CS15-319/ 15-619
Cloud Computing

Recitation 3
September 9th & 11t 2014




Overview

e Last Week’s Reflection
--Project 1.1, Quiz 1, Unit 1

* This Week’s Schedule
--Unit2 (module 3 & 4), Project 1.2

e Questions



Last Week Reflection

e Unitl : Introduction to cloud computing

* Quiz1l

* Project 1.1
— Explore the Wikimedia data set to learn the format
— Sequentially parse and filter the data

— Sort the data and save the output to a file

— Extract & summarize some useful data by
answering questions



Update in Unit 1

e “learn by doing” question 4 on page 137
— S3 prices history : S3 Historical Price

— AWS monthly calculator
— Fixed on OLI for new viewers only

AWS Cost Calculation Exercise

After processing a 1 TB public dataset on 53 US-East, you store the ocutput on your 53 bucket,
which totals about 500 GB. What is the monthly cost of storing that information?

14.85 !

| Previous [

9 Incorrect. The cost is 500 GBY* §0.

Learning Dashboard

Stale price! Current price is 0.003 per GB/month


https://docs.google.com/spreadsheets/d/11-9Iz701NTvsWv-LJGcbcT7WXBzRce178Kg_bczXCdQ/edit
https://docs.google.com/spreadsheets/d/11-9Iz701NTvsWv-LJGcbcT7WXBzRce178Kg_bczXCdQ/edit
http://calculator.s3.amazonaws.com/index.html

Quiz 1

* Review
— Hybrid clouds and security
— Utilization
— Software service models



Project 1 Checkpoint 1

Introduction to Big Data:

— Sequential Analysis
* Not running on AWS
—Big penalty
e Submission to s3 bucket
—Follow guidelines on Piazza @218
* Including credentials in code
—Big penalty
* Not tagging instances
* Going over budget
—Free tier not available for consolidated accounts


https://piazza.com/class/hxs4b3o2lox5f9?cid=218

This Week’s Schedule

e Complete Module 3 & 4 in Unit 2

— Read all pages in modules:

e Module 3: Data Center Trends

e Module 4: Data Center Components
— Complete activities on each page

e In-module activities are not graded but for self-test
— |f you encounter a bug in the OLI write-up

e provide feedback at the end of each OLI page

 Complete Project 1.2 (Elastic MapReduce)
— Deadline, Sunday, September 14, 11:59pm EST



Why Study Data Centers ?

Data centers are your new computers!

e Make sure to read and understand the
content of Unit 2

— Equipment in a data center
— Power, cooling, networking

— How to design data centers
— What could break

* All software layers are on top of physical resources



Module 3: Data Center Trends

* Definition & Origins

— Infrastructure dedicated to housing computer and
networking equipment, including power, cooling, and
networking.

 Growth
— Size (No. of racks and cabinets)
— Density

* Efficiency
— Servers
— Server Components
— Power
— Cooling

Facebook data center



Module 4: Data Center Components

* |T Equipment
— Anything that is mounted in a stack

— Servers : rack-mounted
* Motherboard
* Expansion cards

— Storage
 Direct attached storage (DAS)
e Storage area network (SAN)
* Network attached storage (NAS)

— Networking
e Ethernet, protocols, etc.
* Facilities
— Server room
— Power (distribution)
— Cooling
— Safety

Source: http://www.google.com/about/datacenters/efficiency/internal/



Motivation for MapReduce

* The problem

How many times does
each term appear in all
books in Hunt Library?

@M

/@V\




Motivation for MapReduce

* When the file size is 200MB
— HashMap: (term, count) How Much Data Does the World Create Every Year?

— Doable on a single machine o .
A report from Stanford University found that the whole of humanity produces around of
* When the file size is 200TB @
— Large—scale data processing ™ dmi
— Out of memory

— Slow ~180.53 BILLION

and see what would happen if we were to store this data on

— How would you deal with it?
e Partition the input?
. . Laid down end to end, those iPhones would
e Distribute the work? more than 101 times,
e Coordinate the effort? 0
* Aggregate the results?




