
15

PROTOFLEX: Towards Scalable, Full-System
Multiprocessor Simulations Using FPGAs

ERIC S. CHUNG, MICHAEL K. PAPAMICHAEL,
ERIKO NURVITADHI, JAMES C. HOE, and KEN MAI
Computer Architecture Laboratory at Carnegie Mellon
and
BABAK FALSAFI
Parallel Systems Architecture Laboratory
École Polytechnique Fédérale de Lausanne

Functional full-system simulators are powerful and versatile research tools for accelerating ar-
chitectural exploration and advanced software development. Their main shortcoming is lim-
ited throughput when simulating large multiprocessor systems with hundreds or thousands of
processors or when instrumentation is introduced. We propose the PROTOFLEX simulation archi-
tecture, which uses FPGAs to accelerate full-system multiprocessor simulation and to facilitate
high-performance instrumentation. Prior FPGA approaches that prototype a complete system
in hardware are either too complex when scaling to large-scale configurations or require signifi-
cant effort to provide full-system support. In contrast, PROTOFLEX virtualizes the execution of
many logical processors onto a consolidated number of multiple-context execution engines on the
FPGA. Through virtualization, the number of engines can be judiciously scaled, as needed, to de-
liver on necessary simulation performance at a large savings in complexity. Further, to achieve
low-complexity full-system support, a hybrid simulation technique called transplanting allows im-
plementing in the FPGA only the frequently encountered behaviors, while a software simulator
preserves the abstraction of a complete system.

We have created a first instance of the PROTOFLEX simulation architecture, which is an FPGA-
based, full-system functional simulator for a 16-way UltraSPARC III symmetric multiprocessor
server, hosted on a single Xilinx Virtex-II XCV2P70 FPGA. On average, the simulator achieves a
38x speedup (and as high as 49×) over comparable software simulation across a suite of applica-
tions, including OLTP on a commercial database server. We also demonstrate the advantages of

Funding for this work was provided in part by grants from the C2S2 Marco Center, NSF CCF-
0811702, NSF CNS-0509356, and SUN. This work was also supported by donations from Xilinx
and Bluespec.
Authors’ addresses: E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, and K. Mai,
Computer Architecture Laboratory at Carnegie Mellon, 5000 Forbes Ave., Pittsburgh, PA 15213;
email: echung@ece.cmu.edu; B. Falsafi, Parallel Systems Architecture Laboratory, École Polytech-
nique Fédérale de Lausanne, Lausanne, Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct commer-
cial advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 1936-7406/2009/06-ART15 $10.00 DOI: 10.1145/1534916.1534925.

http://doi.acm.org/10.1145/1534916.1534925.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 2 · E. S. Chung et al.

minimal-overhead FPGA-accelerated instrumentation through a CMP cache simulation technique
that runs orders-of-magnitude faster than software.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
System—Modeling techniques

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: FPGA, simulator, emulator, prototype, multicore,
multiprocessor

ACM Reference Format:

Chung, E. S., Papamichael, M. K., Nurvitadhi, E., Hoe, J. C., Mai, K., and Falsafi, B. 2009.
PROTOFLEX: Towards scalable, full-system multiprocessor simulations using FPGAs. ACM Trans.
Reconfig. Techn. Syst. 2, 2, Article 15 (June 2009), 32 pages. DOI = 10.1145/1534916.1534925.
http://doi.acm.org/10.1145/1534916.1534925.

1. INTRODUCTION

The rapid adoption of parallel computing in the form of multicore chip mul-
tiprocessors has re-energized computer architecture research. The research
focus has now shifted toward architectural mechanisms for enhancing pro-
grammability and scalability in future, highly concurrent computing plat-
forms. Architectural research of this kind will require close collaborations
between hardware and software researchers. To codevelop new systems suc-
cessfully, two conflicting dependencies must be resolved. First, software
researchers cannot afford to wait until the hardware development cycle is
complete. Second, developing new hardware requires feedback from software
research, which is difficult to attain before a design can be finalized. Fast and
flexible functional full-system simulators will play a vital role in helping to
resolve these dependences.

In the past and particularly in the uniprocessor setting, full-system func-
tional simulators (e.g., Rosenblum et al. [1995] ,Magnusson et al. [2002], Emer
et al. [2002], Bohrer et al. [2004], Bellard [2005], Martin et al. [2005], Wenisch
et al. [2006], Binkert et al. [2006], Yourst [2007], Over et al. [2007], AMD
[2008]) have stayed within a 100× slowdown relative to real systems. Until re-
cently, this slowdown remained relatively unchanged and was deemed accept-
able by many hardware and software researchers. However, when simulating
ever-larger multiprocessor systems, the slowdown increases at least linearly
in proportion to the number of simulated processors. As a result, existing
functional simulators are used to simulate only tens of processors at speeds
practical for functional exploration.

Prior attempts to parallelize multiprocessor simulation performance have
shown that the scalability of a distributed simulation is limited if the sim-
ulated components must interact at an interval below the communication
granularity supported by the underlying host system [Reinhardt et al. 1993;
Mukherjee et al. 2000; Legedza and Weihl 1996; Chidester and George 2002;
Penry et al. 2006]. In the particular case of parallelizing functional simula-
tors, a fundamental tension exists between global synchronization overhead
and the instruction interleaving granularity of multiple simulated processors

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 3

during round-robin scheduling [Over et al. 2007; Lantz 2008]. While it is desir-
able to increase the interleaving granularity, which improves cache utilization
and parallelism on the host system, increasing it beyond thousands of cycles
introduces unrealistic interleavings of memory events [Over et al. 2007].

In addition to the scalability challenges, software-based simulators experi-
ence dramatic slowdowns when introducing any form of detailed instrumen-
tation. While stand-alone functional simulators are useful for positioning and
setup of workloads (e.g., booting the OS), the lack of timing fidelity makes
them unsuitable for architectural studies. To address this, functional simula-
tors are often augmented with more detail, which can range from first-order
single-cycle cache simulators to full-blown microarchitectural timing models.
Unfortunately, even simple models can introduce significant overheads (up to
10× or more slowdown as observed by Nussbaum et al. [2004]).

1.1 The PROTOFLEX Simulation Architecture

In this article, we present the PROTOFLEX simulation architecture, which
aims to leverage fine-grained parallelism in the form of FPGA acceleration
to overcome both the scalability and instrumentation performance bottleneck.
While FPGAs potentially overcome many of the aforementioned challenges,
they also introduce problems on their own, such as extended development time
and high cost of ownership. The goal of the PROTOFLEX simulation architec-
ture is to simulate the functional execution of a multiprocessor system using
FPGAs at a level of development effort and cost justifiable in a computer ar-
chitecture research setting.

This goal is distinct from prototyping the accurate structure or timing
of a multiprocessor system. Specifically, the requirements for the architecture
are to: (1) functionally simulate large-scale multiprocessor systems with an
acceptable slowdown (<100x), (2) model full-system fidelity to execute realis-
tic workloads including operating systems, and (3) provide fast, low-overhead
instrumentation for architectural and software research. In what follows, we
briefly explain how PROTOFLEX achieves these goals.

Addressing Large-Scale System Complexity. Prior FPGA-based simulators–
even functional simulators (e.g., Wee et al. [2007])—implemented their models
in a way that maintains structural correspondence to the simulated target
system and the underlying host.1 For example, 16 independent cores would be
instantiated and integrated together to deliver the functionality of a 16-way
multiprocessor. While evidently feasible with small-scale systems, building an
FPGA-based simulator with adherence to structural correspondence becomes
difficult to justify when studying configurations with hundreds or thousands
of processors.

We observe that in the case of providing fast, functional simulation, im-
plementing the target system as-is in an FPGA is unnecessary. In the

1We refer to “target” as the simulated computer system being studied while the term “host” refers
to the underlying software or hardware simulation infrastructure that carries out the behavior of
the target system.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 4 · E. S. Chung et al.

PROTOFLEX simulation architecture, the logical execution and resources of
many processors can be virtualized onto a consolidated set of host execution en-
gines on the FPGA. Within each engine, multiple processor contexts are inter-
leaved onto a multiple-context high-throughput instruction pipeline. Through
virtualization, the simulator architect is able to judiciously scale or consolidate
the number of engines in the FPGA host, as needed, to deliver on necessary
simulation performance.

Addressing Full-System Complexity. Apart from limitations in scale, prior
FPGA efforts also typically forgo full-system fidelity and are limited to user-
level custom-compiled applications (e.g., Öner et al. [1995]). Full-system fi-
delity enables a simulator to model real machines to a level of functional detail
(e.g., devices) such that software, including the BIOS and operating systems,
cannot make the distinction between the simulator and a real machine. This
capability is supported in software-based simulators today (e.g., Rosenblum
et al. [1995], Magnusson et al. [2002], Emer et al. [2002], Bohrer et al. [2004],
Bellard [2005], Martin et al. [2005], Wenisch et al. [2006], Binkert et al. [2006],
Yourst [2007], Over et al. [2007], AMD [2008]) and is especially important for
evaluating applications on real operating systems. Implementing the same
capabilities entirely in FPGAs would require detailed hardware design knowl-
edge and effort typically beyond the resources of the simulator architect.

To address this challenge, we observe that the great majority of dynami-
cally encountered behaviors in a full-system simulation make up a very small
subset of total system behaviors. It is this small subset of behaviors that de-
termines the overall simulation performance. To exploit this observation, the
PROTOFLEX simulation architecture incorporates a hybrid simulation tech-
nique called transplanting, which allows a simulated entity such as a processor
to be dynamically reassigned from FPGA hardware into software-based simu-
lation. The simulator architect is now given the option to select only a subset
of common-case behaviors for acceleration on the FPGA while still retaining
the abstraction of a complete system.

Accelerated Instrumentation Using FPGAs.. A major advantage of FPGA-
accelerated simulation is the ability to dynamically instrument internal
execution state with minimal overheads in performance. As opposed to
software-based simulators, which must divide their time between the func-
tional simulator and the instrumentation code, multiple FPGA-resident in-
strumentation components can be attached to an FPGA-based simulator while
operating in parallel. The ability to carry out fast functional instrumentation
is beneficial for a wide range of hardware research activities such as trace
generation, checkpoint creation, workload characterization, and architectural
studies.

