15-319 / 15-619
Cloud Computing

Recitation 8
October 17th, 2017

Overview

e Last week’s reflection
o Project 3.2 Done!
e This week’s schedule
o Quiz 7 — due on Thursday, Oct 19'" (Module 14)

o Project 3.3 — due on Sunday, Oct 22"

e Twitter Analytics: The Team Project Phase 1,
Query 1 is due Sunday Oct 22! Hurry up!

This Week: Conceptual Content

OLI UNIT 4: Cloud Storage
e Module 14: Cloud Storage

o File Systems and Databases

o Scalability and Consistency

o NoSQL, NewSQL and Object Storage
e Quiz?7

o DUE on Thursday, October 19th

Project 3 Weekly Modules

e P3.3: Replication and Consistency Models
o Primer: Intro. to Java Multithreading
O Primer: Thread-safe Programming
o Primer: Intro. to Consistency Models

Scale of Data is Growing

International Data Corporation's (IDC) latest 40,000

Digital Universe Study predicts a 300-fold

increase in the amount of data created globally

from 130 exabytes (1028) in 2012 to 30,000 30,000
exabytes in 2020.

(Exabytes) 20.000
10,000
2009 2010 2011 2012 2013 2014 2015 2006 2017 2018 2019 2020

Source: IDC's Digital Universa Study, sponsored by EMC, December 2012

Users are Global

e Speed of Light (=3.00%x10% m/s)
e Inherent latencies

~26ms

—TAme Moscow

San Francisco Pittsburgh

Typical End-To-End Latency

e Typical end-to-end latency

o Network latency (from client to backend)
O Server response

m Includes fetching and processing data from
backend

o Network latency (from backend to client)

Latency with a Single Backend

Client Statistics:

Min Latency:

Max Latency: 160ms
Average Latency:

Backend
StOEge ~160ms ®
Client 3:
‘ ~20ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

Replicate the Data Globally

Client Statistics:

Min Latency:
Max Latency:
Backend Storage 2: Average Latency:
Europe Central
Backend Storage 1: D ~10ms
USA West \.
Client 3:
~10ms$ ~20ms Moscow
Client 1: Client 2:

San Francisco Pittsburgh

Replicate the Data Close to Users

Backend Storage 2:
Europe Central

Backend Storage 1: D ~10ms
USA West [] Backend Storage 3: \.
] USA East _
~10ms Client 3:
gl Moscow
Client 1: Client 2:
San Francisco Pittsburgh

Client Statistics:
Min Latency:
Max Latency:
Average Latency:

10

Replicas

As you can see, by adding replicas to strategic
locations in the world, we can significantly reduce
the latency seen by our global clients

Each added datacenter decreases the average
latency seen by clients

Note: Replicas also help in improving
performance, availability and disaster recovery.
But how about the cost of using replicas?

11

What If We Continue to Replicate?
¢

L S B
® ® Client Statistics:
Min Latency: ??
D ® Max Latency: ??
ot @ [| Average Latency: ??
- D Cost: 7777?77
& &
]
- ° Je
|
e &
n]
@
@

We have to consider cost as well as data consistency
across replicas, which increases the latency for writes. 12

Replication READ

Backend Storage 3:
Europe Central

Backend Storage 1: D ~10ms
USA West []| Backend Storage 2: \.
|] USA East |
~10ms Client 3:
~10ms Moscow
Client 1: Client 2:
San Francisco Pittsburgh

Read Operation:

Min Latency:
Max Latency:

Average Latency:

13

Replication WRITE

Write Operation:

Latency for Client 2 =

Backend Storage 3: MAX(10ms, 20ms, 120ms)
Europe Central = 120ms
Backend Storage 1: D
USA West — Backend Stora & Same across all clients
~ ~120ms Client 3: Even worse if the operations
.~20ms Moscow block each other!
Client 1: Client 2:
San Francisco Pittsburgh

14

Replication Reads and Writes

® Read requests are very fast!

o All clients have a replica close to them to
access

e \Write requests are quite slow

o Instead of updating a single data center, write
requests must now update all 3 replicas

o If multiple write requests for a certain key,
then they all have to wait for each other to
complete

