain key,
then they all have to wait for each other to
complete

Replication Reads and Writes

15

● Duplicate the data across multiple instances
● Advantages

○ Fetching data can be faster
○ Fetching of “hot” data can be load balanced
○ Data can be retrieved from any datastore
○ System can handle failures of nodes

● Disadvantages
○ Requires more storage capacity
○ Updates are slower
○ Changes must reflect on all datastores

Pros and Cons of Replication

 16

Data Consistency Becomes Necessary

● Data consistency across replicas is important

○ Five consistency levels:

Strict, Strong (Linearizability), Sequential, Causal and

Eventual Consistency

● This week’s task: Implement Strong Consistency
○ All datastores must return the same value for a key

○ The order in which the values are updated must be

preserved

● Bonus: Implement Eventual Consistency

17

Choosing a Consistency Level
Bad Example

18

Account Balance

xxxxx-4437 $100

Withdrawal Routine

if(amt < balance):
 bal = bal - amt
 return amt
else:
 return 0

Choosing a Consistency Level
Bad Example

19

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100
Withdrawal Routine

if(amt < balance):
 bal = bal - amt
 return amt
else:
 return 0

Choosing a Consistency Level
Bad Example

20

Account Balance

xxxxx-4437 $0

$100

$100
Withdrawal Routine

if(amt < balance):
 bal = bal - amt
 return amt
else:
 return 0

Bank lost $100

Choosing a Consistency Level
Good Example

21

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

Choosing a Consistency Level
Good Example

22

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

Choosing a Consistency Level
Good Example

23

Account Balance

xxxxx-4437 $0

$100

$0
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

Consistency Models

24

Tradeoff:
• Strict
• Strong
• Sequential
• Causal
• Eventual

vs.

P3.3 Task 1: Strong Consistency

25

Single PUT request for key ‘X’

• Block all GET for key ‘X’

until all datastores are

updated

• GET requests for a

different key ‘Y’ must be

allowed

Multiple PUT requests for ‘X’

• Resolved in order of their

arrival

• Any GET request in

between 2 PUTs must

return the last PUT value

P3.3 Task 1: Strong Consistency

26

Multiple GET requests for key

‘X’

• All GET for key ‘X’ should

be served concurrently if

no PUT is pending

P3.3 Task 2: Architecture
Global Coordinators and Data Stores

27

us-west
us-east

Singapore

DCI

coordinator datacenter

DCI

coordinator datacenter
DCI

coordinator datacenter

P3.3 Tasks 1 & 2: Strong Consistency

28

● Every request has a global order.
○ Task 1: Typically the order in which they arrive at

the coordinator.

○ Task 2: Timestamp comes with the request.

● Operations must be ordered by the

timestamps.

Requirement: At any given point of time, all

clients should read the same data from any

datacenter replica.

P3.3: Eventual Consistency (Bonus)

29

• Write requests are performed in the order
received by the coordinator

– Operations may not be blocked for
replica consensus

• Clients that request data may receive multiple
versions of the data, or stale data

– Problems left for the application owner
to resolve

P3.3: Task Overview

30

● Launch Coordinators and DCs all in us-east

○ In Task 2, we will simulate global latencies

for you

● Implement the Coordinators and Datastores

○ Strong Consistency

■ Tasks 1 (Only Coordinator) & 2

○ Eventual Consistency

■ bonus

P3.3:Task 2
Example

 31

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

Task 2 Example
• Launch a total of 7 machines (3 data centers, 3 coordinators and 1 client)
• All machines should be launched in US East region.

 All VMs will be launched in “US East”, we will simulate the latencies

 for the location of datacenters and coordinators in Task 2.

 32

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

P3.3 Task 2: Complete
● KeyValueStore.java on Datacenters
● Coordinator.java on Coordinators

 33

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

Example workflow for a PUT request using strong consistency

US-EAST-DNS:8080/put?key=X&value=1×tamp=1

 34

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

Example workflow for a PUT request using strong consistency

You should call KeyValueLib.AHEAD(“X”,1) to notify
all 3 datacenters of this PUT request.
Resulting behavior may include:

● Locking subsequent requests for key “X”
until current request is complete

● Done on datacenter.

 35

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

ahead?key=X×tamp=1

ahead?key=X×tamp=1ahead?key=X×tamp=1

Example workflow for a PUT request using strong consistency

 36

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

Example workflow for a PUT request using strong consistency

hash(“X”) to determine if this coordinator is
responsible for “X”.

 37

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

KeyValueLib.PUT(US-EAST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(US-WEST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(SINGAPORE-DNS, "X", "1", 1, "strong")

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X” Upon receiving the actual request, it will be up to
you to decide how and when to update the value.
Timestamps are extremely important in this project,
so you may choose to store more than just the value
associated with each key only for backend purposes.

 38

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

Response back
(could be empty)

Example workflow for a PUT request using strong consistency

• If US-EAST is responsible for key “X”

 39

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

KeyValueLib.FORWARD(US-WEST-DNS, "X", "1", 1)

Example workflow for a PUT request using strong consistency

• If US-WEST is responsible for key “X”

 40

More Hints

● In strong consistency, “AHEAD” should be useful

to help you lock requests because they are able

to communicate with datastores with negligible

delay, regardless of region.

● For strong consistency, make sure to lock all

datacenters.

● Eventual consistency is significantly easier to

implement.

 41

● Read the primers! Practice the primer code!

● You should consider the differences between

the 2 consistency levels before writing code.

● Think about possible race conditions.

● Read the hints in the writeup carefully.

● Don’t modify any class except

Coordinator.java and KeyValueStore.java.

Suggestions

 42

However...

We are making an assumption!

● In the Real World, there is nothing like AHEAD with
negligible latency.
○ You may want to enroll in a distributed systems course

(like 15440/640) to learn more.

