
72	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

RESEARCH FEATURE

The CONNECT Network-
on-Chip Generator
Michael K. Papamichael, Microsoft Research

James C. Hoe, Carnegie Mellon University

Modern integrated circuits
(ICs) can contain billions
of transistors organized
as hundreds of interact-

ing modules that form a system on
chip (SoC). This scale is making mod-
ule intercommunication increasingly
complex, which is pushing intercon-
nects into a more central chip-design
role. Chips with a handful of major
modules can still rely on ad hoc point-to-point wires or
a shared bus, but such approaches do not scale to the
extent needed for current SoC communication needs.
Consequently, there is a push to develop more sophis-
ticated and scalable interconnect schemes, such as net-
works on chip (NoCs), which, as the name implies, imple-
ment a dedicated network of links and routers that act as
the chip’s communication substrate.1

NoC proliferation, in turn, has stimulated a surge in
NoC-related research—from low-level hardware imple-
mentation to application issues, such as providing
quality-of-service (QoS) guarantees. As a result, NoC
designs form a broad landscape that mirrors the diverse
communication needs and requirements of applications
that run on SoCs.

Despite vast and varied design choices and the lack of
a one-size-fits-all solution to the interconnect problem,
the NoC intellectual property (IP) blocks—prevalidated,
reusable hardware modules that implement a specific

function—currently available to the research commu-
nity are limited. Most are fixed NoC instances or tar-
get only a few design aspects. NoC IP blocks, examples
of which are described in the “Network-on-Chip Tools
and Frameworks” sidebar, typically come in the form of
structural register-transfer level (RTL) design modules.
As such, their parameterization is limited by the expres-
siveness of current hardware description languages
(HDLs), such as Verilog or VHDL. Users generally can
choose either a single topology configuration or a con-
figuration from a small set. They must also deal with
low-level details, such as editing RTL code to set para
meters or configure a router and writing additional RTL
code to arrange routers in the chosen topology and pop-
ulate routing tables.

To provide more options for both NoC novices and
experts, we developed CONNECT, a flexible NoC IP gen-
erator that produces high-quality synthesizable NoC
implementations in Verilog. Synthesizable designs are

Efficiently supporting the communication

needs of systems on chip with tens to

hundreds of interacting modules requires a

systematic and flexible network-on-chip (NoC)

infrastructure. The freely available CONNECT

generator lets users quickly navigate a range

of design parameters to produce tailored

NoC design instances in Verilog. To date, it

has generated nearly 4,000 designs.

RESEARCH FEATURE

	 D E C E M B E R 2 0 1 5 � 73

described in enough detail that elec-
tronic design automation (EDA) tools
can implement them in hardware such
as field-programmable gate arrays
(FPGAs) or application-specific ICs
(ASICs). Our main goal was to drasti-
cally reduce the complexity involved
in configuring and generating working
NoC designs by offering a push-button
solution for generating a wide range
of NoC configurations. CONNECT gen-
erates the requested NoC designs on
demand, providing choices in a range
of key parameters like topology, router
architecture, flow control, allocation
algorithms, pipelining options, and
buffer size.

CONNECT, which evolved from a
tool we created to support our NoC
design exploration research,2 was
publicly released in 2012 as a Web-
based NoC-generation service (www
.ece.cmu.edu/calcm/connect) to sup-
port researchers and hardware design-
ers in rapid NoC experimentation and

prototyping. Our motivation for devel-
oping and releasing CONNECT in this
form was to create a powerful and user-
friendly tool that expands the NoC
options available to academic and other
research communities.

DESIGN PARAMETERS
As Figure 1 shows, users see a range of
design parameters through a front-end
interface that consists of multiple high-
level configuration interfaces dynami-
cally updated to guide users while they
interact with the generator. CONNECT’s
main interface supports a wide range
of common network topologies, pro-
vides hardware implementation esti-
mates, and lets users preview each can-
didate network’s router and endpoint
arrangement.

