
1

●
●
●
●

○
○
○

●
○

●
●

○

●

3

●
○

■
■
■

○
●

4

●

●
○
○
○

○

●

●

○
○
○
○
○
○
○

6

●

●

●

●

7

●
○

●

○

●
○

8

9

●
○
○

●

○
●

○
○
○

Link to Storage Benchmarking Primer
● Running sysbench and preparing data

○ Use the prepare option to generate the data.
● Experiments

○ Run sysbench with different storage systems
and instance types.

○ Doing this multiple times to reveal different
behaviors and results.

● Compare the requests per second.

https://theproject.zone/f17-15619/storage-benchmarking

Scenario Instance

Type

Storage Type RPS Range RPS Increase Across 3 Iterations

1 t1.micro EBS Magnetic

Storage

100, 100.5, 100 Trivial (<5%)

2 t1.micro EBS General

Purpose SSD

617.98, 643.99,

634.33

Trivial (<5%)

3 m3.large EBS Magnetic

Storage

309.88, 383.47,

460.89

Significant (can reach 50% with

absolute increase of 150-200)

4 m3.large EBS General

Purpose SSD

1367.32, 1653.04,

1722.52

Noticeable (can reach 25% with

absolute increase of 300-400)

What can you conclude from these results?

● SSD has better performance than magnetic disk
● m3.large instance has better performance that

t1.micro instances
● The RPS increase across 3 iterations for m3.large

is more significant than that for t1.micro:
○ The reason is an instance with more memory

can cache more of the previous requests for
repeated tests.

○ Caching is also a vital performance tuning
mechanism when building high performance
applications.

P3.1: Files, SQL, and NoSQL:
● Use Linux tools (e.g. grep, awk) and data

libraries (e.g. pandas) to analyze data from
given datasets in flat files

● Use relational databases (MySQL)
○ load data, run basic queries

● Use a NoSQL database (HBase)
○ load data, run basic queries

The NoSQL/HBase Primers are vital to P3.1

● Flat files, plain text or binary
○ comma-separated values (CSV) format:

Carnegie,Cloud Computing,A,2017

○ tab-separated values (TSV) format:
Carnegie\tCloud Computing\tA\t2017

○ a custom and verbose format: Name:
Carnegie, Course: Cloud Computing,

Section: A, Year: 2017

● Lightweight, Flexible, in favor of small tasks
○ Run it once and throw it away

● Performing complicate analysis on data in files can
be inconvenient

● Usually flat files should be fixed or append-only.
● Writes without breaking data integrity is difficult.
● Managing the relations among multiple files is also

challenging

● A collection of organized data
● Database management system (DBMS)

○ Interface between user and data
○ Store/manage/analyze data

● Relational databases
○ Based on the relational model (schema):

MySQL
● NoSQL Databases

○ Unstructured/semi-structured
○ DynamoDB, HBase, Mongo,

Google BigTable

● Advantages
○ Logical and physical data independence
○ Concurrency control and transaction support
○ Query the data easily (e.g. SQL)
○ ...

● Disadvantages
○ Cost (computational resources, fixed schema)
○ Maintenance and management
○ Complex and time-consuming to design schema
○ ...

● Compare flat files to databases

● Think about:
○ What are the advantages and disadvantages of

using flat files or databases?
○ In what situations would you use a flat file or a

database?
○ How to design your own database? How to

load, index and query data in a database?

● Analyze Yelp’s Academic Dataset
○ https://www.yelp.com/dataset_challenge

● Answer questions in runner.sh
○ Use tools such as awk, grep, pandas
○ Similar to what you did in Project 1.1, 1.2

● Merge TSV files by joining on a common field
● Identify the disadvantages of flat files

● Prepare tables
○ The script to create the table and load the data

is already provided
● Use MySQL queries to answer questions

○ Learn JDBC
○ Complete MySQLTasks.java
○ Aggregate functions, joins
○ Statement and PreparedStatement
○ SQL injection

● Learn how to use indexes to improve
performance

● Schema design is based on the structure of the
data; index design is based on the data as well
as queries.

● You can build effective indexes only if you are
aware of the queries you need.

● We have an insightful section about the practice
of Indexing, read them carefully!

● How do you evaluate the performance of a
query?
○ Run it.

● What if we want/need to predict the
performance without execution?
○ Use EXPLAIN statements.

● An EXPLAIN statement on a query will predict:
○ the number of rows to scan
○ whether it makes use of indexes or not
○ etc.

● Non-SQL(Non-relational) or NotOnly-SQL
● Why NoSQL if we already have SQL solutions?
● Traditional SQL Databases do not align with the

need of distributed systems.
● CAP theorem is a conditional trade-off when

network partition happens in a distributed system
○ Consistency: no stale data
○ Availability: no downtime
○ Partition Tolerance: network failure tolerance in

a distributed system
● Flexible Data Model

● Launch an EMR cluster with HBase installed.

● Follow the write-up to download and load the
data into HBase.

● Try different querying commands in the
HBase shell.

● Complete HBaseTasks.java using HBase
Java APIs.

● Tag your resources with:
○ Key: Project, Value: 3.1

● Stop the submitter instance to take a break and
work on it later. Terminate the EMR cluster.

● Make sure to terminate the instance after
finishing all questions and submitting your
answers.

Team Project Architecture

● We will provide team member suggestions soon.
● Writeup and Queries will be released on Monday, Oct 9th, 2017.
● We can have more discussions in subsequent recitations.
● For now, ensure 3-person teams you decide have experience with

data processing, web frameworks, database, storage principles and
infra setup/hacking. Web UI skill is not needed.

28

Phase (and query due) Start Deadline Code and Report Due

●

●

●

●

●

29

https://piazza.com/class/iwo7h5zi9h96fw?cid=1089

30

