
15-319 / 15-619
Cloud Computing

Recitation 5

September 26th, 2017

1

Overview

● Administrative issues
● Office Hours, Piazza guidelines
● Last week’s reflection
● Project 2.1, OLI Unit 2 modules 5 and 6
● This week’s schedule

○ Quiz 4 - September 29, 2017 (Modules 7, 8, 9)
○ Project 2.2 - October 1, 2017
○ Start exploring teams for the Team Project

Announcements

• Monitor your expenses regularly
- Check your bill frequently on TheProject.Zone
- Check on AWS, use Cost Explorer & filter by tags
- Check on the Azure portal since only $100/sem

• Terminate your resources when you are done
- Stopping a VM still costs EBS money

($0.1/GB/month)
- Amazon EC2 and Amazon Cloudwatch fees for

monitoring, ELB
- AutoScaling Group - no additional fees

3

Announcements

● Use spot instances as much as possible

● Protect your credentials

○ Crawlers are looking for AWS credentials on

public repos!

● Primer for 3.1 is out

○ Storage I/O Benchmarking

3

Last Week’s Reflection

● OLI: Conceptual Content
○ Unit 2 - Modules 5 and 6:

■ Cloud Management & Software Deployment
Considerations

○ Quiz 3 completed
● P2.1: Azure, GCP, and AWS EC2 APIs

○ CLI, Java, Python
● P2.1: Load Balancing and AutoScaling

○ Experience horizontal scaling
○ Programmatically manage cloud resources and

deal with failure
○ Initial experience with load balancing

5

Project 2.1

● To evaluate how well other people can read
your code, we will be manually grading your
submitted code
○ Azure
○ GCP
○ AWS (Horizontal and Autoscaling)

○ To enhance readability
■ Use the Google Code Style guidelines

○ Always add comments especially for
complex parts 6

https://github.com/google/styleguide

Project 2.1

● You gained experience working with Cloud
Service Provider's APIs
○ Documentation may be unclear or may

omit certain details.
○ Have to ensure you’re referencing the

correct documentation version.
● Considerations of cost vs performance

7

This Week: Content

CollabU Course on OLI:

● Complete Units 1 and 2 by Sunday October 8
at 11:59PM ET.

● 15-619 Only
○ To help you prepare for the team project

● Detailed instructions on Piazza
○ https://piazza.com/class/j6qnpbww91r7hl

?cid=654

8

https://piazza.com/class/j6qnpbww91r7hl?cid=654
https://piazza.com/class/j6qnpbww91r7hl?cid=654

This Week: Content

• UNIT 3: Virtualizing Resources for the Cloud

– Module 7: Introduction and Motivation
– Module 8: Virtualization
– Module 9: Resource Virtualization - CPU
– Module 10: Resource Virtualization - Memory
– Module 11: Resource Virtualization – I/O
– Module 12: Case Study
– Module 13: Network and Storage Virtualization

9

OLI Module 7 - Virtualization
Introduction and Motivation

● Why virtualization
○ Enabling the cloud computing system model
○ Elasticity
○ Resource sandboxing
○ Limitation of General-Purpose OS
○ Mixed OS environment
○ Resource sharing

■ Time
■ Space

○ Improved system utilization and reduce costs
from a cloud provider perspective

10

OLI Module 8 - Virtualization

● What is Virtualization
○ Involves the construction of an isomorphism that

maps a virtual guest system to a real (or physical)
host system

○ Sequence of operations e modify guest state
○ Mapping function V(Si)

● Virtual Machine Types
○ Process Virtual Machines
○ System Virtual Machines

11

OLI Module 9
Resource Virtualization - CPU

● Steps of CPU Virtualization
○ Multiplexing a physical CPU among virtual CPUs
○ Virtualizing the ISA (Instruction Set Architecture) of a

CPU

● Code Patch, Full Virtualization and Paravirtualization
● Emulation (Interpretation & Binary Translation)
● Virtual CPU

12

This Week: Project

● P2.1: Horizontal Scaling and Autoscaling
■ MSB Interview

● P2.2: Containers and Kubernetes
■ Building a Coding Interview Playground
■ Working with Docker and Kubernetes

13

Containers

● Provides OS-level virtualization.
● Provides private namespace, network

interface and IP address, etc.
● Big difference with VMs is that containers

share the host system’s kernel with other
containers.

14

Why Containers?

