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Modern integrated circuits 
(ICs) can contain billions 
of transistors organized 
as hundreds of interact-

ing modules that form a system on 
chip (SoC). This scale is making mod-
ule intercommunication increasingly 
complex, which is pushing intercon-
nects into a more central chip-design 
role. Chips with a handful of major 
modules can still rely on ad hoc point-to-point wires or 
a shared bus, but such approaches do not scale to the 
extent needed for current SoC communication needs. 
Consequently, there is a push to develop more sophis-
ticated and scalable interconnect schemes, such as net-
works on chip (NoCs), which, as the name implies, imple-
ment a dedicated network of links and routers that act as 
the chip’s communication substrate.1

NoC proliferation, in turn, has stimulated a surge in 
NoC-related research—from low-level hardware imple-
mentation to application issues, such as providing 
quality-of-service (QoS) guarantees. As a result, NoC 
designs form a broad landscape that mirrors the diverse 
communication needs and requirements of applications 
that run on SoCs. 

Despite vast and varied design choices and the lack of 
a one-size-fits-all solution to the interconnect problem, 
the NoC intellectual property (IP) blocks—prevalidated, 
reusable hardware modules that implement a specific 

function—currently available to the research commu-
nity are limited. Most are fixed NoC instances or tar-
get only a few design aspects. NoC IP blocks, examples 
of which are described in the “Network-on-Chip Tools 
and Frameworks” sidebar, typically come in the form of 
structural register-transfer level (RTL) design modules. 
As such, their parameterization is limited by the expres-
siveness of current hardware description languages 
(HDLs), such as Verilog or VHDL. Users generally can 
choose either a single topology configuration or a con-
figuration from a small set. They must also deal with 
low-level details, such as editing RTL code to set para
meters or configure a router and writing additional RTL 
code to arrange routers in the chosen topology and pop-
ulate routing tables.

To provide more options for both NoC novices and 
experts, we developed CONNECT, a flexible NoC IP gen-
erator that produces high-quality synthesizable NoC 
implementations in Verilog. Synthesizable designs are 

Efficiently supporting the communication 

needs of systems on chip with tens to 

hundreds of interacting modules requires a 

systematic and flexible network-on-chip (NoC) 

infrastructure. The freely available CONNECT 

generator lets users quickly navigate a range 

of design parameters to produce tailored 

NoC design instances in Verilog. To date, it 

has generated nearly 4,000 designs. 
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described in enough detail that elec-
tronic design automation (EDA) tools 
can implement them in hardware such 
as field-programmable gate arrays 
(FPGAs) or application-specific ICs 
(ASICs). Our main goal was to drasti-
cally reduce the complexity involved 
in configuring and generating working 
NoC designs by offering a push-button 
solution for generating a wide range 
of NoC configurations. CONNECT gen-
erates the requested NoC designs on 
demand, providing choices in a range 
of key parameters like topology, router 
architecture, flow control, allocation 
algorithms, pipelining options, and 
buffer size.

CONNECT, which evolved from a 
tool we created to support our NoC 
design exploration research,2 was 
publicly released in 2012 as a Web-
based NoC-generation service (www 
.ece.cmu.edu/calcm/connect) to sup-
port researchers and hardware design-
ers in rapid NoC experimentation and 

prototyping. Our motivation for devel-
oping and releasing CONNECT in this 
form was to create a powerful and user-
friendly tool that expands the NoC 
options available to academic and other 
research communities.

DESIGN PARAMETERS
As Figure 1 shows, users see a range of 
design parameters through a front-end 
interface that consists of multiple high-
level configuration interfaces dynami-
cally updated to guide users while they 
interact with the generator. CONNECT’s 
main interface supports a wide range 
of common network topologies, pro-
vides hardware implementation esti-
mates, and lets users preview each can-
didate network’s router and endpoint 
arrangement. 

Network topologies
In our experience, most CONNECT 
users are SoC and application-level 
designers looking for an interconnect 

solution that fits with their design. For 
these users, CONNECT provides a wide 
range of common preconfigured unidi-
rectional and bidirectional topologies, 
including single switch, ring, double 
ring, star, mesh, torus, fat tree, fully 
connected, butterfly, and distribution/
aggregation tree. We are continuing to 
expand the variety of provided topol-
ogies and configuration options in 
response to user requests. 

Each supported topology family 
includes its own scaling and configura-
tion parameters. CONNECT also popu-
lates the routing tables in each network 
using a default routing scheme that 
aligns with the selected topology vari-
ant, which the user can override. With 
this wide range of topology and configu-
ration options, users can rapidly custom-
configure an NoC with minimal effort. 