15

Pros and Cons of Replication

e Duplicate the data across multiple instances

e Advantages
o Fetching data can be faster
o Fetching of “hot” data can be load balanced
o Data can be retrieved from any datastore
o System can handle failures of nodes

e Disadvantages
o Requires more storage capacity

o Updates are slower
o Changes must reflect on all datastores

16

Data Consistency Becomes Necessary

e Data consistency across replicas is important

O Five consistency levels:

Strict, Strong (Linearizability), Sequential, Causal and
Eventual Consistency

e This week’s task: Implement Strong Consistency
o All datastores must return the same value for a key

o The order in which the values are updated must be
preserved

e Bonus: Implement Eventual Consistency

17

Choosing a Consistency Level
Bad Example

Q \\ <
ﬂ; :‘ .
b2 oo <R
[y e 0 R
13 77 Y '5ﬁ
\ {&\ \ J gk
"\\ ‘ € ‘ﬂ 5 l/ \\,P/\‘>7
b | v] ‘\'1\‘3 \/ Q
I N \ (G
S ’\ﬂ*‘/ A \ \
3 /:)
‘ [/T/ ‘& / =0 u é
TR e
Al ’\\‘ % S %
rd
Withdrawal Routine
if (amt < balance) :
bal = bal - amt
return amt
else: Account Balance
return O
XXXXX-4437 $100

18

Choosing a Consistency Level
Bad Example

= :]
‘; \i‘&l\ ,;\""”’ e r//\\ - S \—\ \
EE T RO 2 N
a - - 5 \ \ :>éi‘/\ “ &
T N < (/ h
T |
| \ N - ’P{P‘
r\//—h\ l - X N Bﬁi 9
AT N @
QA O D %
‘ = \\ 7 N 4
WL
L) ’:_\‘ | — P %
v d
Withdraw $100
Withdrawal Routine
if (amt < balance) :
bal = bal - amt
return amt
else: Account Balance
return O
XXXXX-4437 $100

19

Choosing a Consistency Level

Bad Example

)) <
‘; \i'&l\ 7:"‘17/_ _ r/"\\\\ e r\ \
EE T e OS5 N
‘ 0 VS o :\é\’\) “ &
1o 3T e
R, \J) L'T\
\ \ ST = ’3/77
JJ}\//—-“\ l k2 3 WY B{ Q
J /] A+ J L ‘\0
L /\"i‘ /& /ﬁ \ é%
‘ = \\ 7 - 4
LB
D 2=>£inﬂﬁ
rd
$100
Withdrawal Routine
if (amt < balance) :
bal = bal - amt
return amt
else: Account Balance Bank lost $100
return O
XXXXX-4437 $0

20

Choosing a Consistency Level
Good Example

Withdrawal Routine

lock (balance)

if (amt< balance) :
bal = bal - amt
return amt

else:
return 0

unlock (balance)

Account

XXXXX-4437

Withdraw 100 ﬁz\

Balance

$100

21

Choosing a Consistency Level
Good Example

Withdrawal Routine

lock (balance)

if (amt< balance) :
bal = bal - amt
return amt

else:
return 0

unlock (balance)

J e
v & ><f\ﬁr\ | R
20 s s \ A e.
= ‘I\". ;J l‘\‘ \\/J ’I b T~
- \ ‘ \ S [/ \,P/%
RPN DR A s
I S GRS B B\ Vv \"
\:'fqul/ﬁl /X N ;%%
N Fl o a g
w2 i {g“
/“’—\ . ’:’—\ B @ % PF %
o d
Withdraw 100
Account Balance
XXXXX-4437 $100

22

Choosing a Consistency Level
Good Example

Withdrawal Routine

lock (balance)

if (amt< balance) :
bal = bal - amt
return amt

else:

return 0 XXXXX-4437 $0
unlock (balance)

Account Balance

Consistency Models

Tradeoff: &v®

Strict
Strong
Sequential
Causal
Eventual

24

Single PUT request for key ‘X

P3.3 Task 1: Strong Consistency

’

Block all GET for key ‘X’
until all datastores are
updated

GET requests for a
different key ‘Y’ must be
allowed

Multiple PUT requests for ‘X’

