15-319 / 15-619
Cloud Computing

Recitation 4
September 19th, 2017

Administrative Issues

Make use of office hours
o We will have to make sure that you have tried yourself before you ask

Monitor AWS, Azure, and GCP expenses regularly
Always do the cost calculation before launching services
Terminate your instances when not in use

Stopping instances still has an EBS cost ($0.1/GB-Month)
Make sure spot instances are tagged right after launch

Important Notice

e DON’T EVER EXPOSE YOUR AWS CREDENTIALS!
o Github
o Bitbucket
o Anywhere public...
e DON’'T EVER EXPOSE YOUR GCP CREDENTIALS!
e DON’T EVER EXPOSE YOUR Azure CREDENTIALS!
o Applicationld, ApplicationKey
o StorageAccountKey, EndpointUri

Reflection

e Last week’s reflection
o Project 1.2, Quiz 2
e Theme - Big data analytics
o P1.1: Sequential Analysis of 100s MB of wikipedia data
o P1.2: Parallel Analysis of 35GB compressed / 128GB decompressed
wikipedia data
e Power of parallel analysis
o Amount of work done remains the same
o Span is reduced significantly

Reflection

e You should have learned
— How to process big data sets with MapReduce
How MapReduce works
*How to write a Mapper and a Reducer
*Performance/cost tradeoff

*How to debug MapReduce
— How to save overall cost by testing using small data sets

e Don’t forget about MapReduce just yet!
— Will be relevant in the Team Project and Project 4

This Week

e Quiz 3 (OLI Modules 5 & 6) e Project 2.1
o Due on Friday, o Due on Sunday,
Sept 22nd, 2017, Sept 24th, 2017,

11:59PM ET 11:59PM ET

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning, monitoring and metering of virtual
user “resources” on top of the Cloud Service Provider’s (CSP) infrastructure.

Cloud middleware

Provisioning

Metering

Orchestration and automation

Case Study: Openstack - Open-source cloud stack implementation

OLI Module 6 - Cloud Software
Deployment Considerations

Programming the cloud

Deploying applications on the cloud
Build fault-tolerant cloud services
Load balancing

Scaling resources

Dealing with tail latency

Economics for cloud applications

Project 2
Overview

Scaling and Elasticity with VMs
and Containers

2.1 Scaling Virtual Machines
Horizontal scaling in / out

- AWS and Azure or GCP APlIs
Load balancing, failure detection, and
cost management on AWS

2.2 Scaling with Containers
Building your own container-based
services. Both Python / Java and
Frontend / Backend.

Docker containers

Manage multiple Kubernetes Cluster
Multi Cloud deployments.

Project 2.1 Learning Objectives

Invoke cloud APlIs to programmatically provision and deprovision cloud resources based on the
current load.

Explore and compare the usability and performance of APIs used in AWS, GCP and Azure.
Configure and deploy an Elastic Load Balancer along with an Auto Scaling Group on AWS.
Develop solutions that manage cloud resources with the ability to deal with resource failure.
Account for cost as a constraint when provisioning cloud resources and analyze the
performance tradeoffs due to budget restrictions.

Quality of Service (QoS)

Quantitatively Measure QoS

e Performance: Throughput, Latency
(Very helpful in Projects 2 & Team Project)

e Availability: the probability that a system is operational at a given time
(Projects P2.1 and P2.2)

e Reliability: the probability that a system will produce a correct output up to a
given time (Project P2.1 and P2.2)

QoS Matters:

e Amazon found every 100ms of latency
cost them 1% in sales.

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

BLACK
FRIDAY

THANKSGIVING

2012 Holiday shopping result

CYBER
MONDAY

GREEN
MONDAY

FREE
SHIPP

DAY _

ING
NEW
YEAR'S
EVE

XMAS

sapient.com
13

Cloud Comes to the Rescue!
Scaling!

PO: Vertical Scaling

Load
Generator

=

X

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

Resources in Cloud Infrastructure

/

/
Large
Medium
Small
Middleware
’ @@@@

Instance Types

Bare Metal Resources

PO: Vertical Scaling Limitation

e However, one

vavs e /
\

limited resources. Load
Generator

e Reboot/Downtime.

Horizontal Scaling

Load — 7
Generator

- ~

How do we distribute load?

Instance Failure?

e e
O

What You Need

e Make sure that workload is even on each server
* Do not assign load to servers that are down

* Increase/Remove servers according to changing load

2

How does a cloud service help solve these problems?

-

Load Balancer

Managed group of servers

Load balancer

“Evenly” distribute the load
Simplest distribution strategy
o Round Robin
e Health Check Load Balancer

e \What if the Load Balancer becomes the bottleneck?
o Elastic Load Balancer
m Could scale up based on load
o Elastic, but it takes time
m Through the warm-up process

Reality...

BLACK

FRIDAY
NOV 23

THANKSGIVING
NOV 22

2012 Holiday shopping result

CYBER
MOMNDAY
NOV 26
GREEN
MONDAY
DEC 3 DEC 10

FREE
SHIPPING
DAY

YEAR'S
EVE

XMAS

sapient.com
23

Scaling

Manual Scaling:

e Expensive on manpower

e Low utilization or over provisioning
e Manual control

e Lose customers

Autoscaling:

e Automatically adjust the size based on
demand

e Flexible capacity and scaling sets

e Save cost

Traditional Scaling

Lost customers

Capacity

Watted Capacity

/\%u capacity

Actual demand

Time

Amazon Auto Scalin

Capacity

— Artual demand
Virtualived Infrastruciure

Time

AWS Autoscaling

Auto Scaling on AWS
Using the AWS APIs:

CloudWatch

ELB

Auto Scaling Group
Auto Scaling Policy
EC2

You can build a load balanced
auto-scaled web service.