CONNECT supports advanced users 
through its network editor (see Figure 
1b), which lets them use a graphical 
interface to create custom topologies. 

NETWORK-ON-CHIP TOOLS AND FRAMEWORKS

T he rapid growth of research interest in 
networks on chip (NoCs) as well as their 

commercial application has led to the devel-
opment of several  tools and frameworks for 
NoC design. Commercial interconnect solutions 
include system-on-chip (SoC) oriented products, 
such as Spidergon’s STNoC, Arteris’ FlexNoC, 
ARM’s AMBA, and Sonics’ NoC tools. Commercial 
interconnect architectures commonly used in 
a field-programmable gate array (FPGA) envi-
ronment include ARM’s AXI, which is in modern 
Xilinx FPGAs, or Altera’s Qsys.

In addition to CONNECT, several freely available 
synthesizable NoC options are available, primarily 
the result of academic and research efforts. The 
Open Source Network-on-Chip Router RTL  
Project (http://nocs.stanford.edu/cgi-bin/trac.cgi 
/wiki/Resources/Router) provides a high-quality 
Verilog implementation of a state-of-the-art vir-
tual channel router. Netmaker (www-dyn.cl.cam 
.ac.uk/~rdm34/wiki/) comprises a library of var-
ious synthesizable NoC components, along with 
supporting material and scripts to run simulations 

under different traffic patterns. Atlas (https://
corfu.pucrs.br/redmine/projects/atlas), NoCem 
(http://opencores.org/project,nocem), and the 
Open Source Low Latency Network-on-Chip (NoC) 
Router RTL Project (http://nocrouter.codeplex 
.com) provide RTL code for building NoCs with 
mesh and torus topologies. The OpenSoC Fab-
ric project (www.opensocfabric.org) provides a 
parameterized Chisel-based NoC implementation 
that supports mesh and flattened butterfly topolo-
gies. Bluetiles and Bluetree, both part of Blueshell 
(https://rtslab.wikispaces.com/Blueshell), are mesh 
and tree NoC implementations in Bluespec System 
Verilog for connecting processor cores to each 
other and with memory. 

There are also tools to facilitate the evaluation 
and implementation of NoC choices. NOCBENCH 
(www.tkt.cs.tut.fi/research/nocbench) includes a 
set of hardware and software models and tools 
to help evaluate NoC designs. FPGA NoC Designer 
(www.eecg.utoronto.ca/~mohamed/noc_designer 
.html) provides implementation estimates for hard 
and soft FPGA-resident NoCs.
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Through a network-specification lan-
guage, expert users can instantiate 
routers of different radix, mix unidi-
rectional and bidirectional links, and 
attach multiple (or no) endpoints to 
each router in the generated network. 
With this high degree of customization, 
users can build networks that precisely 
match their application’s connectivity 
and communication characteristics. 

Router architectures
Figure 2 is an abstract block diagram of 
the basic structure of the virtual channel 
(VC) router—one of three router architec-
tures that CONNECT provides. The other 
two are virtual output queued (VOQ) and 
input queued (IQ). The variants differ in 
their internal logic and buffer organiza-
tion, but in all three, input and output 
interfaces are either connected to net-
work endpoints or form links with other 
routers in the network.

For all router variants, users can 
configure low-level details, such 
as pipelining, allocator type, and 

routing, which lets them explore 
tradeoffs in performance, area, 
and frequency, as well as meet spe-
cific traffic prioritization and fair-
ness goals. CONNECT also provides 
two interfacing options (credit-based 
and peek) that implement different 
f low-control protocols to better match 
the communication assumptions and 
requirements of a given application. 
In credit-based flow control, routers 
exchange credits and maintain credit 
counters to keep track of buffer avail-
ability; in peek flow control, rout-
ers directly expose their buffer occu-
pancy to upstream routers, which 
eliminates the need for credit-counting 
logic and storage.2

Virtual channel. The VC router sup-
ports a variable number of VCs and 
organizes incoming traffic at each 
input into separate buffers on the 
basis of VC information carried by 
packets. NoCs employ VCs to provide 
the abstraction of multiple logical 

channels over a physical underlying 
channel. VCs are useful in implement-
ing protocols that require enforcing 
QoS guarantees, such as traffic isola-
tion and message-class prioritization, 
for example, prioritizing responses 
over requests to prevent deadlock.3 
They can also help increase network 
performance by mitigating the effects 
of head-of-line blocking—in which 
the first packet in a queue blocks the 
remaining waiting packets that would 
otherwise be making progress.4

