
15-319 / 15-619
Cloud Computing

Recitation 4

September 19th, 2017

Administrative Issues

● Make use of office hours
○ We will have to make sure that you have tried yourself before you ask

● Monitor AWS, Azure, and GCP expenses regularly
● Always do the cost calculation before launching services
● Terminate your instances when not in use
● Stopping instances still has an EBS cost ($0.1/GB-Month)
● Make sure spot instances are tagged right after launch

Important Notice
● DON’T EVER EXPOSE YOUR AWS CREDENTIALS!

○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
● DON’T EVER EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

Reflection
● Last week’s reflection

○ Project 1.2, Quiz 2
● Theme - Big data analytics

○ P1.1: Sequential Analysis of 100s MB of wikipedia data
○ P1.2: Parallel Analysis of 35GB compressed / 128GB decompressed

wikipedia data
● Power of parallel analysis

○ Amount of work done remains the same
○ Span is reduced significantly

Reflection
● You should have learned

– How to process big data sets with MapReduce
•How MapReduce works
•How to write a Mapper and a Reducer
•Performance/cost tradeoff
•How to debug MapReduce

– How to save overall cost by testing using small data sets
● Don’t forget about MapReduce just yet!

– Will be relevant in the Team Project and Project 4

This Week

● Quiz 3 (OLI Modules 5 & 6)
○ Due on Friday,

Sept 22nd, 2017,
11:59PM ET

● Project 2.1
○ Due on Sunday,

Sept 24th, 2017,
11:59PM ET

OLI Module 5 - Cloud Management
Cloud Software stack - enables provisioning, monitoring and metering of virtual
user “resources” on top of the Cloud Service Provider’s (CSP) infrastructure.

● Cloud middleware
● Provisioning
● Metering
● Orchestration and automation
● Case Study: Openstack - Open-source cloud stack implementation

OLI Module 6 - Cloud Software
Deployment Considerations
● Programming the cloud
● Deploying applications on the cloud
● Build fault-tolerant cloud services
● Load balancing
● Scaling resources
● Dealing with tail latency
● Economics for cloud applications

Project 2
Overview

● 2.1 Scaling Virtual Machines
- Horizontal scaling in / out

- AWS and Azure or GCP APIs
- Load balancing, failure detection, and

cost management on AWS

● 2.2 Scaling with Containers
- Building your own container-based

services. Both Python / Java and
Frontend / Backend.

- Docker containers
- Manage multiple Kubernetes Cluster
- Multi Cloud deployments.

Scaling and Elasticity with VMs
and Containers

Project 2.1 Learning Objectives
● Invoke cloud APIs to programmatically provision and deprovision cloud resources based on the

current load.
● Explore and compare the usability and performance of APIs used in AWS, GCP and Azure.
● Configure and deploy an Elastic Load Balancer along with an Auto Scaling Group on AWS.
● Develop solutions that manage cloud resources with the ability to deal with resource failure.
● Account for cost as a constraint when provisioning cloud resources and analyze the

performance tradeoffs due to budget restrictions.

Quality of Service (QoS)
Quantitatively Measure QoS

● Performance: Throughput, Latency
(Very helpful in Projects 2 & Team Project)

● Availability: the probability that a system is operational at a given time
(Projects P2.1 and P2.2)

● Reliability: the probability that a system will produce a correct output up to a
given time (Project P2.1 and P2.2)

QoS Matters:

• Amazon found every 100ms of latency
cost them 1% in sales.

Reality, human patterns...

sapient.com
13

● Daily
● Weekly
● Monthly
● Yearly
● ...

Cloud Comes to the Rescue!
Scaling!

P0: Vertical Scaling

Load
Generator

DC

DC

DC

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

Resources in Cloud Infrastructure

Middleware

Small
Medium

Large
Instance Types

Bare Metal Resources

P0: Vertical Scaling Limitation

Load
Generator

DC

DC

DC

● However, one
instance will
always have
limited resources.

● Reboot/Downtime.

Horizontal Scaling

DC

DC

DC

Load
Generator

How do we distribute load?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

Instance Failure?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

What You Need
• Make sure that workload is even on each server

• Do not assign load to servers that are down

• Increase/Remove servers according to changing load

How does a cloud service help solve these problems?

Server2

Server3

Server1

Server4

Managed group of servers

Load Balancer

Load balancer
● “Evenly” distribute the load
● Simplest distribution strategy

○ Round Robin
● Health Check

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer

■ Could scale up based on load
○ Elastic, but it takes time

■ Through the warm-up process

Load Balancer

Reality...

sapient.com
23

Scaling
Manual Scaling:
● Expensive on manpower
● Low utilization or over provisioning
● Manual control
● Lose customers

Autoscaling:
● Automatically adjust the size based on

demand
● Flexible capacity and scaling sets
● Save cost

AWS Autoscaling
Auto Scaling on AWS

Using the AWS APIs:

● CloudWatch
● ELB
● Auto Scaling Group
● Auto Scaling Policy
● EC2

You can build a load balanced
auto-scaled web service.