Resolved in order of their
arrival

Any GET request in
between 2 PUTs must
return the last PUT value

Datastore1

N YN Y
e R B A

Datastore2

PUT X, 1 PUT X, 1

Datastore3

PUT X, 1

{ Coordinator

PUT
X,1

3

Locked from
accessing X

Client

Client 2

25

P3.3 Task 1: Strong Consistency

Multiple GET requests for key

le

All GET for key ‘X’ should
be served concurrently if
no PUT is pending

Datastore1

N YN Y
et o P A

Datastore2

Datastore3

S
GET X
GET X
No
Pending { Coordinator }
GET X,
PUTs 7 oc=2

Client

Client 2

26

P3.3 Task 2: Architecture
Global Coordinators and Data Stores

P3.3 Tasks 1 & 2: Strong Consistency

® Every request has a global order.

o Task 1: Typically the order in which they arrive at
the coordinator.
o Task 2: Timestamp comes with the request.

e QOperations must be ordered by the
timestamps.

Requirement: At any given point of time, all

clients should read the same data from any

datacenter replica.

28

P3.3: Eventual Consistency (Bonus)

e Write requests are performed in the order
received by the coordinator
— Operations may not be blocked for
replica consensus
Clients that request data may receive multiple
versions of the data, or stale data
— Problems left for the application owner
to resolve

29

P3.3: Task Overview

e Launch Coordinators and DCs all in us-east
o |n Task 2, we will simulate global latencies
for you
e Implement the Coordinators and Datastores
o Strong Consistency
m Tasks 1 (Only Coordinator) & 2
o Eventual Consistency
m bonus

30

P3.3:Task 2
Example

Task 2 Example
* Launch a total of 7 machines (3 data centers, 3 coordinators and 1 client)
* All machines should be launched in US East region.

~ All VMs will be launched in “US East”, we will simulate the latencies

LIS Wesat iDvigen)

LIS West (. California) F

A for the location of datacenters and coordinators in Task 2.

Asia Pacific {Singapane)

Asi Pacific [Tokyo)

Asia Pacific [Sydnay)
South A (580 Pauka)
US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyVaIueStore.javo) (KeyValueStore.java) (KeyVa/ueStore.java)
US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinotor.java) (Coordinator. java) (Coordinator. javo)

(Client)

32

P3.3 Task 2: Complete
e KeyValueStore.java on Datacenters
e Coordinator.java on Coordinators

US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyVaIueStore.java) (KeyVaIueStore.java) (KeyVaIueStore.java)

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator.java) (Coordinator.java)

(Client)

33

Example workflow for a PUT request using strong consistency

US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyValueStore.java) (KeyValueStore. java) (KeyValueStore.java)

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator.java) (Coordinator.java)

US-EAST-DNS:8080/put?key=X&value=1×tamp=1

(Client)

34

Example workflow for a PUT request using strong consistency

US-EAST US-WEST
DATACENTER DATACENTER
(KeyValueStore.java) (KeyValueStore. java)

US-EAST US-WEST
COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator. java)

You should call KeyValueLib. AHEAD(“X”,1) to notify
all 3 datacenters of this PUT request.
Resulting behavior may include:
® Locking subsequent requests for key “X”
until current request is complete (Client)
e Done on datacenter.

SINGAPORE
DATACENTER
(KeyValueStore.java)

SINGAPORE
COORDINATOR

(Coordinator. java)

35

Example workflow for a PUT request using strong consistency

US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyValueStore.java) (KeyValueStore. java) (KeyValueStore.java)

A

ahead?key=X×ta

ahead?key=X×tamp=1 ahead?key=X×tamp=1

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator. java) (Coordinator. java)

(Client)

36

Example workflow for a PUT request using strong consistency

US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyValueStore.java) (KeyValueStore. java) (KeyValueStore.java)

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator.java) (Coordinator.java)

hash(“X”) to determine if this coordinator is
responsible for “X”.