Virtual output queued. The VOQ 
router can offer the highest perfor-
mance out of the three supported 
architectures. For each input, it steers 
incoming traffic into per-output dedi-
cated buffers, eliminating the effects of 
head-of-line blocking and offering very 
high levels of performance that can 
approach that of an ideal (but imprac-
tical) output-queued router architec-
ture.5 VOQ routers are well suited for 
demanding applications with heavy 

FIGURE 1. CONNECT interface: (a) Web-based generator interface, (b) network editor, and (c) samples of preconfigured topologies and two 
user-defined custom topologies. Users can rapidly switch among design parameters, such as router architecture, flow control, allocation 
algorithms, pipelining options, and buffer size.
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communication requirements and less 
structured traffic patterns that would 
still suffer from head-of-line blocking 
using a conventional VC-based router.

Input queued. The IQ router uses a 
single buffer per router input, making 
it well suited for building simple bare-
bones NoCs for applications that require 
basic connectivity with low hardware 
cost. NoCs built around IQ routers are a 
good match for applications with non-
critical or simple communication needs 
that do not require the isolation, priori-
tization, or higher performance that VC 
and VOQ router architectures provide.

QUALITY OF 
GENERATED NOCS
Because NoCs are typically used or 
studied as part of larger designs with 
interacting modules that exhibit 
diverse communication characteristics 
and often impose stringent constraints 
on hardware resources, generated NoCs 
must be high quality and map well 
to the available hardware resources. 
All CONNECT NoC IPs—including 
any debugging and instrumentation 

structures—consist of fully synthesiz-
able Verilog descriptions that map effi-
ciently to both FPGAs and ASICs. Gen-
erated NoCs account for unique FPGA 
implementation characteristics, ensur-
ing that they can coexist and share 
resources with other hardware-resident 

components in an FPGA environment 
with tight resource constraints.

The results in Table 1 give an idea 
of how the generated NOCs map to 
FPGAs and ASICs. The results are for 
select realistic configurations; all net-
works assume a flit-buffer depth of 
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FIGURE 2. Architecture of a CONNECT virtual channel (VC) router. Communication with other 
routers happens through input and output port interfaces. Each port interface consists of two 
channels; one channel for receiving (or sending) data and one side channel running in the 
opposite direction for flow control. 

TABLE 1. Results of implementing CONNECT-generated  
network-on-chip design modules in FPGA and ASIC environments.* 

Network details LX760 FPGA implementation ASIC implementation (32 nm)

Topology_endpoints
Link 

width

Ports 
per 

router

No. of 
routers 

(variant)
No. of 

VCs
 Logic area 
(% of LUTs)

Max. 
freq. 

(MHz)

Peak bisection 
bandwidth 

(Gbps)
Area 
(µm2)

Max. 
freq. 
(GHz)

Peak bisection 
bandwidth 

(Gbps)

Ring_128 128 2 128 (IQ) N/A 8.9 364 93 561,181 5.2 1,342

Ring_64 64 2 64 (VC) 2 3.4 327 42 305,159 4.5 572

DoubleRing_16 48 3 16 (VC) 4 2.0 236 45 110,492 3.5 680

DoubleRing_32 64 3 32 (VC) 2 2.9 241 62 142,797 3.8 978

FatTree_16 32 4 20 (VOQ) N/A 1.9 203 104 22,070 4.9 2,484

Mesh_16 (4 × 4) 32 5 16 (VC) 4 3.2 181 46 79,537 3.6 914

Mesh_48 (6 × 8) 24 5 48 (VC) 2 7.4 169 32 104,500 4.4 842

Torus_20 (4 × 5) 64 5 16 (VOQ) N/A 6.4 180 184 49,712 5.2 5,361

FullyConnected_8 32 8 8 (VC) 2 3.1 132 34 19,687 4.0 1,034

HighRadixCustom_16 48 9 8 (IQ) N/A 4.3 121 47 31,219 5.2 1,990

*µm2: square micrometers; ASIC: application-specific integrated circuit; FPGA: field-programmable gate array; Gbps: gigabits per second; IQ: input queued; LUTs: lookup tables;  
VCs: virtual channels; VOQ: virtual output queued.
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eight flow-control digits (flits), which 
are the basic unit of resource allocation 
and flow control within the network; 
employ peek flow control; and have the 
router core pipeline option. However, 
they vary in number of endpoints, link 
width, number of routers and router 
architecture, and number of VCs (for 
VC routers). The maximum frequency, 
area, and peak bisection bandwidth 
given in the table are based on synthesis 
results for FPGA and ASIC implementa-
tions. The table shows FPGA logic area 
as a percentage of total FPGA lookup 
table (LUT) capacity. All the sample net-
works fit well within 10 percent of the 
moderately sized Xilinx LX760 FPGA.