In addition to assisting with hardware research, FPGAs are a promising
vehicle for fast dynamic monitoring and debugging of software programs. Con-
ventional software techniques that either rely on functional simulators or dy-
namic binary instrumentation [Srivastava and Eustace 1994; Patil et al. 2004;
Nethercote and Seward 2007] are forced to make a delicate trade-off between

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 5

the slowdown of the instrumented program versus the level of instrumentation
detail. In fact, the extreme overheads of runtime instrumentation mechanisms
have led to hardware-based instrumentation proposals such as MemTracker
for debugging [Venkataramani et al. 2007], Raksha for security [Dalton et al.
2007], and Log-based Architectures for general-purpose instruction-grain mon-
itoring [Chen et al. 2008].

As a demonstration of high-performance FPGA instrumentation, we devel-
oped a functional FPGA-based simulator of a CMP cache hierarchy that runs
orders-of-magnitude faster than a comparable software-based simulator. As
we describe in Section 4, the fast cache model is used in tandem with the
SMARTS [Wenisch et al. 2006] statistical sampling technique to significantly
reduce the turnaround time of microarchitectural timing studies.

Contributions. We developed an instantiation of a functional full-system,
FPGA-based simulator called BlueSPARC that incorporates the two key
concepts of the proposed PROTOFLEX simulation architecture: (1) time-
multiplexed interleaving and (2) hybrid simulation with transplanting.
BlueSPARC is our first step toward simulating large-scale multiprocessor
systems and currently models the architectural behavior of a 16-CPU
UltraSPARC III SMP server. BlueSPARC is hosted on a single 16-way multi-
threaded instruction-interleaved pipeline running on the BEE2 FPGA plat-
form Chang et al. [2005], while Virtutech Simics [Magnusson et al. 2002]
provides the backing software substrate during hybrid simulation. In the fu-
ture, we envision combining multiple BlueSPARC pipelines to simulate even
larger systems. BlueSPARC currently can execute real applications on an un-
modified Solaris 8 operating system, including Online Transaction Processing
(OLTP) on Oracle. Our performance evaluation shows that we achieve a 38x
speedup average over comparable software simulation using Simics. In addi-
tion, our FPGA-Accelerated Cache Simulator (FACS) operates in tandem with
BlueSPARC to provide fast, functional simulation of a CMP cache hierarchy
with negligible overheads in performance (less than 4% on average).

Outline. Section 6 describes work related to FPGA-based simulation and
prototyping. Section 2 presents the PROTOFLEX simulation architecture in
detail. Section 3 presents an instantiation of the PROTOFLEX simulation ar-
chitecture called the BlueSPARC simulator. Section 4 describes an example of
fast hardware instrumentation through the design and implementation of an
FPGA-accelerated CMP cache simulator. Section 5 presents an evaluation and
a performance model for the BlueSPARC simulator. We conclude in Section 7.

2. PROTOFLEX

In this section, we expand on the PROTOFLEX simulation architecture for
FPGA acceleration of functional full-system simulation. Note that PROTOFLEX

is not a specific instance of simulation infrastructure but a set of practical
approaches for developing FPGA-accelerated simulators.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 6 · E. S. Chung et al.

Fig. 1. Partitioning a simulated target system across an FPGA and software simulator during
hybrid simulation.

2.1 Hybrid Simulation

To reduce the complexity of full-system support, we developed a new tech-
nique called hybrid simulation that aims to reduce the implementation effort
of FPGA-based simulators. In hybrid simulation, components in a simulated
system are selectively partitioned across both FPGA and software hosts. This
technique is motivated by the observation that the great majority of behaviors
encountered dynamically in a simulation are contained in a small subset of
total system behaviors. It is this small subset of behaviors that determines the
overall simulation performance. Thus, to improve software simulation perfor-
mance while minimizing the hardware development, one should apply FPGA
acceleration only to components that exhibit the most frequently encountered
behaviors.

Figure 1 offers a high-level example of the hybrid simulation of a multi-
processor system. In the figure, all components are either hosted on the FPGA
or simulated by the reference simulator; specifically, the main memory and
CPUs are hosted in an FPGA while the remaining components are hosted in
a software-based simulator (e.g., disks and network interfaces, etc.). When
a software-simulated DMA-capable I/O device accesses memory, it accesses a
hardware memory module on the FPGA platform. In a simulation, both the
FPGA-hosted and software-simulated components are advanced concurrently
to model the progress of a complete system (e.g., simulating disk activity in
parallel with processors running on the FPGA).

Transplanting. A component such as the CPU can be partitioned into a
small core set of frequent behaviors and an extensive set of complicated or
rare behaviors. Assigning the complete set of CPU behaviors statically to soft-
ware simulation or to FPGA results in either the simulation being too slow or
the FPGA development being too complicated. The conflicting goals can be rec-
onciled by supporting “transplantable” components which can be reassigned to
the FPGA or software simulation at runtime. In the CPU example, the FPGA
would only implement the subset of the most frequently encountered instruc-
tions. When the partially implemented CPU encounters an unimplemented

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 7

Fig. 2. Improving performance with hierarchical transplanting.

behavior (e.g., a page table walk following a TLB miss), the FPGA-hosted CPU
component is suspended. Immediately after, the CPU state is “transplanted”
to its corresponding software-simulated component in the reference simulator
(number 1 in Figure 1). The software-simulated CPU component is activated
to carry out the unimplemented behavior and deactivated again afterwards.
Finally, the CPU state is transplanted back to the suspended FPGA-hosted
CPU component to resume acceleration on the FPGA (number 2 in Figure 1).

Hierarchical transplanting. While transplanting is a straightforward way
to achieve full behavior coverage of a complex component like the CPU, there
is a significant performance overhead associated with the hand-off between
FPGA and software simulation. This includes both the time to transfer data
between the FPGA and the software hosts, and the time for the software sim-
ulator to carry out the unimplemented behavior on behalf of the FPGA. This
exchange could take several milliseconds if the FPGA and the software simu-
lation hosts are separated far apart (e.g., over Ethernet).

The effective hybrid simulation throughput for a 1-CPU pipeline with trans-
planting is

MIPSef f ective ≈

MIPSraw

1 + MIPSrawratetplant-per-millionLtplant

,

where MIPSraw is the FPGA-accelerated simulation throughput discounting
transplant cost; ratetplant is the number of transplants per million instructions;
and Ltplant is the latency cost of a transplant in seconds. Figure 2 (left) illus-
trates an example calculation assuming a 100 MHz FPGA-hosted CPU with
CPI=1. Even if the FPGA-hosted CPU transplants just once every one mil-
lion instructions, 50% of the 100 MIPS raw throughput potential would be
lost due to the high transplant penalty (10msec=1 million cycles). Because
MIPSraw also appears in the denominator, attempting to improve performance
by increasing MIPSraw would yield diminishing returns. Attempts to raise

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 8 · E. S. Chung et al.

Fig. 3. Simulation slowdown versus system size (assuming a single real processor performs at
1 GIPS).

performance by reducing ratetplant face a different diminishing returns because
increasingly more instructions would have to be built in the FPGA-hosted CPU
to reduce the transplant rate further.

A better solution is to introduce a hierarchy of CPU transplant hosts with
staggered, increasing instruction coverage and performance costs. For exam-
ple, an embedded processor on the FPGA (e.g., the embedded PPC405 in the
Xilinx Virtex architecture or even a synthesized soft core) can support a simple
software-based ISA simulation kernel. The simple software-based simulation
kernel would still be slow relative to the FPGA-hosted CPU, but would be much
faster than a full transplant to the software simulator. The embedded simula-
tion kernel should also be able to reach, with relative ease, a higher instruction
coverage in software than in the FPGA-hosted CPU. This reduces the rate of
transplants to the reference software simulator.

Returning to the example in Figure 2, suppose we introduce an embed-
ded software-based simulation kernel as an intermediate CPU transplant host
with CPI=1000. Further suppose that the intermediate simulation kernel re-
quires transplant to the full reference simulator only once every 10 million
instructions. Then, 90% of the 100 MIPS raw throughput potential would be
preserved.

2.2 Interleaved Multiprocessor Simulation

In our experience, interactive software research cannot tolerate more than
100x slowdown. Batched performance simulation studies or instrumented
functional simulation activites can tolerate as much as 1000x to 10,000x slow-
down. Assuming three simulators with aggregate simulation throughputs of
10, 100, and 1000 MIPS, respectively, Figure 3 plots the user-perceived simu-
lation slowdown (y-axis) of the given simulator relative to a real system. As

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 9

Fig. 4. Large-scale multiprocessor simulation using a small number of interleaved engines.

the system size increases, the aggregate simulation throughput is divided by
the number of processors being simulated (x-axis). We assume a “real” mul-
tiprocessor system consists of 1000-MIPS processors. As seen in Figure 3, a
100-MIPS simulator represents only a 10x perceived slowdown in a uniproces-
sor simulation, but is only practical for studying up to tens of processors before
the slowdown is no longer acceptable. Figure 3 also suggests that developing a
simulator that is faster than 1000 MIPS would exceed the performance needed
for effective hardware and software research of a 100-way or even 1000-way
multiprocessor system.

A performance-driven approach. The straightforward approach to construct
a large N-way multiprocessor FPGA-based simulator is to replicate N cores
and integrate them together in a large-scale interconnection substrate. While
this meets the requirement of simulating a large-scale system, developing
an FPGA-based simulator with up to hundreds or even thousands of proces-
sors would be prohibitive with respect to development effort and required re-
sources. The final aggregate throughput would also be 100 to 1000x faster
than needed. Instead, a performance-driven approach would trade the excess
simulation performance for a more tractable hardware development effort and
cost.

The PROTOFLEX simulation architecture advocates virtualizing the simu-
lation of multiple processor contexts onto a single fast engine through time-
multiplexing. Virtualization decouples the scale of the simulated system from
the required scale of the FPGA platform and the hardware development ef-
fort. The scale of the FPGA platform is only a function of the desired through-
put (i.e., achieved by scaling up the number of engines). Figure 4 illustrates
the high-level block diagram of a large-scale multiprocessor simulator using a
small number of interleaved engines. In the figure, multiple simulated proces-
sors in a large-scale target system are shown mapped to share a small number
of engines.