Network topologies
In our experience, most CONNECT
users are SoC and application-level
designers looking for an interconnect

solution that fits with their design. For
these users, CONNECT provides a wide
range of common preconfigured unidi-
rectional and bidirectional topologies,
including single switch, ring, double
ring, star, mesh, torus, fat tree, fully
connected, butterfly, and distribution/
aggregation tree. We are continuing to
expand the variety of provided topol-
ogies and configuration options in
response to user requests.

Each supported topology family
includes its own scaling and configura-
tion parameters. CONNECT also popu-
lates the routing tables in each network
using a default routing scheme that
aligns with the selected topology vari-
ant, which the user can override. With
this wide range of topology and configu-
ration options, users can rapidly custom-
configure an NoC with minimal effort.

CONNECT supports advanced users
through its network editor (see Figure
1b), which lets them use a graphical
interface to create custom topologies.

NETWORK-ON-CHIP TOOLS AND FRAMEWORKS

T he rapid growth of research interest in
networks on chip (NoCs) as well as their

commercial application has led to the devel-
opment of several tools and frameworks for
NoC design. Commercial interconnect solutions
include system-on-chip (SoC) oriented products,
such as Spidergon’s STNoC, Arteris’ FlexNoC,
ARM’s AMBA, and Sonics’ NoC tools. Commercial
interconnect architectures commonly used in
a field-programmable gate array (FPGA) envi-
ronment include ARM’s AXI, which is in modern
Xilinx FPGAs, or Altera’s Qsys.

In addition to CONNECT, several freely available
synthesizable NoC options are available, primarily
the result of academic and research efforts. The
Open Source Network-on-Chip Router RTL
Project (http://nocs.stanford.edu/cgi-bin/trac.cgi
/wiki/Resources/Router) provides a high-quality
Verilog implementation of a state-of-the-art vir-
tual channel router. Netmaker (www-dyn.cl.cam
.ac.uk/~rdm34/wiki/) comprises a library of var-
ious synthesizable NoC components, along with
supporting material and scripts to run simulations

under different traffic patterns. Atlas (https://
corfu.pucrs.br/redmine/projects/atlas), NoCem
(http://opencores.org/project,nocem), and the
Open Source Low Latency Network-on-Chip (NoC)
Router RTL Project (http://nocrouter.codeplex
.com) provide RTL code for building NoCs with
mesh and torus topologies. The OpenSoC Fab-
ric project (www.opensocfabric.org) provides a
parameterized Chisel-based NoC implementation
that supports mesh and flattened butterfly topolo-
gies. Bluetiles and Bluetree, both part of Blueshell
(https://rtslab.wikispaces.com/Blueshell), are mesh
and tree NoC implementations in Bluespec System
Verilog for connecting processor cores to each
other and with memory.

There are also tools to facilitate the evaluation
and implementation of NoC choices. NOCBENCH
(www.tkt.cs.tut.fi/research/nocbench) includes a
set of hardware and software models and tools
to help evaluate NoC designs. FPGA NoC Designer
(www.eecg.utoronto.ca/~mohamed/noc_designer
.html) provides implementation estimates for hard
and soft FPGA-resident NoCs.

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

Through a network-specification lan-
guage, expert users can instantiate
routers of different radix, mix unidi-
rectional and bidirectional links, and
attach multiple (or no) endpoints to
each router in the generated network.
With this high degree of customization,
users can build networks that precisely
match their application’s connectivity
and communication characteristics.

Router architectures
Figure 2 is an abstract block diagram of
the basic structure of the virtual channel
(VC) router—one of three router architec-
tures that CONNECT provides. The other
two are virtual output queued (VOQ) and
input queued (IQ). The variants differ in
their internal logic and buffer organiza-
tion, but in all three, input and output
interfaces are either connected to net-
work endpoints or form links with other
routers in the network.