(Client)

37

Example workflow for a PUT request using strong consistency

e |f US-EAST is responsible for key “X”

US-EAST US-WEST
DATACENTER DATACENTER
(KeyVaIueStore.java) (KeyVaIueStore.java)

KeyValueLib.PUT(US-

KeyValueLib.PUT(US-EAST-DNY, "X", "1", 1, "strong")

US-EAST US-WEST
COORDINATOR COORDINATOR
(Coordinator.java) (Coordinator. java)

(Client)

'DNS, IIXII' “1", 1' llstrongll)

Upon receiving the actual request, it will be up to
you to decide how and when to update the value.
Timestamps are extremely important in this project,
so you may choose to store more than just the value
associated with each key only for backend purposes.

SINGAPORE
DATACENTER
(KeyVaIueStore.java)

KeyValueLib.PUT(SINGAPORE-DNS, "X", "1", 1, "strong")

SINGAPORE
COORDINATOR

(Coordinator. jovo)

38

Example workflow for a PUT request using strong consistency

e |f US-EAST is responsible for key “X”

US-EAST US-WEST SINGAPORE
DATACENTER DATACENTER DATACENTER
(KeyValueStore.javo) (KeyValueStore. java) (KeyValueStore.java)

US-EAST US-WEST SINGAPORE
COORDINATOR COORDINATOR COORDINATOR
(Coordinator.jova) (Coordinator.java) (Coordinator. javo)

Response back
(could be empty)

(Client)

39

Example workflow for a PUT request using strong consistency

e |f US-WEST is responsible for key “X”

US-EAST US-WEST
DATACENTER DATACENTER
(KeyValueStore.javo) (KeyValueStore. java)
US-EAST US-WEST
COORDINATOR » | COORDINATOR
(Coordinator.java) (Coordinator.java)

KeyValueLib.FORWARD(US-WEST-DNS, "X", "1", 1)

(Client)

SINGAPORE
DATACENTER

(KeyValueStore.java)

SINGAPORE
COORDINATOR

(Coordinator. javo)

40

More Hints

® In strong consistency, “AHEAD” should be useful
to help you lock requests because they are able
to communicate with datastores with negligible
delay, regardless of region.

e For strong consistency, make sure to lock all
datacenters.

e Eventual consistency is significantly easier to
implement.

41

Suggestions

Read the primers! Practice the primer code!
You should consider the differences between
the 2 consistency levels before writing code.
Think about possible race conditions.

Read the hints in the writeup carefully.
Don’t modify any class except
Coordinator.java and KeyValueStore.java.

42

However...

We are making an assumption!

e In the Real World, there is nothing like AHEAD with
negligible latency.

o You may want to enroll in a distributed systems course
(like 15440/640) to learn more.

43

How to Run Your Program

® Run “./vertx run Coordinator.java” and “./vertx run
KeyValueStore.java” to start the vertx server on each of the
data centers and coordinators. (You could use nohup to run it
in background)

e Use “./consistency checker strong”, or “./consistency checker

IH

eventual” to test your implementation of each consistency.
(Our grader uses the same checker)
e If you want to test one simple PUT/GET request, you could

directly enter the request in your browser.

44

Start early!

Trickiest Individual Project!

Upcoming Deadlines .

e Quiz7: Unit4 - Module 14
Due: THURSDAY 10/19/2017 11:59 PM ET

e Individual Project: P3.3, Replication and Consistency Models
Due: 10/22/2017 11:59 PM ET. ‘
e Team Project: Phase 1, Query 1

Due: 10/22/2017 11:59 PM ET

46

TWIT]

|
AJ

BYANWANWANNVANIR A R (@SS
ROJECT

Team Project

Twitter Analytics Web Service

Given ~1TB of Twitter data
Build a performant web service
to analyze tweets

Explore front end frameworks

Explore and optimize storage systems

& N

Query

THEPR7 JECT.ZONE — EC2

Load Generation <: Frontend

Response \HTFP Web Service /

Query

—
—

Response Backend

AN

My-= s

AP ACHE

HBRASE

\ Database j

Team Project

e Phase 1:
o Q1 Input your team

t ID and GitHub
o Q2 (MySQL AND HBase) | oo = o

username on TPZ

e Phase 2
o Q1
o Q2 & Q3 (MySQL AND HBase)

e Phase 3
o Q1
o Q2 & Q3 & Q4 (MySQL OR HBase)