Amazon Auto Scaling Group

User Load

Auto Scaling Group

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

E
L
B

Elastic Load
Balancer

26

Amazon’s CloudWatch Alarm

• Monitor CloudWatch metrics for some specified
alarm conditions

• Take automated action when the condition is met

CloudWatch
Metrics Repository

CPU Utilization
Other Metrics… CloudWatch

Alarm

Amazon
CloudWatch

User-Defined
Action

Resources with
CloudWatch

Enabled

27

Project 2.1 Scaling on
Azure, GCP, and AWS

● Step 1
○ Azure or GCP Horizontal Scaling

● Step 2
○ AWS Horizontal Scaling

● Step 3
○ AWS Auto Scaling

fig. horizontal scaling

Load
Generator

DC

DC

DC

LB

Project 2.1 Scaling on
Azure, GCP, and AWS

● Step 1 Azure or GCP Horizontal
Scaling

● Implement Horizontal Scaling in Azure
or GCP.

● Write a program that launches the data
center instances and ensures that the
target total RPS is reached.

● Your program should be fully
automated: launch LG->submit
password-> Launch DC-> start test->
check log -> add more DC... fig. horizontal scaling

Load
Generator

DC

DC

DC

Project 2.1 Scaling on
Azure, GCP, and AWS

● Step 2
○ AWS Horizontal Scaling

● Very similar to Horizontal
Scaling in Azure and GCP.

● Difference?
○ You need to use AWS API.

fig. horizontal scaling

Load
Generator

DC

DC

DC

Project 2.1 Scaling on
Azure, GCP, and AWS

● Step 3
○ AWS Auto Scaling

fig. horizontal scaling

Load
Generator

DC

DC

DC

LB

P2.1, Step 3 - Your Tasks
• Programmatically create an Elastic Load Balancer (ELB) and an Auto

Scaling Policy. Attach the policy to Auto-Scaling Group (ASG) and link ASG
to ELB.

• Test by submitting a URL request and observe logs, ELB, and
CloudWatch.

• Decide on the Scale-Out and Scale-In policies
• Mitigate failure

Elastic Load Balancer

Auto Scaling Group

CloudWatch Alarm

32

Hints for Project 2.1 AWS Autoscaling
Step 3 - AWS Auto Scaling

● Autoscaling Test could be very EXPENSIVE!
○ on-demand and charged by the hour

● Determine if there is a less expensive means to test your solution
● Creating and deleting security groups can be tricky
● CloudWatch and monitoring in ELB is helpful
● Explore ways to check if your instance is ready
● Understanding the API documents could take time
● Finish parts 1-3 first, the experience will help

Azure or GCP:

● Submit on Azure or GCP’s load generator (LG) VM
● The code for the horizontal scaling task
● Add a readme file describing the content of your folders

AWS:

● Submit the horizontal scaling task on AWS’s load generator (LG) instance
● Submit the autoscaling task to the AWS load generator (LG) instance
● Add a readme file describing the content of your folders

Project 2.1 Code Submission

Penalties for 2.1
Violation Penalty of the

project grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $35 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
(AWS only). You must use tag: key=Project, value=2.1 -10%

Submitting your AWS/GCP/Azure/Andrew credentials in your code for grading -100%

Completing the test for one cloud with instances from another. -100%

Submitting the Azure part with AWS instances or the AWS part with Azure VMs -100%

Using instances other than m3.medium or m3.large for Autoscaling on AWS -100%

Using virtual machines other than Standard_A1(DC) and Standard_D1(LG) in the Azure
part -100%

Penalties for 2.1 cont.
Violation Penalty of the

project grade

Using virtual machines other than n1-standard-1 in the GCP part -100%

Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh,
etc.) -100%

Attempting to hack/tamper the autograder in any way -100%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on
academic integrity and our syllabus)

-200% &
potential
dismissal

AWS Cloud APIs

● AWS CLI (link)

● AWS Java SDK (link)

● AWS Python SDK (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

Azure Cloud APIs

● Microsoft Azure CLI 2.0 (link)

● Azure Java SDK (link)

● Azure Python SDK (link)

https://github.com/Azure/azure-cli
https://github.com/Azure/azure-sdk-for-java
https://github.com/Azure/azure-sdk-for-python

GCP Cloud APIs

● gcloud CLI (link)

● GCP Java Client Libraries (link)

● GCP Python Client Libraries (link)

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/java/
https://cloud.google.com/python/

Team Project - Time to Team Up

15-619 Students:
● Start to form your teams

○ Choose carefully as you cannot change teams
○ Look for a mix of skills in the team

■ Front end
■ Back end
■ ETL

● Create an AWS account only for the team project
● Wait for our post on Piazza to submit your team information

This Week’s Deadlines

● Quiz 3 (OLI Modules 5 & 6)
○ Due on Friday,

Sept 22nd, 2017,
11:59PM ET

● Project 2.1
○ Due on Sunday,

Sept 24th, 2017,
11:59PM ET

Questions?