Selecting the engine design. When selecting the architecture for a multiple-
context engine, there are two desirable requirements: (1) to exploit the
concurrency between multiple threads efficiently, and (2) maximize the ac-
curacy of the functional simulation by providing fine-grained interleaving of
memory events. These requirements led us towards selecting an instruction-
interleaved processor pipeline, which is well-suited for executing multiple

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 10 · E. S. Chung et al.

instruction streams efficiently. An instruction-interleaved pipeline switches
a processor context on every fetch cycle, allowing for multiple processor con-
texts to share a single pipeline. This design enjoys several implementation
advantages as exemplified in well-known multithreaded architectures such as
the CDC Cyber [Thornton 1995] and the HEP barrel processor [Smith 1985].
First and foremost, the logic associated with stalling and internal forwarding
can be eliminated entirely if only at most one instruction from each context is
allowed in the pipeline at any given time. When doing so, longer pipelines can
be used to mitigate critical timing paths, which enables better overall clock
frequency. Second, an interleaved pipeline is highly tolerant to long-latency
events such as cache misses and transplants since additional threads can exe-
cute in the shadow of a long-latency event. Finally, in an implementation with
caches, multiple threads, running on a single engine, are automatically kept
coherent in shared memory as they interleave onto a single L1 cache; in larger
implementations with multiple engines this helps to consolidate the number
of nodes in a cache-coherent design.

Apart from simplifying the design in FPGA, a properly scheduled
instruction-interleaved pipeline is able to provide a single-cycle round-robin
interleaving of memory events from multiple simulated processors without in-
curring a performance overhead. Software-based multiprocessor functional
simulators typically face an inherent tension between the instruction inter-
leaving granularity (called the time-slice quantum) and the performance of
the simulator. In the case of single-threaded simulators, increasing the time-
slice quantum improves performance by allowing the simulation to benefit
from warm cache state in the host’s memory hierarchy before switching to an-
other context [Witchel and Rosenblum 1996]. In the case of parallel simulators,
the time-slice quantum also dictates the interval at which multiple simulated
threads are required to synchronize [Reinhardt et al. 1993; Mukherjee et al.
2000; Over et al. 2007; Lantz 2008].

Prior work has shown that parallelized simulators are scalable only when
the quantum is set to sufficiently large sizes [Reinhardt et al. 1993; Mukherjee
et al. 2000; Over et al. 2007; Lantz 2008]. While this still produces a function-
ally correct simulation and can be suitable for workload positioning, various
studies [Witchel and Rosenblum 1996; Over et al. 2007] have reported unre-
alistic interleavings of memory events when the time-slice quantum exceeds
hundreds or thousands of instructions. For example, a large quantum may
result in a simulated processor acquiring a lock for an unrealistic amount of
time. Unfortunately, while single-cycle interleaving is desirable, reducing the
quantum limits the scalability of software-based parallelized functional sim-
ulators as well as the performance of single-threaded simulators. In the case
of FPGAs, increasing the amount of instruction interleaving actually improves
the efficiency of the hardware as well as overall throughput.

Scaling to multiple engines. The integration of multiple interleaved en-
gines will be necessary to achieve scalable simulation throughput. To support
shared-memory architectures, implementing cache coherency and interconnect
mechanisms across multiple engines and possibly across multiple FPGAs is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 11

Table I. BlueSPARC Interleaved Engine Characteristics

Processing Nodes 16 64-bit UltraSPARC III Contexts
14-stage interleaved pipeline

Caches 64KB I-cache, 64KB D-cache, 64B, direct-mapped
Writeback, Non-blocking loads/stores, allocate-on-write
16 outstanding misses, 4-entry store buffer

Clock frequency 90MHz

Main memory 4GB total memory

Resources used on 33,508 LUTs (50%), 222 BRAMs (67%)
Xilinx V2P70

Resources used with 42,206 LUTs (65%), 238 BRAMs (72%)
debugging+monitors

EDA tools Bluespec System Verilog
Xilinx EDK 9.2i, XST 9.2i

Statistics 25K lines Bluespec, 511 rules, 89 module types

necessary for modeling of large-scale configurations. From estimations shown
earlier, we anticipate that tens of interleaved engines running at 100 MIPS
would be sufficient to achieve minimal slowdown practical for 100-way or 1000-
way architecture research. Depending on available FPGA host and topology
options, bus-based coherency mechanisms may be sufficient within a single
FPGA. For simulation configurations requiring a large number of FPGAs, a
distributed shared-memory or hierarchical bus-based architecture would be
more appropriate.

In similar vein to parallelized software-based simulators, care must be
taken during scaling of multiple engines to avoid having distributed engines
execute unrealistic memory interleavings. As opposed to software, FPGAs al-
low for extremely fine-grained communication mechanisms (e.g., sending or
processing a message using a state machine). This could be used to facili-
tate low-overhead synchronization between multiple engines. Furthermore,
while multiple engines may gradually drift out of sync (for example, if different
FPGAs derive their clocks from independent clock crystals), resynchronization
would be relatively inexpensive and infrequent since FPGAs do not suffer the
same types of workload imbalance issues that parallel software-based simula-
tors have.

3. THE BLUESPARC SIMULATOR

3.1 Overview

In this section, we describe BlueSPARC, our first instantiation of the
PROTOFLEX simulation architecture. BlueSPARC is one of our first steps
towards simulating large-scale multiprocessor systems. BlueSPARC models
a 16-way symmetric multiprocessor (SMP) UltraSPARC III server (Sun Fire
3800). The BlueSPARC simulator combines Virtutech Simics [Magnusson et al.
2002] on a standard PC and a single 16-context interleaved engine on an
FPGA for acceleration. Table I summarizes the high-level characteristics of
the BlueSPARC interleaved engine (which we explain in more detail in the
coming pages). The FPGA portion is hosted on a Berkeley Emulation Engine 2

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 12 · E. S. Chung et al.

Fig. 5. Allocating components for hybrid simulation in the BlueSPARC simulator.

(BEE2) FPGA platform [Chang et al. 2005]. The BlueSPARC simulator embod-
ies the two key concepts of the PROTOFLEX simulation architecture: (1) hybrid
simulation to achieve both performance and full-system fidelity with reason-
able effort and (2) decoupling the logical system size from the physical de-
sign complexity. Future work will develop the cache coherency support needed
for combining multiple engines to support simulation of larger multiprocessor
systems.

The BlueSPARC simulator can serve the same functionality currently pro-
vided by simulators such as Simics. In fact, the BlueSPARC simulator uses
the same simulated console as Simics, so a user can even “interact” with the
simulated server. Furthermore, BlueSPARC is fully capable of generating and
loading Simics-compatible checkpoints of the entire simulated system state.

3.2 High-Level Organization

Figure 5 shows a high-level block diagram of how we map the functionality of
the target 16-way SMP server onto software simulation and hardware hosts.
First, the main memory system is hosted directly by DDR2 DRAM on the
BEE2. Next, all 16 target SPARC processors are mapped onto a single inter-
leaved engine contained on one Xilinx Virtex-II XC2VP70 FPGA. The SPARC
processors are transplant-capable components. In addition to the interleaved
engine, the PPC405 embedded processors serve as an intermediate transplant
host for the target SPARC processors when they encounter unimplemented be-
haviors in the interleaved engine. The reference Simics simulator running on
a PC provides the third hosting option for the target SPARC processors. Last
but not least, all remaining components of the simulated system are hosted by
the reference Simics simulator.

3.3 Implementation on BEE2

Figure 6 shows a structural view of our entire system mapped onto the BEE2
FPGA platform. The BEE2 board holds five Xilinx V2P70 FPGAs, which are
connected to each other using low-latency, high-bandwidth 200 MHz links. The
FPGA portion of the BlueSPARC simulator is hosted on two FPGAs. The cen-
ter FPGA is used to host the BlueSPARC interleaved engine. This pipeline
is connected over a high-speed interchip link to another FPGA, which hosts
four DDR2 controllers for up to 4GBytes of main memory. In the center FPGA,
the PPC405 interacts with the BlueSPARC engine over the Processor Local
Bus (PLB) for servicing both transplants and I/O transactions. In addition to
serving as an intermediate transplant host for the target SPARC processors,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 13

Fig. 6. High-level organization of the BlueSPARC simulator.

the PPC405 embedded processor also manages external communication with
the simulation PC over Ethernet. The PC and the BEE2 are connected over a
crossover Ethernet cable.

3.4 Hybrid Simulation and Transplanting

The BlueSPARC simulator fully incorporates hybrid simulation and trans-
planting to reduce implementation complexity. The BlueSPARC engine only
supports the selected subset of the UltraSPARC III ISA required to achieve ac-
ceptable performance. We select instructions for inclusion in the FPGA based
on a quantitative profile of our commercial and integer benchmarks. A general
rule of thumb in the selection was to implement in FPGA the set of behaviors
to limit the rate of transplants to no more than 5 times per 10,000 instruc-
tions in any of the software workloads. This rule of thumb was determined by
first-order modeling of an interleaved pipeline augmented with transplanting.

In the current BlueSPARC simulator, the in-FPGA software-based simula-
tion kernel can capture the complete behavior of the UltraSPARC III proces-
sor. The only time execution is transplanted to Virtutech Simics on the remote
PC is when the CPUs interact with I/O devices. For clarity, we refer to a
transplant to the in-FPGA software-based simulation kernel as a microtrans-
plant, and we refer to a transplant to Simics as an I/O-transplant. Table II
shows a detailed breakdown of how we partitioned the required behaviors of an
UltraSPARC III processor for direct simulation in FPGA, microtransplant, and
I/O-transplant.

As shown in Table II, the BlueSPARC engine is designed to support all of the
user-level instructions as well as a subset of privileged and implementation-
dependent behaviors. We found that the frequent behaviors that must be
included tend also to be the simpler ones, leaving the most complicated
instructions to the embedded software-based simulation kernel. It is worth
mentioning that some complex behaviors do occur sufficiently frequently to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 14 · E. S. Chung et al.

