CS15-319 / 15-619 Cloud Computing

Recitation 8
October 14th and 16th, 2014

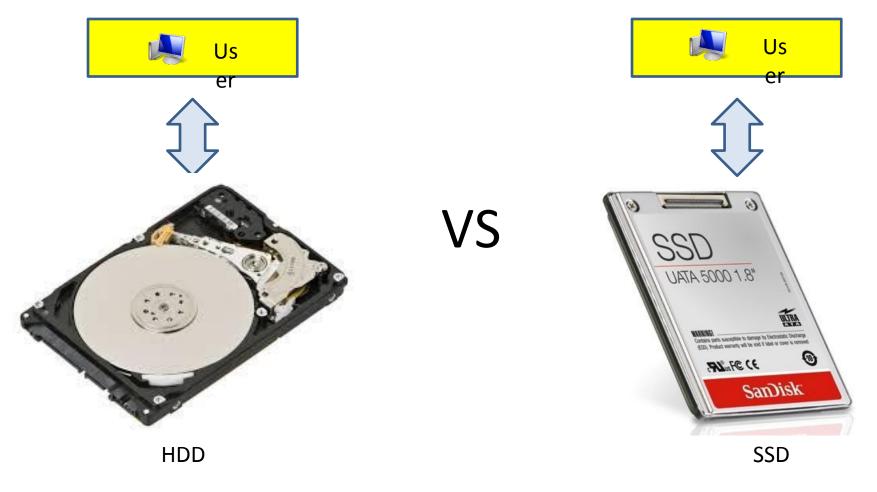
Announcements

- Encounter a general bug:
 - Post on Piazza
- Encounter a grading bug:
 - Post Privately on Piazza
- Don't ask if my answer is correct
- Search before posting
- Post feedback on OLI
- OLI does not show timer for Quiz! You have to maintain your own timer!

Module to Read

- UNIT 4: Cloud Storage
 - Module 12: Cloud Storage

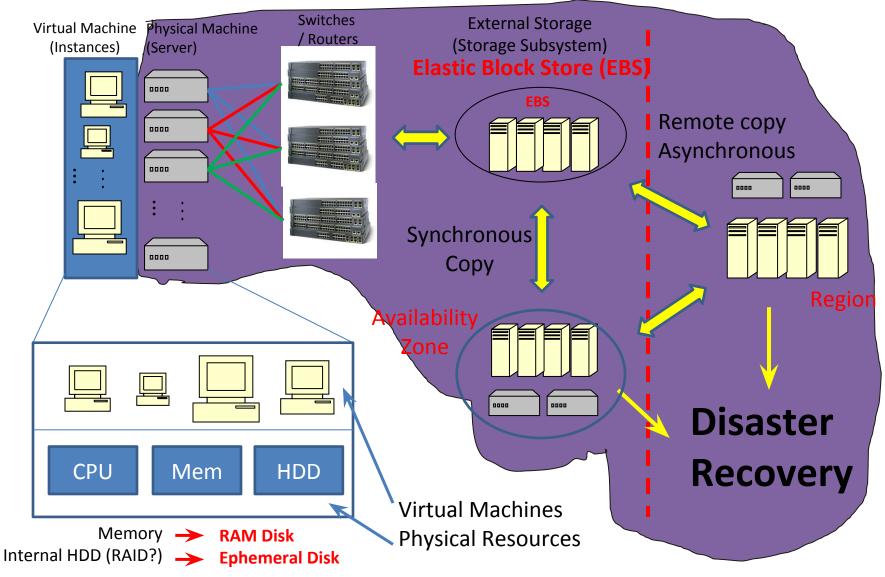
- Module 14: Case Studies: NoSQL Databases
- Module 15: Case Studies: Cloud Object Storage
- Quiz 4: Cloud Storage


Project 3

- Files vs. Databases
 - File vs. Database
- Vertical Scaling in Databases
 - Vertical Scaling
- Horizontal Scaling in Databases
 - Horizontal Scaling
- Sharding Databases
- Provisioned Databases

Our Scenario

User has to open a photo on his local machine

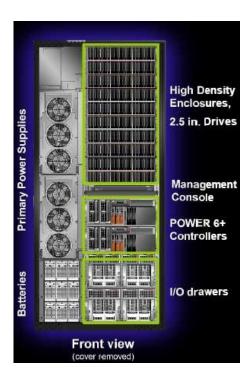


Our Scenario

- Which storage resource offers an improvement in performance and for what type of applications?
- Why?
- Which one would you utilize/receommend?