For all router variants, users can
configure low-level details, such
as pipelining, allocator type, and

routing, which lets them explore
tradeoffs in performance, area,
and frequency, as well as meet spe-
cific traffic prioritization and fair-
ness goals. CONNECT also provides
two interfacing options (credit-based
and peek) that implement different
f low-control protocols to better match
the communication assumptions and
requirements of a given application.
In credit-based flow control, routers
exchange credits and maintain credit
counters to keep track of buffer avail-
ability; in peek flow control, rout-
ers directly expose their buffer occu-
pancy to upstream routers, which
eliminates the need for credit-counting
logic and storage.2

Virtual channel. The VC router sup-
ports a variable number of VCs and
organizes incoming traffic at each
input into separate buffers on the
basis of VC information carried by
packets. NoCs employ VCs to provide
the abstraction of multiple logical

channels over a physical underlying
channel. VCs are useful in implement-
ing protocols that require enforcing
QoS guarantees, such as traffic isola-
tion and message-class prioritization,
for example, prioritizing responses
over requests to prevent deadlock.3
They can also help increase network
performance by mitigating the effects
of head-of-line blocking—in which
the first packet in a queue blocks the
remaining waiting packets that would
otherwise be making progress.4

Virtual output queued. The VOQ
router can offer the highest perfor-
mance out of the three supported
architectures. For each input, it steers
incoming traffic into per-output dedi-
cated buffers, eliminating the effects of
head-of-line blocking and offering very
high levels of performance that can
approach that of an ideal (but imprac-
tical) output-queued router architec-
ture.5 VOQ routers are well suited for
demanding applications with heavy

FIGURE 1. CONNECT interface: (a) Web-based generator interface, (b) network editor, and (c) samples of preconfigured topologies and two
user-defined custom topologies. Users can rapidly switch among design parameters, such as router architecture, flow control, allocation
algorithms, pipelining options, and buffer size.

	 D E C E M B E R 2 0 1 5 � 75

communication requirements and less
structured traffic patterns that would
still suffer from head-of-line blocking
using a conventional VC-based router.

Input queued. The IQ router uses a
single buffer per router input, making
it well suited for building simple bare-
bones NoCs for applications that require
basic connectivity with low hardware
cost. NoCs built around IQ routers are a
good match for applications with non-
critical or simple communication needs
that do not require the isolation, priori-
tization, or higher performance that VC
and VOQ router architectures provide.

QUALITY OF
GENERATED NOCS
Because NoCs are typically used or
studied as part of larger designs with
interacting modules that exhibit
diverse communication characteristics
and often impose stringent constraints
on hardware resources, generated NoCs
must be high quality and map well
to the available hardware resources.
All CONNECT NoC IPs—including
any debugging and instrumentation

structures—consist of fully synthesiz-
able Verilog descriptions that map effi-
ciently to both FPGAs and ASICs. Gen-
erated NoCs account for unique FPGA
implementation characteristics, ensur-
ing that they can coexist and share
resources with other hardware-resident

components in an FPGA environment
with tight resource constraints.

The results in Table 1 give an idea
of how the generated NOCs map to
FPGAs and ASICs. The results are for
select realistic configurations; all net-
works assume a flit-buffer depth of

In ports

In0 (data)

In0 (�ow control)

In1 (data)

In1 (�ow control)

InN (data)

InN (�ow control)

Router

Flit buffers

Allocation and �ow-control state

VC0

VC1
…

VC0

VC1
…

…… …

VC0

Ro
ut

in
g

Al
lo

ca
tio

n

VC1
…

Switch

Out ports

Out0 (data)

Out0 (�ow control)

Out1 (data)

Out1 (�ow control)

OutM (data)

OutM (�ow control)

FIGURE 2. Architecture of a CONNECT virtual channel (VC) router. Communication with other
routers happens through input and output port interfaces. Each port interface consists of two
channels; one channel for receiving (or sending) data and one side channel running in the
opposite direction for flow control.