Motivation for MapReduce

Google Example
20+ billion web pages x 20KB = 400+ TB
~1,000 hard drives to store the web
1 computer reads 30-35 MB/sec from disk
— ~4 months to read the web
Takes even more to do something useful with the data!

So standard architecture for such problems emerged

— Cluster of commodity Linux nodes
— Commodity network (Ethernet) to connect them

Google’s computational / data manipulation model



Introduction of MapReduce

Definition: Programming model for processing large data sets
with a parallel, distributed algorithm on a cluster

Map: Extract something you care about
Group by key: Sort and Shuffle
Reduce: Aggregate, summarize, filter or transform

Output the result

—
o
=

Input data
Clutput data




MapReduce in 15-319/619

* |n this course we are going to use MapReduce
on 2 Platforms:

1. Amazon Elastic MapReduce (this week)

2. Hadoop (later projects)
— Learn more about Hadoop MapReduce here


http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html

MapReduce Example

How many times does

‘ each term appear in all
books in Hunt Library?

@

&

N N~

([

e,
| heard 6 “Apple”s |




MapReduce Example

We can have two reducers
Each reducer can handle one or more keys

s l ]ﬂ Blueberr
- Y
y ‘Q@Q— BIueberry,\ @\ _
s Apple,1 6{&)))\(L
=

Apple,1 Apple ?
Apple,1
Apple,1

Apple,l// @ —

ﬁ% Blueberry,1 Blueberry ?




MapReduce Example

We can have three reducers

—o W |
% /a%]ﬂ Blueberry, — e
/ Q:’,

Blueberry,
Apple,1

Apple,1

Y B 7

ﬁ% Blueberry,1

W Apple,1
A
-z =

Blueberry ?



MapReduce Example

Apple,1 | —
Blueberry,1 Apple,1 | —>
Blueberry,1 Apple,1 —>
Apple,1 Apple,1 —
Apple,1
Apple,1 Apple,1
Apple,1
Apple,1 Blueberry,1
Blueberry, 1 ; Blueberry 3
Blueberry, 1
Apple,1 @
Pple, N
/ﬁ)\ /
Apple,1 \‘(@L%
A~
Blueberry,1

Mapping Shuffling Reducing



Steps of MapReduce

split

HDFS BLK

split

NS -

HDFSBLH, Partition

Partition Partition | Partiion wepp "Ny L nee

==

Merge & Sort

" Shuffle Stage ” Stage i Reduce Stage

Map Phase Reduce Phase

split

HDFS BLK | Partition

Split

HDFS BLK




What you should write in EMR

split

HDFS BLK

split

split

HDFS BLK ||

-@-= .

'HDFS BLK | |

Split

HDFS BLK

>

Partition

Partition Partition

Partition

Partition

Partition

" Shuffle Stage

Partition

PArtition s e

)ﬁ

Merge & Sort
i Stoge i

Reduce :
'

Reduce
Task

—>

Reduce

Task

Reduce |Stage

To HDFS

Map Phase

Your own mapper

i
Reduce Phase

Your own reducer



Steps of MapReduce

Map

Shuffle

Reduce

Produce final output



Steps of MapReduce

* Map
— Prepare input for mappers
e Split input into parts and assign them to mappers

— Map Tasks

* Each mapper will work on its portion of the data
e Output: key-value pairs

— Keys are used in Shuffling and Merge to find the Reducer that
handles it

— Values are messages sent from mapper to reducer
— e.g. (Apple, 1)



Steps of MapReduce

e Shuffle
— Group by key: sort the output of mapper by key

* Split keys and assign them to reducers (based on hashing)
* Each key will be assigned to exactly one reducer

* Reduce
— Each reducer will work on one or more keys
— Input: mapper’s output (key-value pairs)
— Qutput: the result needed
* Different aggregation logic may apply

* Produce final output
— Collect all output from reducers
— Sort them by key



Mapreduce: Environment

 MapReduce environment takes care of:
— Partitioning the input data

— Scheduling the program’s execution across a set of
machines

— Perform the Group by key (sort & shuffle) step

* In practice, this is the bottleneck
— Handling machine failures
— Manage required inter-machine communication



Parallelism in MapReduce

 Mappers run in parallel, creating different
intermediate values from input data

* Reducers also run in parallel, each working on
different keys

 However, reducers cannot start until all
mappers finish



Real Example: Friend/Product Suggestion

* Facebook uses information on your profile, e.g.
contact list, messages, direct comments made,
page visits, common friends, workplace/residence
nearness. This info is dumped into a log or a huge
list, a big data.