Brief overview of Project 3.2

- Vertical scaling in storage technologies
- Compare between EBS Magnetic disks, and Solid State Drive
- Measure performance for three distinct scenarios
 - FileIO
 - MySQL Database
 - HBase cluster
- Aim is to understand the benefits of employing faster storage systems.



- Memory RAM Disk
 - Inside the server
 - Usually from several Gigabytes to several hundreds of Gigabytes
- Internal HDD (Hard Disk Drive)
 - Mechanical Disk
 - Usually from 100s Gigabytes to several Terabytes
 - Work best with large files

- Internal SSD (Solid State Drive)
 - Data is stored on chips
 - Much faster access
 - Storage capacity is not as high as HDD, but it is slowly catching up

- External Storage Subsystems
 - Outside of the server
 - Connected by cables via switches, routers, directors (Ethernet, Fiber...)
 - Provide extra functionalities (Copy services, concurrent volume accesses, grouping, caching...)
 - Shared by multiple servers
 - Almost always employs RAID
 - Capacity range from dozens of TB to 100s of TB

External Storage Subsystems

IBM 2424-951 DS8800 182TB RAW 129TB useable w/RAID 5 SYSTEM STORAGE On eBay: US \$899,995.00

EMC SYMITRIX VMAX 40K

Upcoming Deadlines

• Project 3:

Files vs. Databases (Gradebook) (Learning Dashboard)		
File vs. Database	<u>Checkpoint</u>	Ended 10/12/14 11:59 PM
<u>Vertical Scaling in Databases</u> (Gradebook) (Learning Dashboard)		
Vertical Scaling	Checkpoint	Available Now Due 10/19/14 11:59 PM

• Unit 4:

UNIT 4: Cloud Storage

Module 12: Cloud Storage

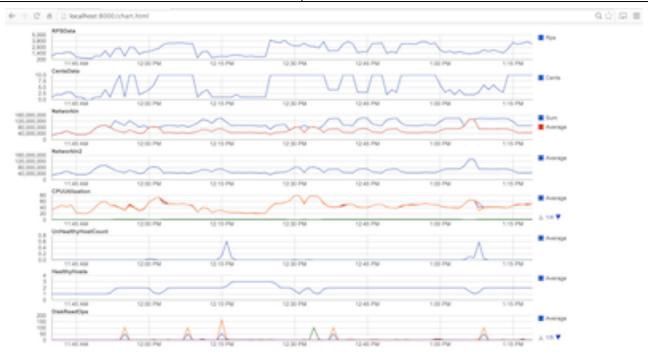
Module 13: Case Studies: Distributed File