TABLE 1. Results of implementing CONNECT-generated
network-on-chip design modules in FPGA and ASIC environments.*

Network details LX760 FPGA implementation ASIC implementation (32 nm)

Topology_endpoints
Link

width

Ports
per

router

No. of
routers

(variant)
No. of

VCs
 Logic area
(% of LUTs)

Max.
freq.

(MHz)

Peak bisection
bandwidth

(Gbps)
Area
(µm2)

Max.
freq.
(GHz)

Peak bisection
bandwidth

(Gbps)

Ring_128 128 2 128 (IQ) N/A 8.9 364 93 561,181 5.2 1,342

Ring_64 64 2 64 (VC) 2 3.4 327 42 305,159 4.5 572

DoubleRing_16 48 3 16 (VC) 4 2.0 236 45 110,492 3.5 680

DoubleRing_32 64 3 32 (VC) 2 2.9 241 62 142,797 3.8 978

FatTree_16 32 4 20 (VOQ) N/A 1.9 203 104 22,070 4.9 2,484

Mesh_16 (4 × 4) 32 5 16 (VC) 4 3.2 181 46 79,537 3.6 914

Mesh_48 (6 × 8) 24 5 48 (VC) 2 7.4 169 32 104,500 4.4 842

Torus_20 (4 × 5) 64 5 16 (VOQ) N/A 6.4 180 184 49,712 5.2 5,361

FullyConnected_8 32 8 8 (VC) 2 3.1 132 34 19,687 4.0 1,034

HighRadixCustom_16 48 9 8 (IQ) N/A 4.3 121 47 31,219 5.2 1,990

*µm2: square micrometers; ASIC: application-specific integrated circuit; FPGA: field-programmable gate array; Gbps: gigabits per second; IQ: input queued; LUTs: lookup tables;
VCs: virtual channels; VOQ: virtual output queued.

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

eight flow-control digits (flits), which
are the basic unit of resource allocation
and flow control within the network;
employ peek flow control; and have the
router core pipeline option. However,
they vary in number of endpoints, link
width, number of routers and router
architecture, and number of VCs (for
VC routers). The maximum frequency,
area, and peak bisection bandwidth
given in the table are based on synthesis
results for FPGA and ASIC implementa-
tions. The table shows FPGA logic area
as a percentage of total FPGA lookup
table (LUT) capacity. All the sample net-
works fit well within 10 percent of the
moderately sized Xilinx LX760 FPGA.

The network details that give opti-
mal results on FPGAs can differ drasti-
cally from those that map well to ASICs
because the two implementation envi-
ronments contrast sharply in relative
speed and cost of logic, wires, and mem-
ory primitives. CONNECT accounts for
those differences by considering each
implementation environment’s unique
mapping and operating characteristics,
which enables it to use resources more
efficiently. For example, by accounting
for FPGAs’ dense configurable routing
substrate, on-chip storage peculiari-
ties, and frequency limitations, it can

produce NoCs that use FPGA resources
very efficiently.

FPGA resource use
To assess the importance of FPGA spe-
cialization, we compared a 4 × 4 mesh
built using the Stanford open source
router RTL,6 a high-quality virtual
channel router implementation in
synthesizable Verilog, with an identi-
cally configured 4 × 4 mesh NoC gen-
erated by CONNECT.

Figure 3 shows the extent to which
CONNECT’s flexibility gives it an advan-
tage over other NoC design options
that cannot tune results to the FPGAs’
implementation environment.2 In this
example, CONNECT-generated NoCs
have comparable network performance
at one-half the FPGA resource cost; or
alternatively, three to four times higher
network performance with approxi-
mately the same FPGA resource cost.

Application-specific NoCs
CONNECT users can also create effi-
cient application-specific NoCs. In an
end-to-end study on FPGA application
deployment, we experimented with
compiler-guided development of appli-
cation-specific NoCs. The customized
NoCs generated through CONNECT

reduced FPGA resource usage (for the
interconnect) by almost an order of
magnitude while retaining the same
application performance levels as a
baseline generic NoC.7 For example,
when we switched from a baseline
generic mesh interconnect to a custom
application-tuned, tree-based inter-
connect, we realized overall efficiency
(throughput over area) gains from 37
to 48 percent for two FPGA-based appli-
cations: dense matrix multiply and
Black–Scholes.