 43

How to Run Your Program

● Run “./vertx run Coordinator.java” and “./vertx run

KeyValueStore.java” to start the vertx server on each of the

data centers and coordinators. (You could use nohup to run it

in background)

● Use “./consistency_checker strong”, or “./consistency_checker

eventual” to test your implementation of each consistency.

(Our grader uses the same checker)

● If you want to test one simple PUT/GET request, you could

directly enter the request in your browser.

 44

Start early!
Trickiest Individual Project!

 45

Upcoming Deadlines

• Quiz 7: Unit 4 - Module 14

Due: THURSDAY 10/19/2017 11:59 PM ET

• Individual Project: P3.3, Replication and Consistency Models

Due: 10/22/2017 11:59 PM ET.

• Team Project: Phase 1, Query 1

Due: 10/22/2017 11:59 PM ET

 46

tWITTER DATA ANALYTICS:
TEAM PROJECT

Team Project

Twitter Analytics Web Service
• Given ~1TB of Twitter data
• Build a performant web service

to analyze tweets
• Explore front end frameworks
• Explore and optimize storage systems

Team Project
● Phase 1:

○ Q1
○ Q2 (MySQL AND HBase)

● Phase 2
○ Q1
○ Q2 & Q3 (MySQL AND HBase)

● Phase 3
○ Q1
○ Q2 & Q3 & Q4 (MySQL OR HBase)

Input your team
account ID and GitHub

username on TPZ

Team Project System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization

Git workflow

● Commit your code to the private repo we set up
○ Update your GitHub username in TPZ!

● Make changes on a new branch
○ Work on this branch, commit as you wish
○ Open a pull request to merge into the master branch

● Code review
○ Someone else needs to review and accept (or reject)

your code change
○ Capture bugs and know what others are doing

Query 1, QR code

● Query 1 is a simple heartbeat query
○ Implement encoding and decoding of QR code

■ A simplified version
○ You must explore different web frameworks

■ Get at least 2 different web frameworks working
■ Select the better performance of framework
■ Provide evidence of your experimentation

○ In this query, there is no backend database involved

Query 1 Specification

● Structural components
○ Two sizes of QR, depending on the message length
○ Position detection patterns
○ Alignment patterns
○ Timing Patterns

● Fill in message
○ Interleave chars & error detection codes
○ Put in the payload, move in S shape

Query 1 Example

● Encoding
○ For a message, return the image encoded as a hex string
○ The area in the red box in the image below

● Decoding
○ Find the encoded image in a random background
○ The image may be rotated 0,90,180,270 degrees

■ Use patterns to find the QR code!
○ Then do the inverse of encoding
○ Sorry, can’t scan it with a camera yet :(

Query 2, Hashtag Recommendation
● Query 2 is a DB read query

○ Given a sentence, return hashtags that appeared most
frequently with words in it

○ You have to perform Extract, Transform and Load (ETL)
■ Can be done on AWS, Azure or GCP
■ Dataset is available on all three platforms

○ Pay close attention to the ETL rules and related
definitions

○ Make good use of the reference data & server
○ In this query, you will need both front end + back end

■ MySQL and HBase
■ You need two 10-minute submissions, (Q2M & Q2H)

by the deadline

Query 2 Example

● Assume dataset contains
○ user 123456789: Cloud is great #aws
○ user 987654321: Cloud computing is tough #azure

● Sample request and response
○ Request: keywords=cloud,computing&userid=123456789&n=3
○ #aws: 2 points; #azure: 2 points
○ Response: #aws,#azure

■ Return top n hashtags (or all), break ties lexicographically

Team Project Time Table

Note:
● There will be a report due at the end of each phase, where you are expected to discuss optimizations
● WARNING: Check your AWS instance limits on the new account (should be > 10 instances)
● Query 1 is due on Oct 22, not Oct 29! We want you to start early!

Phase (and query due) Start Deadline Code and Report Due

Phase 1
● Q1, Q2

Monday 10/09/2017
00:00:00 ET

Q1: Sunday 10/22/2017
23:59:59 ET
Q2: Sunday 10/29/2017
23:59:59 ET

Tuesday 10/31/2017
23:59:59 ET

Phase 2
● Q1, Q2,Q3

Monday 10/30/2017
00:00:00 ET

Sunday 11/12/2017
15:59:59 ET

Phase 2 Live Test (Hbase
AND MySQL)

● Q1, Q2, Q3

Sunday 11/12/2017
18:00:00 ET

Sunday 11/12/2017
23:59:59 ET

Tuesday 11/14/2017
23:59:59 ET

Phase 3
● Q1, Q2, Q3, Q4

Monday 11/13/2017
00:00:00 ET

Sunday 12/03/2017
15:59:59 ET

Phase 3 Live Test (Hbase
OR MySQL)

● Q1, Q2, Q3, Q4

Sunday 12/03/2017
18:00:00 ET

Sunday 12/03/2017
23:59:59 ET

Tuesday 12/05/2017
23:59:59 ET

Hints/Suggestions

● Use Azure/GCP for ETL to save budget.
● Experiment with the different MySQL Storage Engines.
● Connection Pooling to parallelize access to the

database.
● Scans vs Gets in HBase
● HBase configuration parameters
● MySQL configuration parameters

Start early!
Team Project Q1 Due

Sunday 10/22

Upcoming Deadlines

• Conceptual Topics: OLI (Module 14)

Quiz 7 due: Thursday, 10/19/2017 11:59 PM Pittsburgh

• P3.3: Replication and Consistency Models

Due: Sunday, 10/22/2017 11:59 PM Pittsburgh

• Team Project: Phase 1 - Query 1

Due: Sunday 10/22/2017 11:59 PM Pittsburgh

Q&A