Table II. Selected Partitioning in Hybrid Simulation

BlueSPARC add/sub/shift/logical/multiply/divide instructions
(FPGA) register windows and associated traps

38/103 SPARC ASI instructions
interprocessor interrupt cross-calls
device and software interrupts
I- and D-MMU (including software TLB)
Loads, Stores, Atomics (plus inverse-endian modes)
VIS block memory instructions

Micro-transplant 65/103 SPARC ASI instructions
(on-chip simulation) VIS I/II multimedia instructions

Floating point add/sub/mul/div and associated traps
Floating point to/from integer conversion
Alignment instructions
Fixed-point arithmetic instructions
TLB/cache diagnostic instructions
TLB de-mapping operations

Transplant PCI bus, ISP2200 Fibre Channel, i21152 PCI Bridge
(off-chip simulation) IRQ Bus, Text console, SBBC PCI device

Serengeti IO PROM, Cheerio-hme NIC
Fibre Channel SCSI Disk, SCSI cdrom, SCSI bus

warrant implementation in the simulation engine. Despite being a RISC ISA,
the UltraSPARC III superset of SPARCV9 has a large number of complex
implementation-dependent and legacy behaviors (e.g., SPARC ASIs).2 Despite
these challenges, we found that our implementation was still much simpler
than a full-blown prototype. Without microtransplants or I/O transplants, im-
plementing all of the behaviors in Table II in hardware would have required a
full design team (instead of just one graduate student in one year).

3.5 Interleaved Pipeline

The BlueSPARC engine is a 14-stage, instruction-interleaved pipeline that
supports the multithreaded execution of up to 16 UltraSPARC III processor
contexts (see Figure 7). The maximum retirement rate of our pipeline is one in-
struction per cycle, which in combination with the clock frequency dictates the
peak simulation throughput. The primary goals in developing the BlueSPARC
engine are: (1) to ensure correctness, (2) to maximize maintainability for
future design exploration and (3) to minimize effort. In many cases we forgo
complex performance optimizations in favor of a simpler, more maintainable
design.

Pipeline operation. In Figure 7, instruction processing begins at the Con-
text Select Unit (left), which is a simple fair scheduler that issues in round-
robin order from different processor contexts. The scheduler is responsible for
ensuring that all processor contexts make equal progress on average. This

2ASIs or “Address Space Identifiers” are used to modify the behavior of SPARC memory instruc-
tions. For example, ASIs can alter the endianness of a memory access or convert a normal memory
instruction into a block transfer. ASIs instructions are also used to read and write registers in the
Memory Management Unit for software TLB operations.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 15

Fig. 7. The BlueSPARC engine: a 14-stage instruction-interleaved pipeline.

requirement is important in order to avoid unrealistic system behaviors (e.g., a
processor holding a lock indefinitely). After being selected, each issued instruc-
tion is tagged with a unique context identifier used to index various structures
and registers replicated for each processor context throughput the pipeline (see
shaded components). Once the instruction is selected, a subset of its architec-
tural registers (e.g., pstate, current window pointer) are scanned from a state
register file and passed into the pipeline. After fetch, the decoding stage deter-
mines whether an instruction requires transplanting. Supported instructions
in the common case proceed through the pipeline stages until reaching the
writeback stage. At writeback, the processor context re-enters the Context
Select Unit for the next round of scheduling. A processor context can only have
one instruction in the pipeline at a time, therefore register file read-after-write
hazards cannot arise.

Microtransplants and I/O-transplants. In the event a transplant operation
is identified (either through the SPARC decoder or through I/O accesses in
the MMU), the unimplemented instruction word and the processor context ID
are queued into the Transplant unit (see Figure 7) for service by the embed-
ded PPC405 processor running a small UltraSPARC III ISA simulation ker-
nel. With 16 processor contexts and 14 pipeline stages, up to 2 transplanted
contexts can be serviced while the remaining contexts keep the pipeline fully
utilized. Only one outstanding microtransplant and one outstanding I/O-
transplant are currently supported. Any additional I/O- or microtransplant
requests from other contexts would be queued in the Transplant unit.

Figure 8 illustrates step-by-step how the interleaved pipeline interacts with
the embedded PPC405 during a microtransplant. After an unimplemented
instruction is detected and queued in the Transplant unit, the PPC405 is in-
terrupted (1) and begins to read a minimum amount of state from the request-
ing context to decode the unimplemented instruction (2). After decoding, the
PPC405 continues to read from the pipeline the state required to complete
the unimplemented instruction. Reading and writing processor state (e.g.,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 16 · E. S. Chung et al.

Fig. 8. Detailed operation of microtransplant and I/O-transplants.

register file and cache reads) are carried out by issuing synthetic “helper”
instructions into the engine. Once the input state is acquired, the ISA sim-
ulation kernel computes the state updates (3) and writes the changed state
values back to the engine for the requesting context (4)—again with the help
of helper instructions—before returning the blocked processor context back to
scheduling.

Figure 8 also shows how I/O-transplants are handled. During simulation,
Simics continuously polls the embedded PPC405 to examine for I/O activity
queued in the transplant unit (1)/(2). If an I/O transaction (e.g., a memory-
mapped load or store instruction) is pending, the PPC405 acquires the nec-
essary state information from the engine and forwards the state to Simics
in response to the polling (3)/(4). For I/O transplants, Simics simulates the
memory-mapped I/O bus transaction to the target simulated devices (5) and
returns the acknowledgement (6)/(7).

Other sources of serialization and latency. In addition to transplants, a va-
riety of long-latency events can deter the progress of an instruction in the
pipeline. The most frequently encountered cases are both instruction and data
cache misses (due to the high degree of cache sharing among 16 processor con-
texts). In our memory system, the caches are nonblocking, and up to sixteen
misses to independent cache sets are allowed at any given time. Other con-
texts may continue to utilize the pipeline while memory accesses are pending.
To avoid conflicts between multiple contexts for cache sets in a transient state,
each cache set is augmented with a pending bit in the tag array. Any subse-
quent context that attempts to access a pending cache set is removed from the
pipeline and forced to retry from the scheduler at a later time. To hide store
misses, a 4-entry store buffer allows processor contexts to retire past a store
miss; we currently do not implement store-to-load forwarding and thus any
conflicting loads will stall until pending stores are drained into memory.

A number of special instructions cannot finish in a single pass through the
pipeline. For example, atomics (e.g., ldstub) require a load followed by a store.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 17

To prevent access to a locked cache line during this operation, any processor
context that attempts to load or store to the same cache line is cancelled and re-
enters the context select unit for another round of scheduling. Other examples
of multipass instructions are Quad LDDs (atomic load of two doublewords),
or block load/store instructions (64B loads into 8 consecutive registers). We
implement a helper engine (see Figure 7) that issues helper instructions to fa-
cilitate these rare multipass instructions. As noted earlier, the helper engine
also facilitates state access during microtransplanting. Lastly, cache flushes
and pipeline “freezes” can also introduce serialization into the pipeline. Be-
cause the i- and d-caches are incoherent, we conservatively flush the caches on
any possibility of staleness in the i-cache (i.e., when FLUSH instructions are
encountered). The caches are also flushed when DMA operations are carried
out. Pipeline “freezes” occur when the entire pipeline is stalled for a temporar-
ily owned resource (e.g., during TLB replacement).

Nondeterminism. In the current instance, BlueSPARC is a nondeterminis-
tic simulator (i.e., repeated multithreaded simulations do not necessarily yield
the same interleaving order of threads). In particular, the interhost commu-
nication mechanism for hybrid simulation uses standard Ethernet across the
BEE2 and a PC workstation, which is unable to provide deterministic delivery
of messages. This has wide-ranging nondeterministic effects, such as the un-
predictable delivery of interrupts and DMA. Future work will examine mech-
anisms that can provide deterministic delivery of interhost communication.

Clock frequency and area. As shown in Table I, BlueSPARC runs at a peak
clock frequency of 90 MHz on a Virtex-II Pro 70. In our current design, the
major critical timing paths arise from long FPGA interconnect delays when ac-
cessing the large architecturally defined I- and D-TLB structures. At present,
over 100 BRAMs alone are involved during TLB lookups, which makes routing
at higher clock frequencies a major challenge. In the future, we will examine
techniques that reduce the on-chip storage requirements by simply caching
the TLB entries of all processor contexts within a small and shared host TLB
cache. We also intend to migrate towards newer FPGA families such as the
Virtex-5, which offer higher logic density and lower interconnect delay using
6-input LUTs.

At present, BlueSPARC consumes a relatively large number of LUTs com-
pared to most other available FPGA soft cores. As mentioned previously, our
initial emphasis in design was correctness, and in some cases, we did not ex-
ploit area-efficient FPGA design methods. With additional effort in the future,
we expect to reduce our logic consumption by a factor of two or more.

3.6 Validation

Our validation methodology involves a combination of mixed hardware/
software cosimulation and testing directly on the BEE2 system. We rely on
Simics to provide us with a complete and correct reference model for the Ultra-
SPARC III server, including the prevalidated device models. In general, all of
our testing (either in RTL simulation or running directly on FPGAs) must pass

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 18 · E. S. Chung et al.

validation by matching up exactly with the architectural state that Simics gen-
erates. Our validation test suite comprises a subset of ported diagnostics from
the OpenSPARC framework [Vahia and Hartke 2007], the SPARC Interna-
tional V9 compliance tests, autogenerated stress-test programs, hand-written
test cases, and real applications/benchmarks.

We relied on a variety of strategies to validate our design in the presence of
nondeterminism in the interleaved pipeline. In order to match architectural
state with Simics, we implement a hardware “event recorder” that records
the global commit order of instructions within the pipeline for each processor
context. The event recorder also captures the timing of asynchronous events
during runtime (e.g., the exact point of delivery of an interrupt). This ordering
is scanned from the FPGA on the BEE2 and replayed in Simics to attain iden-
tical architectural and memory state for comparison. Another validation strat-
egy we adopted was to implement over 200 synthesizable assertion instances
in our design. These assertions were monitored using the Chipscope built-in
logic analyzer and responsible for detecting over 50% of the design bugs. We
have successfully passed all of our test suites and have been able to validate
billions of instructions in all of our workloads using the event recorder. We
also have been able to interact with the hardware using a simulated console in
Solaris and have been able to run console applications correctly without asser-
tions firing or software crashes occurring. In all, we have high confidence that
BlueSPARC is validated to a level suitable for active use by end-users.