Tuning to design and
performance constraints
Figure 4 demonstrates the coverage
possible with CONNECT NoCs, show-
ing 256 64-endpoint NoC configura-
tions, which are taken from a pool of
about 30,000 synthesized design vari-
ants that target a commercial 65-nm
ASIC library. All these CONNECT NoCs
are functionally equivalent and there-
fore interchangeable from an applica-
tion perspective. The NoCs in the figure
represent only a small subset of the NoC
configurations available with CON-
NECT, yet they already show a variance
of two to three orders of magnitude
across the three metrics (power, area,
performance). These results underline
the importance of being able to tune
and optimize an NoC to meet specific
design and performance constraints.

USER AND DESIGN
STATISTICS
As of late October 2015, the CONNECT
website has seen more than 12,000
unique visitors and the service has gen-
erated on the order of 4,000 networks
for 900 users in 50 countries (www
.ece.cmu.edu/calcm/connect/stats).
Research papers by CONNECT users

FP
GA

 u
se

 (L
UT

s)

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(n

s)

60K

50%

4 × 4 mesh network on chip Load (Gbps)

400

300

200

100

2

2-3×

(a) (b)

4 6 8

Same area

Same con�guration

Stanford network on chip
CONNECT network on chip
Equal FPGA resource use

50K

40K

30K

20K

10K

FIGURE 3. Comparison of a 4 × 4 mesh network on chip (NoC) using CONNECT-generated
RTL and the Stanford open source router RTL. (a) FPGA resource use (measured as the num-
ber of lookup tables [LUTs]) is 50 percent more efficient in the CONNECT NoC. (b) Assuming
uniform traffic at 100 MHz, network performance is also significantly better. When the CON-
NECT NoC uses the same FPGA resources (same area) as the Stanford NoC, the CONNECT
NoC can handle four times the load with two to three times lower idle latency.

	 D E C E M B E R 2 0 1 5 � 77

have reported employing CONNECT to
generate NoCs for design research or for
production IP in design projects. Fig-
ure 5 shows network-generation statis-
tics, such as user type and topologies
selected. More detailed statistics and
usage information are available on the
CONNECT website.

USER-CENTRIC DESIGN
PRINCIPLES
To ensure that CONNECT would be a
practical research and design tool for
all user levels, we consciously engi-
neered certain design principles across
all its aspects—from the user interface
to the hardware-generation engine.

Interfaces that match expertise
CONNECT offers a variety of configu-
ration and generation interfaces that
are tailored to the user’s expertise. The
main (Web-based) interface provides
preconfigured common topologies and
settings as well as the opportunity to
create a custom topology through the
network editor. Expert users can employ
a custom specification language that
eliminates the need for low-level bug-
prone RTL coding, as well as a non-GUI
command-line front end that generates
NoC instances by remotely connecting
to the CONNECT framework.

CONNECT’s interfaces also have auto-
mated features that help users avoid
erroneous configurations—a common
problem when dealing with complex
highly parameterized IP blocks. Options
are dynamically updated as the user
makes selections, and routing tables
are automatically populated unless the
user chooses to override that feature.
The interface guides the user through
previews of the topology and endpoint
arrangement and provides feedback,

such as cost and performance estimates,
as well as tips on how different options
affect hardware implementation.

Support for rapid prototyping
and exploration
A simple set of link-level interfaces are
common among all CONNECT-generated
NoCs, which allows easy integration
within a design project. From a user per-
spective, the NoC appears to be a plug-
and-play black box module that receives
and delivers packets. This simpli-
fies rapid prototyping and exploring
design choices, because all CONNECT

NoCs with the same number of end-
points are interface-compatible at the
network boundary.