Team Project System Architecture

~ Response |

Git workflow

e Commit your code to the private repo we set up

o Update your GitHub username in TPZ!
e Make changes on a new branch

o Work on this branch, commit as you wish

o Open a pull request to merge into the master branch
e (Code review

o Someone else needs to review and accept (or reject)

your code change
o Capture bugs and know what others are doing

Query 1, QR code

e Query 1 is a simple heartbeat query

o Implement encoding and decoding of QR code
m A simplified version

o You must explore different web frameworks
m Get at least 2 different web frameworks working
m Select the better performance of framework
m Provide evidence of your experimentation

o In this query, there is no backend database involved

Query 1 Specification

e Structural components
o Two sizes of QR, depending on the message length
o Position detection patterns
o Alignment patterns
o Timing Patterns

e Fill in message
o Interleave chars & error detection codes
o Putin the payload, move in S shape

Query 1 Example

e Encoding
o For a message, return the image encoded as a hex string

O

The area in the red box in the image below

e Decoding
Find the encoded image in a random background
The image may be rotated 0,90,180,270 degrees

O

©)

m Use patterns to find the QR code!
Then do the inverse of encoding
Sorry, can’t scan it with a camera yet :(

Query 2, Hashtag Recommendation

e Query 2is a DB read query

o Given a sentence, return hashtags that appeared most
frequently with words in it

o You have to perform Extract, Transform and Load (ETL)
m Can be done on AWS, Azure or GCP
m Dataset is available on all three platforms

o Pay close attention to the ETL rules and related
definitions

o Make good use of the reference data & server

o In this query, you will need both front end + back end
m MySQL and HBase
m You need two 10-minute submissions, (Q2M & Q2H)

by the deadline

Query 2 Example

e Assume dataset contains
o user 123456789: Cloud is great #aws
o user 987654321: Cloud computing is tough #azure
e Sample request and response
o Request: keywords=cloud,computing&userid=123456789&n=3
o #aws: 2 points; #azure: 2 points
O Response: #aws,#azure
= Return top n hashtags (or all), break ties lexicographically

Team Project Time Table i

[XX EXXXXK]

X

Phase (and query due) | Start Deadline Code and Report Due
Phase 1 Monday 10/09/2017 Q1: Sunday 10/22/2017 | Tuesday 10/31/2017
e Q1,Q2 00:00:00 ET 23:59:59 ET 23:59:59 ET
Q2: Sunday 10/29/2017
23:59:59 ET
Phase 2 Monday 10/30/2017 Sunday 11/12/2017
e (Q1,0Q2,Q3 00:00:00 ET 15:59:59 ET
Phase 2 Live Test (Hbase Sunday 11/12/2017 Sunday 11/12/2017 Tuesday 11/14/2017
AND MySQL) 18:00:00 ET 23:59:59 ET 23:59:59 ET
e Q1,Q2,Q3
Phase 3 Monday 11/13/2017 Sunday 12/03/2017
e Q1,Q2,Q3,Q4 00:00:00 ET 15:59:59 ET

Phase 3 Live Test (Hbase
OR MySQL)

e Q1,Q2,Q3,04

Sunday 12/03/2017
18:00:00 ET

Sunday 12/03/2017
23:59:59 ET

Tuesday 12/05/2017
23:59:59 ET

Note:

e There will be a report due at the end of each phase, where you are expected to discuss optimizations

e WARNING: Check your AWS instance limits on the new account (should be > 10 instances)
e Query 1 is due on Oct 22, not Oct 29! We want you to start early!

Hints/Suggestions

Use Azure/GCP for ETL to save budget.

Experiment with the different MySQL Storage Engines.
Connection Pooling to parallelize access to the
database.

Scans vs Gets in HBase

HBase configuration parameters

MySQL configuration parameters

Start early!

Team Project Q1 Due
Sunday 10/22

4

>

Upcoming Deadlines

Conceptual Topics: OLI (Module 14)
Quiz 7 due: Thursday, 10/19/2017 11:59 PM Pittsburgh

P3.3: Replication and Consistency Models
Due: Sunday, 10/22/2017 11:59 PM Pittsburgh

Team Project: Phase 1 - Query 1
Due: Sunday 10/22/2017 11:59 PM Pittsburgh

Q&A