In the following section, we extend the BlueSPARC implementation
to support low-overhead instrumentation to accelerate microarchitectural
exploration.

4. FPGA-ACCELERATED INSTRUMENTATION

A key advantage of FPGA-accelerated simulation over conventional software
simulation is the support for very low overhead instrumentation, which can
range from a simple set of passive counters that monitor interesting processor-
or instruction-level events up to simulating a complete multiprocessor cache
model. The BlueSPARC design presented previously is particularly well suited
for trace-based instrumentation, where the processor pipeline generates a
stream of trace information that can be processed by an independent instru-
mentation component. While software simulators experience dramatic slow-
down during the trace generation process, an FPGA-accelerated simulator,
such as BlueSPARC, is able to deliver traces to another hardware instru-
mentation component, possibly residing on a separate FPGA, with minimal
overhead. It is worth noting that if the FPGA instrumentation component is
unable to handle traces at full rate, the functional simulator must be appropri-
ately backpressured and stalled to avoid losing trace information; this neces-
sates careful design of the instrumentation component to avoid a performance
bottleneck.

In the following section, we present an example application of FPGA-
accelerated instrumentation that uses FPGA-based cache simulation to reduce
the turnaround time of simulation sampling methodology.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 19

4.1 Accelerating Simulation Sampling Using FPGAs

While fast functional simulation is an essential ingredient for accelerating
architectural studies, improving microarchitectural simulation performance is
also of major importance. As opposed to ongoing work such as Chiou et al.
[2007] and Pellauer et al. [2008] that implement cycle-accurate timing models
directly in FPGAs, we present an alternative approach that combines soft-
ware simulation sampling methodology with FPGA-accelerated instrumenta-
tion, which gives accurate performance results for homogeneous multithreaded
workloads. For brevity, we refer the reader to Wenisch et al. [2006] for a more
detailed description of the sampling methodology and its limitations.

The sampling methodology uses statistical sampling theory to estimate
the performance of applications running in software-based microarchitecture
simulators. In a sampling approach, an instrumented functional simulator
executes a benchmark from beginning to end while generating checkpoints of
machine state at selected intervals. From each of these checkpoints, inde-
pendent cycle-accurate simulations are launched in parallel and execute for a
short duration. By combining together a sufficiently large number of samples,
it is possible to attain an accurate mean value estimation of a chosen metric
(e.g., IPC).

The main disadvantage to the sampling approach is the long turnaround
times associated with instrumented functional simulation. During checkpoint
creation, a functional simulator must also be instrumented to carry out warm-
ing of long-term microarchitectural structures such as caches and branch
predictors. When instrumented for warming activity, full-system functional
simulators typically run at around 1–2 MIPS [Wenisch and Wunderlich 2005].
For benchmarks consisting of hundreds of billions or trillions of instructions,
this process can take tens of hours or up to days.

Supporting fast functional warming with FACS. To demonstrate FPGA-
accelerated functional warming, we have developed an FPGA-Accelerated
Cache Simulator (FACS), which functionally models a two-level Piranha-like
chip multiprocessor cache with private L1 I&D caches and a shared non-
inclusive L2 [Barroso et al. 2000]. This particular cache model is identical
to the software-based one used for functional warming simulation in the Sim-
Flex toolkit [Wenisch and Wunderlich 2005], which uses the aforementioned
sampling-based methodology. FACS is an alternative to software-based CMP
cache warming and is able to execute at nearly one or two orders of magnitude
faster than its software counterpart (tens of MIPS as opposed to approximately
one MIPS).

A key advantage of functional simulation is that it is only required to repli-
cate the higher-level behaviors of the simulated target structure instead of
trying to mimic low-level timing details. The implementation details of FACS
that follow demonstrate how this less-constrained setting allows for simpler
and more optimized designs that take full advantage of hardware-specific fea-
tures, such as concurrent lookup of multiple memory blocks.

Through these practical techniques, FACS is able to run on a separate BEE2
FPGA and can receive and process dynamically generated memory address

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 20 · E. S. Chung et al.

Table III. FACS Implementation Characteristics

L1 Caches 16 private 2-way split I&D (64B blocks)
(2 stage pipeline, 1 cycle/ref)

L2 Cache 8-way single shared victim cache (64B blocks)
(4 stage pipeline, 2 cycles/ref)

Clock frequency 100MHz

Resources used 7483 LUTs (11%), 134 BRAMs (40%)
(when configured with 64KB L1s, 4MB L2)
7277 LUTs (11%), 292 BRAMS (89%)
(when configured with 128KB L1s, 16MB L2)

Statistics 2500 lines of Verilog, 8 modules

traces over a high-bandwidth inter-FPGA link from BlueSPARC at nearly full
speed. For each incoming memory reference in the trace, FACS updates its L1
and L2 cache tags and maintains coherence among the private L1 caches. It is
important to note that FACS has no actual functionality (i.e., there is no data
stored in the caches) but simply tracks the long-term coherence state of each
simulated cache block (to later export into a software cycle-accurate simulator
as per the sampling methodology).

Architecture and Implementation. Before presenting the actual implemen-
tation of FACS, we first discuss additional details relevant to the target cache
model. In the Piranha-like cache hierarchy, processors are connected to private
split L1 I&D caches and share a common L2, which acts as a large victim cache,
that is, only blocks that are evicted from L1 get inserted into the L2. Blocks
are also inserted into the L2 when transferring blocks between private L1s. In
addition to storing its own cache blocks, the L2 maintains a directory for all
of the L1 private caches to preserve cache coherence. The L1 and L2 uses the
same pseudo-LRU replacement strategies implemented in the software-based
reference model.

The cache architecture described here belongs to the target simulation
model and does not reflect the actual FACS implementation. FACS is a pure
functional cache model, which means that it requires only storing and updat-
ing tag and status bits for each cache-line. Not storing the actual data in
each cache-line greatly reduces the amount of required memory. For instance,
modeling 16 64KB L1 caches, along with a single shared 4MB L2 cache re-
quires less than 300KB of memory, which easily fits in on-chip FPGA memory
resources (e.g., BlockRAMs). Moreover, FACS is fully parameterizable in the
number of nodes, L1/L2 block sizes, L1/L2 cache sizes, and L2 associativity.
The default configuration of FACS, which was also used to generate experi-
mental results presented in Section 5, consists of 16 private 64KB split L1 I&D
caches and a single shared 4MB L2 cache. Table III summarizes the high-level
characteristics of FACS.

FACS is structured as a 6-stage pipeline, which processes the memory ad-
dress trace generated from BlueSPARC through an inter-FPGA FIFO inter-
face. The architecture of FACS is depicted in Figure 9. Internally, it consists
of two core modules; one that simulates the set of all private L1s and one that
simulates the larger shared L2, which are implemented as a 2-stage and a
4-stage pipeline, respectively. The L1 module can sustain the processing rate

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 21

Fig. 9. FACS internal pipeline organization.

of one memory reference per cycle, while the L2 module is limited to accept-
ing one memory reference once every two cycles. Each memory reference that
is processed by the L1 may produce up to two corresponding memory refer-
ences that are forwarded to the L2: one for the actual reference and one for
the potentially evicted victim cache-line. However, as we show in Section 5,
the rate difference between the L1 and L2 modules as well as the addition-
ally generated L2-specific memory references have negligible impact on overall
simulation performance. On the occasion that the input FIFO to FACS is full,
inter-FPGA flow control measures ensure that the BlueSPARC pipeline stalls
to avoid dropping any memory references.

In the target Piranha-like cache model, processors can issue multiple con-
current independent accesses to their respective private L1s, while coherence
is maintained through a shared directory that resides in the L2. By taking
advantage of the memory reference serialization that occurs due to instruction
interleaving in the BlueSPARC simulation engine, FACS follows a different
approach that is simpler, achieves high performance, and still retains func-
tional correctness. Instead of preserving coherence by maintaining a directory
in the L2, FACS concurrently accesses all of the private L1s for each memory
reference, in a similar manner to snoop-based coherence protocols. This allows
coherence conflicts to be resolved instantaneously, without requiring propaga-
tion to the L2 and potential subsequently generated coherence messages (e.g.,
invalidations) that travel back to one or more L1s. Although this approach
limits the throughput of FACS, it greatly simplifies the design and completely
decouples the L1s from the L2 by eliminating any potential L2-to-L1 feedback.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 22 · E. S. Chung et al.

The L1s can process references at double the rate of the L2 module. Thus
more than half of the total memory references would have to miss in the L1s
on average for the L2 module to become the throughput bottleneck. In all
of our workloads, the average L1 miss-rate is well below the 50% threshold;
additionally the FIFO connecting the L1s and L2 modules can smooth out short
bursts of consecutive L1 misses.

5. EVALUATION

This section reports an evaluation of the 16-way BlueSPARC simulator de-
scribed in Section 3 as well as the FACS component described in Section 4.
The performance evaluation includes a comparison to the Simics simulator.
Furthermore, we present a first-order model to understand the performance of
multithreaded interleaving.