CONNECT’s support of routing-table
updates not only opens up interesting
research directions, such as experiment-
ing with adaptive routing techniques,
but also considerably reduces experiment
turnaround time. Users can build a system
around a dense, highly connected topol-
ogy and then modify the routing scheme
to emulate other topologies; for example,
by overlaying a ring or mesh on top of a
torus. There is no need to repeat hardware
synthesis, eliminating hours of work.

NoC area vs. performance

100,000

10,000

1,000

100

101 100 1,000
10

100,000

10,000

1,000

100

10
1,000 10,000 100,000

Power (mW)Area (mm2)

Ring
Concentrated ring

Double ring
Concentrated double ring

Mesh
Torus

Fat tree
Butter�y

Pe
ak

 b
is

ec
tio

n
ba

nd
w

id
th

 (G
bp

s)

Pe
ak

 b
is

ec
tio

n
ba

nd
w

id
th

 (G
bp

s)

NoC power vs. performance

FIGURE 4. Area, power, and performance results for various 64-endpoint NoC configu-
rations targeting a commercial 65-nm ASIC technology node. This small subset already
demonstrates wide variance across area, power, and performance metrics, which shows
the importance of being able to tune an NoC to meet design and performance constraints.

Network size (no. of endpoints)

Network-size distribution

450

300

150

0

<
 3

3
–

4

5
–

8

9
–

16

17
 –

 3
2

33
 –

 6
4

65
 –

 1
28

>
12

9

User categories

Popular topologies
Mesh – 36%

Custom – 16%

Ring – 13%

Torus – 10%

Double ring – 9%

Fat tree – 7%

No
. o

f g
en

er
at

ed
 n

et
w

or
ks

35%
Other

45%
Academia

20%
Industry

FIGURE 5. CONNECT network-generation statistics showing user categories, popular top
ologies, and network-size distribution as of March 2015.

78	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

Easy endpoint implementation
In addition to the plug-and-play nature
of the generated networks, CONNECT
provides features aimed specifically at
easing endpoint implementation. For
example, with peek instead of credit
flow control, endpoints can directly
observe buffer occupancy of neigh-
boring routers instead of having to
exchange and keep track of credits.
Virtual links guarantee the contigu-
ous transmission and delivery of multi
flit packets, which eliminates the need
for reassembly logic and buffering at
the receiving endpoints. These fea-
tures push complexity back into the
network—complexity that the network
endpoints would handle otherwise.

In addition, each generated NoC is
accompanied by documentation, test
benches, and scripts, as well as user-
editable routing and topology files—all
custom-generated to match the specific
NoC configuration.

Simplified access
Because CONNECT comprises many
components developed using a vari-
ety of tools, releasing it to users as a
self-maintained package would have
required installing tools and libraries,
setting up the environment, acquiring
licenses, and continued upkeep, among
other issues. Releasing CONNECT as a
service eliminates these requirements
and simplifies user access—the only

requirement for generating CONNECT
NoC designs is an Internet connection.
Moreover, having a distribution point
allows us to quickly and transparently
deliver fixes or improvements.

Our experience with building
and releasing CONNECT has
given us invaluable insight

into multiple aspects of IP develop-
ment, dissemination, and use. For NoC
design experts, CONNECT eliminates
the time and effort they would have
spent coding and debugging the RTL
for an NoC design. Instead, they simply
dial in exactly the configuration they
are looking for.

However, user feedback reveals
that most CONNECT users are not NoC
experts and hence do not know what
configuration to ask for. Often, they do
not understand all the NoC parameters
that CONNECT offers.

Indeed, our generation statistics
show that most CONNECT users config-
ure very few high-level parameters—
often suboptimally—typically, topology
or datapath width. Most leave options
such as router architecture or allocator
type untouched, despite the significant
impact of these parameters on cost, per-
formance, and correctness. This prob-
lem continues after non-expert NoC
users integrate a CONNECT NoC into
their design because users at this level

likely cannot properly diagnose per-
formance and correctness issues, such
as degraded performance or deadlock
from suboptimal router architecture or
allocator choice.