The network details that give opti-
mal results on FPGAs can differ drasti-
cally from those that map well to ASICs 
because the two implementation envi-
ronments contrast sharply in relative 
speed and cost of logic, wires, and mem-
ory primitives. CONNECT accounts for 
those differences by considering each 
implementation environment’s unique 
mapping and operating characteristics, 
which enables it to use resources more 
efficiently. For example, by accounting 
for FPGAs’ dense configurable routing 
substrate, on-chip storage peculiari-
ties, and frequency limitations, it can 

produce NoCs that use FPGA resources 
very efficiently. 

FPGA resource use
To assess the importance of FPGA spe-
cialization, we compared a 4 × 4 mesh 
built using the Stanford open source 
router RTL,6 a high-quality virtual 
channel router implementation in 
synthesizable Verilog, with an identi-
cally configured 4 × 4 mesh NoC gen-
erated by CONNECT.

Figure 3 shows the extent to which 
CONNECT’s flexibility gives it an advan-
tage over other NoC design options 
that cannot tune results to the FPGAs’ 
implementation environment.2 In this 
example, CONNECT-generated NoCs 
have comparable network performance 
at one-half the FPGA resource cost; or 
alternatively, three to four times higher 
network performance with approxi-
mately the same FPGA resource cost.

Application-specific NoCs
CONNECT users can also create effi-
cient application-specific NoCs. In an 
end-to-end study on FPGA application 
deployment, we experimented with 
compiler-guided development of appli-
cation-specific NoCs. The customized 
NoCs generated through CONNECT 

reduced FPGA resource usage (for the 
interconnect) by almost an order of 
magnitude while retaining the same 
application performance levels as a 
baseline generic NoC.7 For example, 
when we switched from a baseline 
generic mesh interconnect to a custom 
application-tuned, tree-based inter-
connect, we realized overall efficiency 
(throughput over area) gains from 37 
to 48 percent for two FPGA-based appli-
cations: dense matrix multiply and 
Black–Scholes. 

Tuning to design and 
performance constraints 
Figure 4 demonstrates the coverage 
possible with CONNECT NoCs, show-
ing 256 64-endpoint NoC configura-
tions, which are taken from a pool of 
about 30,000 synthesized design vari-
ants that target a commercial 65-nm 
ASIC library. All these CONNECT NoCs 
are functionally equivalent and there-
fore interchangeable from an applica-
tion perspective. The NoCs in the figure 
represent only a small subset of the NoC 
configurations available with CON-
NECT, yet they already show a variance 
of two to three orders of magnitude 
across the three metrics (power, area, 
performance). These results underline 
the importance of being able to tune 
and optimize an NoC to meet specific 
design and performance constraints.

USER AND DESIGN 
STATISTICS
As of late October 2015, the CONNECT 
website has seen more than 12,000 
unique visitors and the service has gen-
erated on the order of 4,000 networks 
for 900 users in 50 countries (www 
.ece.cmu.edu/calcm/connect/stats). 
Research papers by CONNECT users 
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have reported employing CONNECT to 
generate NoCs for design research or for 
production IP in design projects. Fig-
ure 5 shows network-generation statis-
tics, such as user type and topologies 
selected. More detailed statistics and 
usage information are available on the 
CONNECT website.

USER-CENTRIC DESIGN 
PRINCIPLES
To ensure that CONNECT would be a 
practical research and design tool for 
all user levels, we consciously engi-
neered certain design principles across 
all its aspects—from the user interface 
to the hardware-generation engine. 

Interfaces that match expertise
CONNECT offers a variety of configu-
ration and generation interfaces that 
are tailored to the user’s expertise. The 
main (Web-based) interface provides 
preconfigured common topologies and 
settings as well as the opportunity to 
create a custom topology through the 
network editor. Expert users can employ 
a custom specification language that 
eliminates the need for low-level bug-
prone RTL coding, as well as a non-GUI 
command-line front end that generates 
NoC instances by remotely connecting 
to the CONNECT framework.

CONNECT’s interfaces also have auto-
mated features that help users avoid 
erroneous configurations—a common 
problem when dealing with complex 
highly parameterized IP blocks. Options 
are dynamically updated as the user 
makes selections, and routing tables 
are automatically populated unless the 
user chooses to override that feature. 
The interface guides the user through 
previews of the topology and endpoint 
arrangement and provides feedback, 

such as cost and performance estimates, 
as well as tips on how different options 
affect hardware implementation. 