5.1 Simulation Throughput

Benchmarks. The evaluations in this section are based on simulating a
16-way symmetrical multiprocessing (SMP) UltraSPARC III server (Sun Fire
3800) using BlueSPARC (with and without the FACS CMP cache simulation).
The simulated server is running an unmodified Solaris 8 operating system.
We exercise the simulated server using 16-way software workloads for satu-
rating the pipeline. These consist of six SPEC2000 integer benchmarks (bzip2,
crafty, gcc, gzip, parser, vortex) and a TPC-C Online Transaction Processing
(OLTP) benchmark. For the SPECint workloads, 16 independent copies of
the benchmark program are executed concurrently on the simulated 16-way
server; we measure simulation throughput for 100 billion aggregate instruc-
tions (after the program initialization phase). Due to limited physical mem-
ory on our target configuration, it was necessary to run with test inputs and
to omit benchmarks that exhibited excessive disk paging activity after pro-
gram initialization (gap, mcf). Other SPECint benchmarks (eon, perlbmk,
twolf, and vpr) were omitted due to a high rate (>1 in 1000) of unimplemented
instructions (e.g., floating point instructions). For the OLTP benchmark, the
simulated server is running a commercial multithreaded database server
(Oracle 10g Enterprise Database Server) configured with 100 warehouses
(10GB), 16 clients, and 1.4GB SGA as in Wenisch et al. [2006]. We measure
simulation throughput for 100 billion aggregate instructions in a steady-state
region (where database transactions are committing steadily). Due to nonde-
terminism of performance in our current implementation,3 each bar graph we
report is the average over four samples for each workload. We omit all of the
standard error bars, which have values of 1% or less. As we will see next, dif-
ferent workload behaviors have a large impact on the simulation throughput
of both Simics and BlueSPARC.

3Several components in our current implementation of BlueSPARC are nondeterministic. One
example is the Ethernet component, which is used to facilitate I/O-transplants and DMA transfers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 23

Fig. 10. Performance comparison of BlueSPARC. The height of the lines shown inside the Oracle
TPC-C bars indicate the performance of Oracle TPC-C in User MIPS. The listed percentages also
indicate the overall fraction of user instructions. For all remaining SPECint workloads in both
BlueSPARC and Simics, the rate of privileged mode instructions is less than 5%.

Simics performance. When Simics is invoked with the default “fast” option,
it can achieve many tens of MIPS in simulation throughput. However, the fast
mode is a purely black-box system; that is, it does not support instrumentation
(e.g., memory address tracing) or augmentation of behavior (e.g., adding a new
opcode). There is at least a factor of 10 reduction in simulation throughput
when Simics is enabled with trace callbacks for instrumentation (this observa-
tion is also noted by Nussbaum et al. [2004]). In Figure 10, the bars labeled
Simics-fast and Simics-trace report our measured Simics simulation through-
put (total simulated instructions per second) for the simulated 16-way SMP
server. Simics simulations were run on a Linux PC with a 2.0 GHz Core 2
Duo and 8GBytes of memory. The performance more relevant to architecture
research activities is represented by Simics-trace.

BlueSPARC performance. The simulation throughput of the BlueSPARC
simulator is reported in the leftmost bars in Figure 10. The BlueSPARC sim-
ulator with acceleration from a single Virtex II XCV2P70 FPGA clocked at
90 MHz achieves speed comparable to Simics-fast on the SPECint and Ora-
cle TPC-C workload. In comparison to the more relevant Simics-trace perfor-
mance, the speedup is more dramatic, an average speedup of 38x and as high
as 49x on GCC. It is worth noting that some applications such as vortex and
bzip2 run slower under BlueSPARC than in Simics-fast. These applications in
particular experience a high rate of memory misses under BlueSPARC. It is
also worth noting that the user-to-privileged instruction ratio changes signifi-
cantly in Oracle TPC-C when comparing BlueSPARC to Simics (as noted in the
percentages above the Oracle TPC-C bars in Figure 10). In Section 5.2, we ex-
plain these results in detail and also discuss the major sources of performance
overhead that prevent BlueSPARC from attaining ideal performance.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 24 · E. S. Chung et al.

FACS performance. As mentioned in Section 6, fast functional instrumen-
tation is a key capability in accelerating cycle-accurate simulation sampling
activities. To demonstrate this, the second-to-leftmost bars in Figure 10 report
the performance of BlueSPARC executing with FACS running in parallel on a
second FPGA at 100 MHz. Overall, BlueSPARC+FACS achieves a speedup of
37x over Simics-trace. The results we report here are lower-bound speedups
because we do not include a software cache simulator when measuring the per-
formance of Simics-trace. In practice, the introduction of a CMP cache simula-
tor (not shown in this article) further reduces the performance of Simics-trace
by over a factor of two, which means BlueSPARC+FACS potentially achieves
up to nearly two orders-of-magnitude performance improvement.

In the configuration described in Section 4, FACS simulates 16 indepen-
dent 64KB L1 I&D caches and a shared 4MB L2 cache. At 100 MHz, FACS
is able to consume up to 100M memory references per second. Figure 10
illustrates for the majority of our applications that FACS does not back-
pressure BlueSPARC’s rate of progress. In the special case of GCC, a 14%
reduction in performance is observed. When BlueSPARC without FACS ex-
ecutes GCC, the IPC of the BlueSPARC pipeline reaches 0.95 during long
phases of program execution (billions of instructions). In addition, nearly 40%
of all instructions are memory accesses. As a result, BlueSPARC generates
0.95 ∗ 90MHz ∗ 1.4 = 120M memory traces per second during these phases,
which exceeds the peak processing rate of FACS. When FACS is introduced,
BlueSPARC is backpressured during these phases and is unable to reach the
original peak IPCs of 0.95, resulting in the overall 14% reduction in perfor-
mance. In Vortex, BlueSPARC+FACS appears to be slightly better in perfor-
mance than BlueSPARC alone. However, the error bars (not shown in the
figure) for BlueSPARC and BlueSPARC+FACS overlap due to variability in
runtime, and no significant difference in performance is observable.

5.2 BlueSPARC Performance Analysis

The performance model we present is based on a simple accounting of pipeline
utilization by the interleaved processor contexts. Under ideal conditions, the
instructions from multiple processor contexts would be issued into the pipeline
in round-robin order, without stall or interference. Let N be the number of
interleaved processor contexts and P be the depth of the interleaved pipeline.
(In the case of the BlueSPARC design, N = 14 and P = 16.)

Let I be the average interval (in cycles) between the instructions issued from
one processor context into the pipeline. The pipeline utilization by one context
is then 1

I
, and the total utilization by N contexts is N

I
. When the pipeline is

100% utilized (IPC=1), I is equal to N. With full pipeline utilization, the aver-
age instruction interval I can be broken into P + S cycles. The first component
(P) represents the number of cycles traversed in a P-stage pipeline. The sec-
ond component (S) is the amount of cycles spent queued up in the scheduler.
The S component is nonzero due to the fact that only a subset of contexts at
any given moment can occupy the pipeline when N > P.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 25

Table IV. Long-Latency Event Class Summary

Flush Pipeline is halted while the caches are being flushed

Retry A context is suspended due to a resource conflict

I/O stall A context waits until a memory-mapped I/O operation completes

Micro-tplant A context blocks until a micro-transplant is carried out

Load stall A context misses in the D-cache & waits until the fill is completed

I-Fetch stall A context misses in the I-cache & waits until the fill is completed

Scheduler A context queueing up & being re-scheduled for another round of execution

Pipeline The minimum amount of time needed for any instruction to complete

Consider the example of BlueSPARC. If only a single processor context is
executing, the average instruction interval I is equal to 14 and the average
number of cycles queued up in the scheduler S is zero. The pipeline utilization
is thus N

I
= 1

14 . When 16 contexts are running, each context’s average instruc-
tion interval increases to I = 16 since each context must wait its turn for two
cycles in the scheduler before running in the pipeline again. With 16 contexts,
the pipeline utilization is N

I
= N

P+S
= 16

14+2 = 1.
Under real conditions, events such as cache misses, microtransplants and

I/O-transplants increase the average interval I between the instructions is-
sued from one processor context. We can express this as Iavg = P + S + r1L1 +
r2L2 + r3L3 + ... + riLi where ri is the rate (event per instruction) of a specific
long-latency event class that delays the completion of an instruction by Li cy-
cles. During long-latency events, the blocked processor context is removed from
the pipeline and does not consume pipeline issue slots. Thus, a high pipeline
utilization can be sustained even in the presence of these long-latency events,
provided: (1) N > P and (2) the number of ready-to-execute contexts is at least
P. A summary of long-latency event classes can be found in Table IV.

Table V gives the rate ri (events per instruction) and average latency Li (in
90 MHz cycles) for the event classes that impact Iavg. All of these statistics
are collected using performance counters built into the BlueSPARC pipeline.
Using the measured data as input, the Iavg model agrees well with wall-clock
measurements and is able to predict pipeline utilizations for all of the work-
loads within 1% error. Figure 11 illustrates the measured contribution of each
event class to the overall Iavg. The contribution of each component from an
event class is computed as riLi. The components also include contributions
from time spent in the pipeline (14 cycles) and time in the scheduler (S).

Note that for workloads such as bzip2 or gcc, the time spent in the scheduler
can be less than two cycles per instruction. In an otherwise perfectly scheduled
pipeline with no long-latency events, this would not be possible; however, in the
case of real workloads, processor contexts experiencing long-latency events can
free up scheduling opportunities for others. It is also possible for contexts to
experience more than two cycles per instruction in the scheduler due to stolen
scheduling opportunities for retried instructions or when pipeline freezes occur
(e.g., when resource hazards occur).

Based on Figure 11, the three most dominant sources of performance over-
head arise from fetch and load misses, retries, and memory-mapped I/O. For
the majority of the workloads, fetch and load misses contribute a significant
fraction of the average instruction interval; this is expected as we interleave

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15:
26

·
E

.S
.C

hung
etal.Table V. Long-Latency Event Rate and Latency

Micro-tplant I/O Load miss Fetch miss Scheduler Retry Flushes

Oracle 0.012% (7554) 0.0005% (668895) 2.95% (65) 1.097% (55) 100% (1.8) 10.5% (3.0) 0.0029% (3355)

Bzip2 0.000055% (3787) 0.000065% (145676) 8.6% (87) 0.173% (104) 100% (1.0) 37.3% (14.3) 0.0039% (3257)

Crafty 0.0000300% (4046) 0.000001% (162498) 7.01% (127) 2.067% (120) 100% (0.6) 13.9% (4.8) 0.00084% (3371)

GCC 0.0050% (9977) 0.000066% (195679) 1.84% (92) 0.936% (99) 100% (2.3) 12.8% (3.1) 0.0061% (3309)

Gzip 0.000046% (22628) 0.000071% (130331) 6.63% (106) 0.23% (118) 100% (1.2) 22.9% (7.3) 0.0038% (3274)

Parser 0.000173% (2990) 0.000093% (124179) 5.34% (116) 1.66% (110) 100% (2.0) 23.5% (8.0) 0.0098% (3238)

Vortex 0.00664% (2800) 0.0002682% (120747) 8.65% (153) 3.03% (114) 100% (2.2) 30.0% (15.7) 0.0095% (3243)

Percentages represent the rate of events per instruction. Numbers in parentheses represent the latency per event in units of 90 MHz cycles.