Thus, despite the ease of use that IP
generators promise, a wide knowledge
gap persists between domain experts
who develop the IP and non–domain
experts who use the IP. This observation
has motivated our work on Pandora,8 a
new IP design paradigm in which IP
blocks not only capture the microarchi-
tectural and structural design views
but also encapsulate additional knowl-
edge that the IP author might have. For
example, by incorporating IP author
knowledge in genetic algorithms, we
have been able to extend CONNECT to
vastly accelerate and automate NoC
parameter tuning.9 We believe our
work on CONNECT and Pandora exten-
sions are significant steps toward
enabling the more efficient use of IPs
and IP generators.

ACKNOWLEDGMENTS
Funding for this work was provided in
part by National Science Foundation grant
CCF-1012851.

REFERENCES
1.	 W. Dally and B. Towles, “Route Pack-

ets, Not Wires: On-Chip Interconnec-
tion Networks,” Proc. 38th ACM/IEEE
Design Automation Conf. (DAC 01),
2001, pp. 684–689.

2.	 M.K. Papamichael and J.C. Hoe,
“CONNECT: Re-Examining Conven-
tional Wisdom for Designing NoCs
in the Context of FPGAs,” Proc. 20th
ACM/SIGDA Int’l Symp. Field Program-
mable Gate Arrays (FPGA 12), 2012,
pp. 37–46.

3.	 W. Dally and C. Seitz, “Deadlock-Free

ABOUT THE AUTHORS

MICHAEL K. PAPAMICHAEL is a researcher in the Computer Architecture Group

at Microsoft Research. His research interests include computer architecture,

on-chip interconnects, and methodologies to facilitate hardware specialization.

While conducting the research reported in this article, he was a doctoral student

in computer science at Carnegie Mellon University (CMU). Papamichael received

a PhD in computer science from CMU. He is a member of IEEE and ACM. Contact

him at papamix@microsoft.com.

JAMES C. HOE is a professor of electrical and computer engineering at CMU. His

research interests include computer architecture, digital systems, and high-level syn-

thesis. Hoe received a PhD in electrical engineering and computer science from MIT.

He is a Fellow of IEEE and member of ACM. Contact him at jhoe@cmu.edu.

D E C E M B E R 2 0 1 5 79

Message Routing in Multiproces-
sor Interconnection Networks,” IEEE
Trans. Computers, vol. C-36, no. 5, 1987,
pp. 547–553.

4. M. Karol, M. Hluchyj, and S. Morgan,
“Input Versus Output Queuing on a
Space-Division Packet Switch,” IEEE
Trans. Comm., vol. 35, no. 12, 1987,
pp. 1347–1356.

5. W. Dally and B. Towles, Principles and
Practices of Interconnection Networks,
Morgan Kaufmann, 2003.

6. D.U. Becker, “E� cient Microarchitec-
ture for Network-on-Chip Routers,”
PhD dissertation, Dept. Electrical
Eng., Stanford Univ., 2012.

7. E.S. Chung and M.K. Papamichael,
“ShrinkWrap: Compiler-Enabled Opti-
mization and Customization of Soft
Memory Interconnects,” Proc. 21st
IEEE Int’l Symp. Field-Programmable
Custom Computing Machines (FCCM 13),
2013, pp. 113–116.

8. M.K. Papamichael, “Pandora: Facili-
tating IP Development for Hardware
Specialization,” PhD dissertation,
Dept. Computer Science, Carnegie
Mellon Univ., 2015.

9. M.K. Papamichael, P. Milder, and
J. C. Hoe, “Nautilus: Fast Auto-
mated IP Design Space Search Using
Guided Genetic Algorithms,” Proc.

52nd ACM/EDAC/IEEE Design Auto-
mation Conf. (DAC 15), 2015; doi:
10.1145/2744769.2744875.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