Health
Chechs

Bt

Round Robin
HTTP Connections

Amazon Auto Scaling Group

Elastic Load
Balancer Auto Scaling Group

User Load

| EC2 Instance | MR
| o e e -
: EC2 Instance | .
| | Amazon CloudWatch
: EC2 Instance | .
| | Scale In
| I ' Rule
| EC2 Instance ez |
etrrrrrrrrerererererer e/ 0 Scale Out
Rule <

26

Amazon’s CloudWatch Alarm

 Monitor CloudWatch metrics for some specified
alarm conditions

e Take automated action when the condition is met

Resources with :> CPU Utilization -=> :> User-Defined
ser-vertine
CloudWatch Other Metrics... | <@ - - CloudWatch Action
Enabled Alarm
CloudWatch

Metrics Repository Amazon

CloudWatch

Project 2.1 Scaling on
Azure, GCP, and AWS

e Step1
o Azure or GCP Horizontal Scaling
o Step2
o AWS Horizontal Scaling Load
e Step3 Generator

o AWS Auto Scaling

Project 2.1 Scaling on
Azure, GCP, and AWS

Step 1 Azure or GCP Horizontal
Load <:>
Generator

Scaling

Implement Horizontal Scaling in Azure
or GCP.

Write a program that launches the data
center instances and ensures that the
target total RPS is reached.

Your program should be fully
automated: launch LG->submit
password-> Launch DC-> start test->
check log -> add more DC...

Project 2.1 Scaling on
Azure, GCP, and AWS

Step 2
o AWS Horizontal Scaling

Very similar to Horizontal ,
Scaling in Azure and GCP. Load —
Difference? Generator

o You need to use AWS API.

Project 2.1 Scaling on
Azure, GCP, and AWS

e Step3
o AWS Auto Scaling

Load
Generator

P2.1, Step 3 - Your Tasks

Programmatically create an Elastic Load Balancer (ELB) and an Auto
Scaling Policy. Attach the policy to Auto-Scaling Group (ASG) and link ASG

to ELB.
Test by submitting a URL request and observe logs, ELB, and

CloudWatch.
Decide on the Scale-Out and Scale-In policies

Elastic Load Balancer

Auto Scaling Group

CloudWatch Alarm

Add Resource

Remove Resource

32

Actions (Policies)

Hints for Project 2.1 AWS Autoscaling

' Step 3 - AWS Auto Scaling
o

e Autoscaling Test could be very EXPENSIVE!
o on-demand and charged by the hour
Determine if there is a less expensive means to test your solution
Creating and deleting security groups can be tricky
CloudWatch and monitoring in ELB is helpful
Explore ways to check if your instance is ready
Understanding the APl documents could take time
Finish parts 1-3 first, the experience will help

Project 2.1 Code Submission
Azure or GCP:

e Submit on Azure or GCP’s load generator (LG) VM
e The code for the horizontal scaling task
e Add a readme file describing the content of your folders

AWS:

e Submit the horizontal scaling task on AWS'’s load generator (LG) instance
e Submit the autoscaling task to the AWS load generator (LG) instance
e Add a readme file describing the content of your folders

Penalties for 2.1

Violation zf;:'a’ ;:;2:

Spending more than $20 for this project phase on AWS -10%
Spending more than $35 for this project phase on AWS -100%
Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project 10%
(AWS only). You must use tag: key=Project, value=2.1

Submitting your AWS/GCP/Azure/Andrew credentials in your code for grading -100%
Completing the test for one cloud with instances from another. -100%
Submitting the Azure part with AWS instances or the AWS part with Azure VMs -100%
Using instances other than m3.medium or m3.large for Autoscaling on AWS -100%

Using virtual machines other than Standard_A1(DC) and Standard_D1(LG) in the Azure
part

-100%

Penalties for 2.1 cont.

Violation Pen-alty of the
project grade
Using virtual machines other than n1-standard-1 in the GCP part -100%
Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh, _100%
etc.)
Attempting to hack/tamper the autograder in any way -100%
: . : : : : : -200% &
Cheating, plagiarism or unauthorized assistance (please refer to the university policy on ootential

academic integrity and our syllabus) dismissal

AWS Cloud APIs amazon

webservices™

e AWS CLI (link)
e AWS Java SDK (link)

e AWS Python SDK (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

Azure Cloud APIs mm Microsoft Azure

e Microsoft Azure CLI 2.0 (link)
e Azure Java SDK (link)

e Azure Python SDK (link)

https://github.com/Azure/azure-cli
https://github.com/Azure/azure-sdk-for-java
https://github.com/Azure/azure-sdk-for-python

GCP Cloud APIs ™ Google Cloud Platform

e gcloud CLI (link)
e GCP Java Client Libraries (link)

e GCP Python Client Libraries (link)

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/java/
https://cloud.google.com/python/

Team Project - Time to Team Up

15-619 Students:
e Start to form your teams
o Choose carefully as you cannot change teams
o Look for a mix of skills in the team
m Frontend
m Backend
m ETL
e Create an AWS account only for the team project
e Wait for our post on Piazza to submit your team information

This Week’s Deadlines

e Quiz 3 (OLI Modules 5 & 6) e Project 2.1
o Due on Friday, o Due on Sunday,
Sept 22nd, 2017, Sept 24th, 2017,

11:59PM ET 11:59PM ET

Questions?