A
C

M
T

ra
n

sa
ction

s
on

R
econ

fi
g
u

ra
b
le

T
ech

n
olog

y
a
n

d
S

y
stem

s,
V

ol.
2
,
N

o.
2
,

A
rticle

1
5
,

P
u

b
.

d
a
te:

J
u

n
e

2
0
0
9
.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 27

Fig. 11. Average contribution of each long-latency event class to the average instruction interval
(Iavg). Each subcomponent within each bar is the product of the event rate (event per instruc-
tion) and the average measured latency of the event. An explanation of each of the event classes
can be found in Table IV. Table V also lists the actual rates and latencies used to generate the
subcomponents in each bar.

16 processor contexts onto a small, direct-mapped cache. Vortex and crafty ex-
perience the highest rate of cache misses and are also additionally penalized
by increased queuing latency in the memory system. Recall that our memory
controllers are hosted on a second FPGA; the interchip link between the two
FPGAs limits the rate at which multiple outstanding memory requests can be
serviced.

In all of the workloads, retried instructions (including discarded computa-
tion) contribute a noticeable fraction to the average instruction interval. In
our measurements, the majority of retries are caused by conflicting accesses to
the L1 data cache sets in a transient state (e.g., pending cache fill). Due to the
direct-mapped configuration of the caches and a large window of vulnerability
(e.g., long-latency cache fills), this event occurs frequently enough to contribute
a significant overhead. Note how in Figure 11 that workloads with higher load
and fetch stalls also experience a larger amount of retries.

Microtransplants contribute little if no overhead in almost all of the work-
loads. This outcome is due to the fact that we were conservative in our initial
chosen instruction coverage in the FPGA; these results show that more oppor-
tunity exists to omit even further behaviors from the hardware.

As expected, none of the user-dominated SPECint benchmarks experiences
any noticeable I/O. In contrast, Oracle TPC-C experiences a high level of disk
activity and increased latency of I/O-transplants due to queuing of multiple
outstanding I/O requests (note the higher latency in Table V).

Performance analysis of Oracle TPC-C. Despite a large I/O overhead,
Oracle TPC-C running in BlueSPARC appears to have a significantly higher
MIPS rate than Simics (50.5 MIPS compared to 12.5 MIPS). Further

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 28 · E. S. Chung et al.

investigation into this unexpected result reveals that the instruction-level be-
havior of Oracle changes dramatically when BlueSPARC is used instead of
Simics (as shown above the bars in Figure 10). In particular, we observe that
the rate of privileged-mode instructions when running under BlueSPARC in-
creases to nearly 85% of all instructions. In contrast, Simics spends only up
to 35% of all instructions in privileged mode. In prior work shown in Hankins
et al. [2003], the user IPC is directly correlated to the rate at which database
transactions are committed.

These divergences in Oracle’s behavior are due to the fact that BlueSPARC
introduces positive delay into the system with respect to memory-mapped
I/O and DMAs. It is worth noting that Simics does not model any notion
of accurate timing. All system-level events such as I/O, interrupts, or DMA
occur in zero cycles. In the case of BlueSPARC, the introduction of posi-
tive I/O delay causes additional queuing for device resources in the kernel
and results in increased lock contention. Increased amount of spinning in
the kernel improves the IPC of Oracle running under BlueSPARC despite a
lower overall database transaction throughput. Nevertheless, the verdict on
whether BlueSPARC or Simics provides the more “representative” behavior
of Oracle TPC-C remains unclear. In future work, we plan to compare our
results against real multiprocessor systems, which will offer better insight
on how representative our simulators are with respect to Oracle’s runtime
behavior.

6. RELATED WORK

FPGA-based simulators. Recent FPGA efforts such as Lu et al. [2007] and
Vahia and Hartke [2007] have produced full-system prototypes involving a
CPU implemented in an FPGA, while real motherboards and PC components
are used to provide the CPU-external full-system environment. In both exam-
ples, the CPU designs are commandeered from existing RTL models developed
originally for standard cell technologies. While RTL produces the most accu-
rate timing model, the source code is generally more difficult to modify than
simulation models crafted in mind for design exploration.

Other approaches such as Öner et al. [1995] and Wee et al. [2007] proto-
type functional multiprocessor models with approximated timing fidelity; that
is, they lack cycle-accuracy but retain timing similarities to the target sys-
tem. These approaches forgo full-system fidelity and also maintain structural
correspondence to the target system in the number of processors implemented
in the FPGA.

In similar spirit toward reducing FPGA implementation complexity,
UT-FAST [Chiou et al. 2007] is a form of hybrid simulation that uses FPGAs
to accelerate cycle-accurate simulation of uniprocessor microarchitectures.
UT-FAST is currently divided into a software functional partition [Bellard
2005] and a timing model implemented in the FPGA. Similar work by HASIM
[Pellauer et al. 2008] implements both the functional and the timing partitions
within the FPGA.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 29

In addition, there have also been a number of mature projects in the RAMP
project [Wawrzynek et al. 2007], including RAMP Blue [Krasnov et al. 2007]
and RAMP Red [Wee et al. 2007], both of which follow a prototyping-like meth-
odology for modeling large-scale message-passing machines and transactional
memory, respectively. More recently, the RAMP Gold project is a new effort
to develop a large-scale FPGA-based simulator for manycore and data center
research [Tan et al. 2008]. Currently, the RAMP Gold strategy adopts the
interleaving virtualization technique demonstrated in Chung et al. [2008] and
primarily focuses on efficiently maximizing thread and core count per FPGA.

Software-based functional simulators. The need for full-system simulators
has led to a large number of available implementations today, including SimOS
[Rosenblum et al. 1995], Virtutech Simics [Magnusson et al. 2002], ASIM
[Emer et al. 2002], Mambo [Bohrer et al. 2004], QEMU [Bellard 2005], GEMS
[Martin et al. 2005], SimFlex [Wenisch et al. 2006], M5 [Binkert et al. 2006],
PTLSim [Yourst 2007], Sulima [Over et al. 2007], and AMD SimNow [AMD
2008].

There have been a number of approaches for parallelizing machine simu-
lators by Reinhardt et al. [1993], Mukherjee et al. [2000], Legedza and Weihl
[1996], Chidester and George [2002], Penry et al. [2006], Over et al. [2007],
Lantz [2008], and Wang et al. [2008]. The Wisconsin Wind Tunnel [Reinhardt
et al. 1993; Mukherjee et al. 2000], in particular, uses a time quantum ap-
proach to synchronize simulated processors across multiple host processors.
The original work on Embra in Rosenblum et al. [1995] includes a parallel
mode which allows translated code to execute across multiple hosts. The recent
work on Parallel Embra [Lantz 2008] extends Embra to support multiple sim-
ulated processors per host processor and also improves the overall scalability
of the simulator by parallelizing internal data structures. The Sparc-Sulima
work [Over et al. 2007] introduces two styles of parallel simulation: an “active
backplane” mode for parallelized cycle-accurate simulation and a “passive
backplane,” which supports a functional cache simulation using nondetermin-
istic execution bounded by periodic global synchronization.

In general, the parallel approaches presented here all face a delicate trade-
off between scalability and accuracy. Furthermore, as mentioned previously,
any software-based approach to instrumentation introduces significant slow-
downs, regardless of how much parallelism is exploited between simulated
processors. In terms of scalability and low-overhead instrumentation, we
believe that FPGAs offer unique capabilities that overcome these common
limitations.

7. CONCLUSIONS

In this article, we presented the PROTOFLEX simulation architecture
for FPGA-accelerated functional full-system multiprocessor simulation. The
BlueSPARC simulator is the first instantiation of this architecture that
simulates a 16-way UltraSPARC III SMP server. The resulting simulator em-
bodies the two key concepts of PROTOFLEX: hybrid simulation with trans-
planting and multiprocessor interleaving. Our evaluation of BlueSPARC

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 30 · E. S. Chung et al.

showed a simulation throughput as high as 62 MIPS. The evaluation further
showed a significant speedup, 38x on average and 49x best case, relative to
Simics with instrumentation enabled. We also demonstrated the FACS archi-
tecture, which functionally simulates a Piranha-like CMP cache model that
operates in tandem with BlueSPARC while introducing less than 4% overhead
in performance on average. FACS provides accelerated checkpoint generation
for cycle-accurate simulation sampling methodologies and can also generate
real-time cache statistics for the end-user.

In the long run, we plan to scale up the BlueSPARC simulator by combining
tens of interleaved engines in order to achieve an aggregate of 1000 MIPS to
support the simulations of large (>100-way) multiprocessor systems. To suc-
ceed at that scale, we also need to extend the PROTOFLEX simulation architec-
ture with means to virtualize the required main memory capacity expected of
a multiprocessor system at that scale. We are investigating the feasibility and
performance impact of employing demand-paging against a larger but slower
backing storage (e.g., disk or FLASH memory) to provide the illusion of the
required main memory capacity. When combining multiple interleaved en-
gines, coherence mechanisms must also be introduced to maintain the ab-
straction of shared-memory. We are currently investigating bus-based and
distributed cache coherence protocols to achieve this.

ACKNOWLEDGMENTS

We thank our colleagues in the RAMP and TRUSS projects for their interaction
and feedback. We also thank SPARC International for the use of the SPARCV9
compliance test.

REFERENCES

AMD. 2008. Advanced Micro Devices, SimNow Simulator 4.4.3. User’s manual.