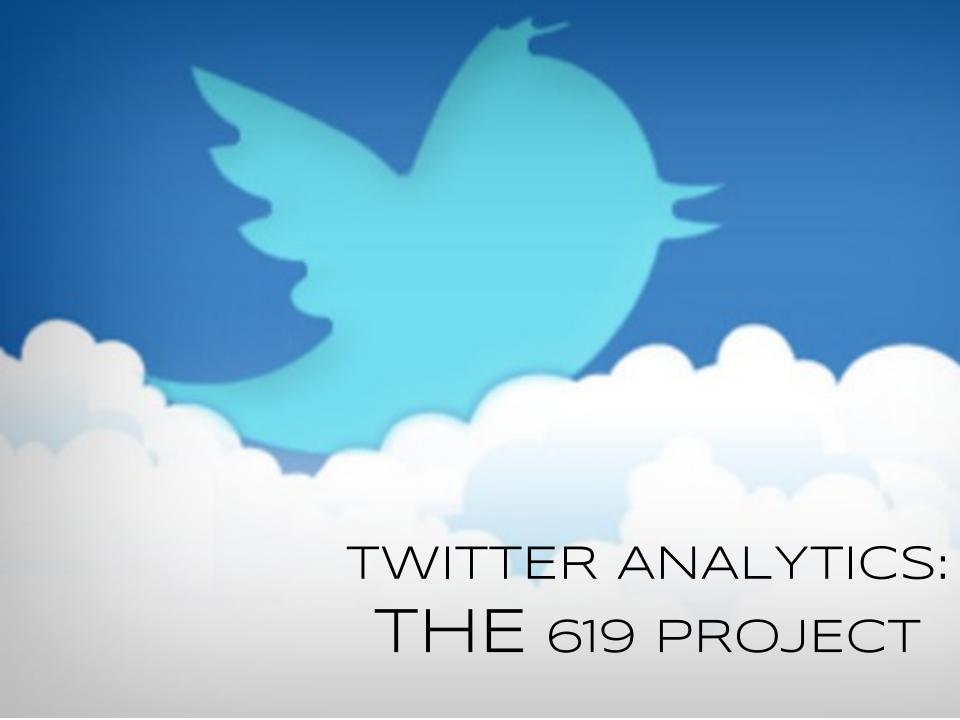
Systems

Disk Operations Commands

- mount/umount
 - attach the file system found on some device to the big file tree
- dd
 - Copy and convert file
- mkfs.ext4
 - Create an ext4 file system

Potential roadblocks


- Read the Vertical scaling section first and use
 "Common disk operations in Linux"
- Before running sysbench, bind your volume to /var/lib/mysql


Project 2: Scaling

Oh, no Not this again!!!

Motivations behind P2

2.2	2.3
Importance of warm-up	More warmup = More dead instances
Rapid scaling	Scale down!!!
Identifying traffic pattern using CW	Heterogeneous resources
Scaling too frequently (oscillating)	Failure detection and handling
Measurements	Trade-offs

Congratulations Team FDU

- Building a performant web server is nontrivial
- Building a performant web server that gets huge amounts of data from MySQL is hard
- Building a performant web server that gets huge amounts of data from HBase is harder

START NOW!!!

START NOW

Q1: Semiprime Factorization

Easy to implement?

 Can you optimize? How much impact does the calculation have on throughput?

- Semiprime factorization used in:
 - RSA
 - Blum-Blum-Shlub

Q2A: Naïve Sentiment Analysis

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper interesting.

amazing	4	interesting	3	
best	3	enjoy	1	
nice	2	super	7	
hope	2	study	-100	

Q2A: Naïve Sentiment Analysis

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

amazing	4
best	3
nice	2
hope	2

interesting	3
enjoy	1
super	7
study	-100

Q2B: Text Censorship

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Banned words

pybhq

vagrerfgvat

Q2B: Text Censorship

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Banned words

cloud

interesting

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

```
Amazingly, despite the nice, weather, the BEST Hope for us to enjoy is to study COMPUTING. is
```

```
a cloudy
b c***dy
c c****y
d
```

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study (COMPUTING. (COMPUTING.)

а	CLOUD
b	C***D
С	cloud
d	c***d

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study C***D COMPUTING.

а	Cloud
b	C***D
С	cloud
d	C***d

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study C***D COMPUTING.C***d is

а	s*******g
b	supper-i******g
С	supper-interesting
d	supper-i*******g

This is the output

Tagging

All instances used for 619 work should be tagged with: "15619project" and value "phase1".

All instances in your HBase cluster should be tagged with: "15619backend" and value "hbase".

All instances with MySQL installed should be tagged with: "15619backend" and value "mysql".

Read Piazza

@1316

<u>@1336</u>

<u>@1313</u>

<u>@1302</u>

<u>@1326</u>

Questions?