* Then the logs are analyzed and put through a
weighted matrix analysis and the connections
which are above a threshold value are chosen to
be shown to the user.



Real Example: Friend/Product Suggestion

Key:

e.g.

/Generate key-value pairs: I

Friends pair

Value: Friends statistics (e.g.

common friends)

@om, Sara statistics) Y,

/Aggregate the statistics value\
for the same key and output
the friends pair if it’s above
the threshold

e.g.

\_ (Tom Sara) Y,

Reducers Outputs



Project 1.2 Elastic MapReduce

Processing sequentially can be limiting, we must:
— aggregate the view counts and

— generate a daily timeline of page views for each article we
are interested in

Process a large dataset (~70 GB compressed)
Setup an Elastic MapReduce job Flow

Write simple Mapper and Reducer in the language of
your choice

You will understand some of the key aspects of Elastic
MapReduce and run an Elastic MapReduce job flow

Note: For this checkpoint, assign the tag with
— Key: Project and Value: 1.2 for all resources




AWS Expenditure

* Monitor AWS expenses regularly

— For this week:

* EMR cost is “on top of” the EC2 cost of instance and EMR cost is fixed per
instance type per hour

» for example, m2.4xlarge EMR cost is $S0.42 on-top-of the spot pricing
(50.14)

e Check out AWS EMR pricing !

— Suggestions
* Terminate your instance when not in use

— stop still costs EBS money!
* Use smaller instances to test your code
* Use spot instances to save cost
* Use small sample dataset in EMR to decide the instance type and
number of instances to use

IMPORTANT!



http://aws.amazon.com/elasticmapreduce/pricing/
http://aws.amazon.com/ec2/instance-types/

AWS Expenditure

* Tagging AWS resources
e Setting up CloudWatch billing alert
* Using spot instances

Please refer to slides in Recitation 2!



Penalties

o |f
— No tag = 10% penalty
— Expenditure > project budget = 10% penalty
— Expenditure > project budget * 2 = 100% penalty

— Copy any code segment from =2 lowest penalty is 200%
e Other students
* Previous students
* Internet (e.g. Stackoverflow)

* Do not work on code together
— This is about learning
— If you do, we will find out and take action



Submitting Code

* Submit your code on S3, by the deadline
— Submitting the wrong S3 URL on OLI will be penalized

— Submitting an incorrectly configured bucket will be penalized (see the
instructions in the Project Guidelines page in the Project Primer on
OLlI)

 We will manually grade all code

— Be sure to make your code readable
e Preface each function with a header that describes what it does

e Use whitespace well.
Indent when using loops or conditional statements

Keep each line length to under 80 characters
Use descriptive variable names
* For more detail, please refer to www.cs.cmu.edu/~213/codeStyle.html
— If your code is not well documented and is not readable, we will
deduct points
* Documentation shows us that you know what your code does!
 The ideais also NOT to comment every line of code



S3 Code Submission Guidelines

Make your submission a single zip file (.zip) with name
“project<no>_AndrewlID_qg<no>”.

Pack all your code, in ".java", ".py", ".rb", ".sh" or other formats in
the zip file.

Do NOT submit associated libraries and binary files (.jar and .class
files).

Please do NOT submit multiple s3 URLs in the text field on OLI.

Create a single submission bucket for all of your code, using the
folder hierarchy illustrated in the project primer on page 151 on
OLI.

Do NOT submit AWS Credential Files (aws.credentials) or any other
files that contain your AWS Keys within your bucket.

=>» 10% penalty
Do not make your buckets public.



Questions?



Upcoming Deadlines

e Project 1: Introduction to Big Data Analysis
— Elastic MapReduce
— Checkpoint Available Now
— Due 9/14/2014 11:59 PM EST

e Quiz 2: Data Centers
— Not Available Yet
— Due 9/18/2014 11:59 PM EST