BARROSO, L. A., GHARACHORLOO, K., MCNAMARA, R., NOWATZYK, A., QADEER, S., SANO, B.,
SMITH, S., STETS, R., AND VERGHESE, B. 2000. Piranha: A scalable architecture based on
single-chip multiprocessing. SIGARCH Comput. Archit. News 28, 2, 282–293.

BELLARD, F. 2005. QEMU, A fast and portable dynamic translator. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference (ATEC’05). USENIX Association, 41–41.

BINKERT, N. L., DRESLINSKI, R. G., HSU, L. R., LIM, K. T., SAIDI, A. G., AND REINHARDT, S. K.
2006. The M5 simulator: Modeling networked systems. IEEE Micro 26, 4, 52–60.

BOHRER, P., PETERSON, J., ELNOZAHY, M., RAJAMONY, R., GHEITH, A., ROCKHOLD, R.,
LEFURGY, C., SHAFI, H., NAKRA, T., SIMPSON, R., SPEIGHT, E., SUDEEP, K., HENSBERGEN,
E., AND ZHANG, L. 2004. Mambo: A full system simulator for the PowerPC architecture. ACM

SIGMETRICS Perform. Eval. Rev. 31, 4, 8–12.

CHANG, C., WAWRZYNEK, J., AND BRODERSEN, R. W. 2005. BEE2: A high-end reconfigurable
computing system. IEEE Des. Test Comput. 22, 2, 114–125.

CHEN, S., KOZUCH, M., STRIGKOS, T., FALSAFI, B., GIBBONS, P. B., MOWRY, T. C.,

RAMACHANDRAN, V., RUWASE, O., RYAN, M., AND VLACHOS, E. 2008. Flexible hardware ac-
celeration for instruction-grain program monitoring. In Proceedings of the 35th International

Symposium on Computer Architecture (ISCA’08). IEEE Computer Society, 377–388.

CHIDESTER, M. AND GEORGE, A. 2002. Parallel simulation of chip-multiprocessor architectures.
ACM Trans. Model. Comput. Simul. 12, 3, 176–200.

CHIOU, D., SUNWOO, D., KIM, J., PATIL, N. A., REINHART, W., JOHNSON, D. E., KEEFE, J., AND

ANGEPAT, H. 2007. FPGA-Accelerated simulation technologies (FAST): Fast, full-system, cycle-

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

PROTOFLEX: Towards Scalable, Full-System Multiprocessor Simulations · 15: 31

accurate simulators. In Proceedings of the 40th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’07). IEEE Computer Society, 249–261.

CHUNG, E. S., NURVITADHI, E., HOE, J. C., FALSAFI, B., AND MAI, K. 2008. A complexity-
effective architecture for accelerating full-system multiprocessor simulations using FPGAs. In
Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate

Arrays (FPGA’08). ACM, New York, 77–86.

DALTON, M., KANNAN, H., AND KOZYRAKIS, C. 2007. Raksha: A flexible information flow archi-
tecture for software security. SIGARCH Comput. Archit. News 35, 2, 482–493.

EMER, J., AHUJA, P., BORCH, E., KLAUSER, A., LUK, C.-K., MANNE, S., MUKHERJEE, S. S.,
PATIL, H., WALLACE, S., BINKERT, N., ESPASA, R., AND JUAN, T. 2002. Asim: A performance
model framework. Comput. 35, 2, 68–76.

HANKINS, R., DIEP, T., ANNAVARAM, M., HIRANO, B., ERI, H., NUECKEL, H., AND SHEN, J.
2003. Scaling and characterizing database workloads: Bridging the gap between research and
practice. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture. 151–162.

KRASNOV, A., SCHULTZ, A., WAWRZYNEK, J., GIBELING, G., AND DROZ, P. 2007. RAMP Blue:
A message-passing manycore system in FPGAs. In Proceedings of the Conference on Field Pro-

grammable Logic and Applications.

LANTZ, R. 2008. Fast functional simulation with parallel Embra. In Proceedings of the 4th Annual

Workshop on Modeling, Benchmarking and Simulation.

LEGEDZA, U. AND WEIHL, W. E. 1996. Reducing synchronization overhead in parallel simulation.
SIGSIM Simul. Digest 26, 1, 86–95.

LU, S.-L. L., YIANNACOURAS, P., KASSA, R., KONOW, M., AND SUH, T. 2007. An FPGA-based
Pentium R©in a complete desktop system. In Proceedings of the ACM/SIGDA 15th International

Symposium on Field Programmable Gate Arrays (FPGA’07). ACM, New York, 53–59.

MAGNUSSON, P., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HALLBERG, G., HOGBERG,
J., LARSSON, F., MOESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulation plat-
form. Comput. 35, 2, 50–58.

MARTIN, M. M. K., SORIN, D. J., BECKMANN, B. M., MARTY, M. R., XU, M., ALAMELDEEN,
A. R., MOORE, K. E., HILL, M. D., AND WOOD, D. A. 2005. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. SIGARCH Comput. Archit. News 33, 4, 92–99.

MUKHERJEE, S., REINHARDT, S., FALSAFI, B., LITZKOW, M., HILL, M., WOOD, D.,
HUSS-LEDERMAN, S., AND LARUS, J. 2000. Wisconsin Wind Tunnel II: a fast, portable parallel
architecture simulator. Concurr. IEEE 8, 4, 12–20.

NETHERCOTE, N. AND SEWARD, J. 2007. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’07). ACM, New York, 89–100.

NUSSBAUM, F., FEDOROVA, A., AND SMALL, C. 2004. An overview of the Sam CMT simulator kit.
Tech. rep. TR-2004-133, Sun Microsystems Research Labs.

ÖNER, K., BARROSO, L. A., IMAN, S., JEONG, J., RAMAMURTHY, K., AND DUBOIS, M. 1995.
The design of RPM: An FPGA-based multiprocessor emulator. In Proceedings of the ACM 3rd

International Symposium on Field Programmable Gate Arrays (FPGA’95). ACM, New York,
60–66.

OVER, A., CLARKE, B., AND STRAZDINS, P. 2007. A comparison of two approaches to parallel
simulation of multiprocessors. ispass 0, 12–22.

PATIL, H., COHN, R., CHARNEY, M., KAPOOR, R., SUN, A., AND KARUNANIDHI, A. 2004.
Pinpointing representative portions of large Intel R©Itanium R©programs with dynamic instru-
mentation. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO’04). IEEE Computer Society, 81–92.

PELLAUER, M., VIJAYARAGHAVAN, M., ADLER, M., AND EMER, J. 2008. Quick performance
models quickly: Timing-Directed simulation on FPGAs. In Proceedings of the International

Symposium on Performance Analysis of Systems and Software.

PENRY, D., FAY, D., HODGDON, D., WELLS, R., SCHELLE, G., AUGUST, D., AND CONNORS, D.
2006. Exploiting parallelism and structure to accelerate the simulation of chip multi-processors.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

15: 32 · E. S. Chung et al.

In Proceedings of the 12th International Symposium on High-Performance Computer Architec-

ture, 29–40.

REINHARDT, S. K., HILL, M. D., LARUS, J. R., LEBECK, A. R., LEWIS, J. C., AND WOOD,
D. A. 1993. The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. ACM

SIGMETRICS Perform. Eval. Rev. 21, 1, 48–60.

ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA, A. 1995. Complete computer system
simulation: The SimOS approach. IEEE Parallel Distrib. Technol. 3, 4, 34–43.

SMITH, B. 1985. In The Architecture of HEP on Parallel MIMD Computation: HEP Supercomputer

and its Applications. Massachusetts Institute of Technology, Cambridge, MA, 41–55.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program analy-
sis tools. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’94). ACM, New York, 196–205.

TAN, Z., ASANOVIĆ, K., AND PATTERSON, D. 2008. An FPGA host-multithreaded functional model
for SPARC v8. In Proceedings of the 3rd Workshop on Architectural Research Prototyping.

THORNTON, J. E. 1995. Parallel operation in the control data 6600. 5–12.

VAHIA, D. AND HARTKE, P. 2007. OpenSPARC T1 on Xilinx FPGAs–Updates. June 2007 RAMP

Retreat.

VENKATARAMANI, G., ROEMER, B., SOLIHIN, Y., AND PRVULOVIC, M. 2007. MemTracker:
Efficient and programmable support for memory access monitoring and debugging. In Proceed-

ings of the IEEE 13th International Symposium on High Performance Computer Architecture

(HPCA’07). IEEE Computer Society, 273–284.

WANG, K., ZHANG, Y., WANG, H., AND SHEN, X. 2008. Parallelization of IBM mambo system
simulator in functional modes. SIGOPS Oper. Syst. Rev. 42, 1, 71–76.

WAWRZYNEK, J., PATTERSON, D., OSKIN, M., LU, S.-L., KOZYRAKIS, C., HOE, J. C., CHIOU, D.,
AND ASANOVIĆ, K. 2007. RAMP: Research accelerator for multiple processors. IEEE Micro 27,
2, 46–57.

WEE, S., CASPER, J., NJOROGE, N., TESYLAR, Y., GE, D., KOZYRAKIS, C., AND OLUKOTUN, K.
2007. A practical FPGA-based framework for novel CMP research. In Proceedings of the

ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays (FPGA’07).
ACM, New York, 116–125.

WENISCH, T. AND WUNDERLICH, R. 2005. SimFlex: Fast, accurate and flexible simulation of
computer systems. In Proceedings of the Tutorial in the International Symposium on Microar-

chitecture (MICRO-38).

WENISCH, T. F., WUNDERLICH, R. E., FERDMAN, M., AILAMAKI, A., FALSAFI, B., AND HOE, J. C.
2006. SimFlex: Statistical sampling of computer system simulation. IEEE Micro 26, 4, 18–31.

WITCHEL, E. AND ROSENBLUM, M. 1996. Embra: Fast and flexible machine simulation.
ACM SIGMETRICS Perform. Eval. Rev. 24, 1, 68–79.

YOURST, M. 2007. PTLsim: A cycle accurate full system x86-64 microarchitectural simulator.
In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and

Software. 23–34.

Received June 2008; revised September 2008; accepted November 2008

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 2, Article 15, Pub. date: June 2009.