Support for rapid prototyping 
and exploration
A simple set of link-level interfaces are 
common among all CONNECT-generated 
NoCs, which allows easy integration 
within a design project. From a user per-
spective, the NoC appears to be a plug-
and-play black box module that receives 
and delivers packets. This simpli-
fies rapid prototyping and exploring 
design choices, because all CONNECT 

NoCs with the same number of end-
points are interface-compatible at the 
network boundary.

CONNECT’s support of routing-table 
updates not only opens up interesting 
research directions, such as experiment-
ing with adaptive routing techniques, 
but also considerably reduces experiment 
turnaround time. Users can build a system 
around a dense, highly connected topol-
ogy and then modify the routing scheme 
to emulate other topologies; for example, 
by overlaying a ring or mesh on top of a 
torus. There is no need to repeat hardware 
synthesis, eliminating hours of work.

NoC area vs. performance 

100,000

10,000

1,000

100

101 100 1,000
10

100,000

10,000

1,000

100

10
1,000 10,000 100,000

Power (mW)Area (mm2)

Ring
Concentrated ring

Double ring
Concentrated double ring

Mesh
Torus

Fat tree
Butter�y

Pe
ak

 b
is

ec
tio

n 
ba

nd
w

id
th

 (G
bp

s)

Pe
ak

 b
is

ec
tio

n 
ba

nd
w

id
th

 (G
bp

s)

NoC power vs. performance 

FIGURE 4. Area, power, and performance results for various 64-endpoint NoC configu-
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Easy endpoint implementation
In addition to the plug-and-play nature 
of the generated networks, CONNECT 
provides features aimed specifically at 
easing endpoint implementation. For 
example, with peek instead of credit 
flow control, endpoints can directly 
observe buffer occupancy of neigh-
boring routers instead of having to 
exchange and keep track of credits. 
Virtual links guarantee the contigu-
ous transmission and delivery of multi
flit packets, which eliminates the need 
for reassembly logic and buffering at 
the receiving endpoints. These fea-
tures push complexity back into the 
network—complexity that the network 
endpoints would handle otherwise. 

In addition, each generated NoC is 
accompanied by documentation, test 
benches, and scripts, as well as user-
editable routing and topology files—all 
custom-generated to match the specific 
NoC configuration.

Simplified access
Because CONNECT comprises many 
components developed using a vari-
ety of tools, releasing it to users as a 
self-maintained package would have 
required installing tools and libraries, 
setting up the environment, acquiring 
licenses, and continued upkeep, among 
other issues. Releasing CONNECT as a 
service eliminates these requirements 
and simplifies user access—the only 

requirement for generating CONNECT 
NoC designs is an Internet connection. 
Moreover, having a distribution point 
allows us to quickly and transparently 
deliver fixes or improvements. 

Our experience with building 
and releasing CONNECT has 
given us invaluable insight 

into multiple aspects of IP develop-
ment, dissemination, and use. For NoC 
design experts, CONNECT eliminates 
the time and effort they would have 
spent coding and debugging the RTL 
for an NoC design. Instead, they simply 
dial in exactly the configuration they 
are looking for. 

However, user feedback reveals 
that most CONNECT users are not NoC 
experts and hence do not know what 
configuration to ask for. Often, they do 
not understand all the NoC parameters 
that CONNECT offers.

Indeed, our generation statistics 
show that most CONNECT users config-
ure very few high-level parameters—
often suboptimally—typically, topology 
or datapath width. Most leave options 
such as router architecture or allocator 
type untouched, despite the significant 
impact of these parameters on cost, per-
formance, and correctness. This prob-
lem continues after non-expert NoC 
users integrate a CONNECT NoC into 
their design because users at this level 

likely cannot properly diagnose per-
formance and correctness issues, such 
as degraded performance or deadlock 
from suboptimal router architecture or 
allocator choice. 

Thus, despite the ease of use that IP 
generators promise, a wide knowledge 
gap persists between domain experts 
who develop the IP and non–domain 
experts who use the IP. This observation 
has motivated our work on Pandora,8 a 
new IP design paradigm in which IP 
blocks not only capture the microarchi-
tectural and structural design views 
but also encapsulate additional knowl-
edge that the IP author might have. For 
example, by incorporating IP author 
knowledge in genetic algorithms, we 
have been able to extend CONNECT to 
vastly accelerate and automate NoC 
parameter tuning.9 We believe our 
work on CONNECT and Pandora exten-
sions are significant steps toward 
enabling the more efficient use of IPs 
and IP generators. 
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