● Faster deployment
● Portability across machines
● Version control
● Simplified dependency management

Build once, run anywhere

15

Docker Engine

● An orchestrator that comprises:
○ Docker Daemon
○ Docker Client
○ REST API

16

Docker Daemon

● Main brains behind Docker Engine
● The Docker Client is used to communicate

with the Docker Daemon
● The Daemon does not have to be on the

same machine as the Client

17

Docker Client

● Also known as Docker CLI
● When you type:

docker build nginx

You are telling the Docker client to forward the
build nginx

instruction to the Daemon

18

Dockerfile

● We can use a Dockerfile to build container images
● Dockerfile tells Docker:

○ What base image to work from
○ What commands to run on base image
○ What files to copy to the base image
○ What ports should the container listen on?
○ What binaries to execute when the container launches?

● In short, Dockerfile is a recipe for Docker images

Let’s go through a sample Dockerfile!

Example Dockerfile
Debian as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Example Dockerfile
Debian Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Images & Containers

● An image: is a static file; never changes
● A container: a live instance of an image
● Think of it this way – you have a DVD that installs

Windows OS (image). After you install it, you can
write files to it (container).

● docker build
○ builds an image

● docker run
○ runs a container based off of an image

Kubernetes
●

○

○

○

https://kubernetes.io/docs/whatisk8s/
https://upload.wikimedia.org/wikipedia/commons/b/be/Kubernetes.png

Deploying with Kubernetes

apiVersion: v1
kind: Pod
metadata:
 name: test
 labels:
 app: test
spec:
 containers:
 - name: backend1
 image: us.gcr.io/cc-p22/task2-container1:v0
 ports:
 - name: http
 containerPort: 8080
 ...

Node 1

●

●
○ kubectl create -f demo_pod.yaml

Pod 1

task2-container1

task2-container2

Pod 2

task2-container1

task2-container2

https://kubernetes.io/docs/user-guide/kubectl-overview/
https://kubernetes.io/docs/user-guide/kubectl-overview/
https://kubernetes.io/docs/resources-reference/v1.5/#pod-v1

Project 2.2 - Containers

● Build a service to compile and run user code submitted
through a front end.

● Four tasks:
○ Task 1: Containerize an Nginx server and run container

locally.
○ Task 2: Build a Python web service to evaluate Python code

submitted from the UI and return the result.
○ Task 3: Multi-cloud deployment. The Python code

evaluation service will be replicated across clouds.
○ Task 4: Implementing fault tolerance and autoscaling rules.

Task 1 Objectives

● Work with Dockerfiles
● Master the Docker CLI, including useful

commands like:
○ docker build
○ docker images
○ docker run
○ docker ps

● Think about integration between the host and the
container

Task 1 Overview

● Configure a Docker container with an Nginx web
server

● Nginx server listening on port 15619
● Port 15619 of host VM mapped to the container

port

<ec2.***.amazonaws.com:15619> <nginx-container-1:80>

Task 2 Objectives

●
○
○

■

●
○
○

Task 2 Overview
● Python code evaluation

service architecture.
● The UI is exposed on the

internet, accepts POST
requests.

Task 3 Objectives & Overview

● Builds on task 2. Introduces Kubernetes
clusters in Azure.

● Replicate backend deployment to Azure
cluster. Update frontend to route traffic.

Task 4 Objectives
● Task 4 will build on task 3

○ Same architecture, but have to consider
downstream service failures.

● Achieve high availability!
○ Multi cloud deployment!
○ Autoscaling Kubernetes deployments to

accommodated increased traffic due to
failures.

○ HorizontalPodAutoscaler

Task 4 Architecture

35

Tips, Trips, and Tricks

●
○
○
○

●
○ (kubectl get pods , kubectl describe pods)

○ (kubectl logs …)

Project 2.2 Penalties

Upcoming Deadlines

38

• Quiz 4: Modules 7, 8 and 9:

Due: Friday September 29, 2017 11:59PM Pittsburgh

• Project 2.2: Docker and Kubernetes

Due: Sunday October, 1 2017 11:59PM Pittsburgh

• Team Project: Team Formation

Due: October, 2 2017 11:59PM Pittsburgh

Team Project Architecture

● Writeup and Queries will be released on Monday, October 9th, 2017

● We can have more discussions in subsequent recitations

● For now, ensure 3-person teams you decide have experience with web
frameworks and database, storage principles and infra setup/hacking

Questions?

40

