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This Year’s MEMOCODE Contest

® Objective
e Build the fastest simulator for a class of Networks-on-Chip
e Replicate cycle-by-cycle behavior of SW reference simulator

e Simulator takes two inputs

1. Network configuration
number and input/output configuration of routers
network topology
number of virtual channels

credit delay cycles

2. Routing info and traffic pattern

e routing information for each network router
e number and type of packets to send

Many parameters -> very large design space!



Dual-Engine NoC Simulator

® FPGA-based solution TR
o Developed in Bluespec System Verilog [ [
e Targets the Xilinx ML605 board
e Consists of two NoC simulation engines

® NoC simulation engines
e High-performance direct-mapped engine
e Supports up to moderately sized networks (~100 routers)
e Provides 500x-1000x speedup
e Highly scalable virtualized time-multiplexed engine
e Supports all possible networks in the design space
e Provides 5x-50x speedup

Dual-engine approach effectively covers entire design space
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FPGA-based Simulation Platform  ((cuE

Steps to run a simulation

@ Generate FPGA design for NoC config.

@ Configure FPGA, MicroBlaze & DRAM

o . . . NoC Simulator
@ Initialize NoC sim. w/ routing+traffic

(direct-mapped or virtualized)

@ Run sim. until termination condition

@ Extract simulation results Xilinx ML605 Board



Direct-Mapped NoC Simulator

® Why simulate... when you can prototype!

® Direct implementation of target NoC on the FPGA
Instantiates all routers, links, traffic sources, etc
Collection of routers connected according to NoC configuration

Additional logic required to detect termination conditions

e High performance at the cost of limited scalability
Achieves 500x-1000x speedup over software reference design

ML605 can fit up to ~100 routers of moderate complexity
5-input/output, 4VC router occupies ~1% of LX240T FPGA

Need a more scalable solution for remaining design space



Direct-Mapped Router Architecture  (‘cx

e High-level block diagram of parameterized router
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Virtualized NoC Simulator

e If resources start getting scarce, virtualize!

® Time-multiplexed implementation
Routers are simulated one at a time in successive clock cycles
Router, traffic source and link state stored in on-chip memory
Special care to retain proper ordering of events [Pellauer '11]

Aggressive prefetching to maintain high simulation throughput

® Scales to very large networks with complex routers

Can cover entire design space on ML605

256-router network occupies ~85% of LX240T

Only used when direct-mapped approach will not fit



Virtualized NoC Simulator Details ~ ((<x

Router State

<102 BRAMs
Flit Buffers

ML605 Usage

(for largest network)

Credits

FOINCRE]ES

< 40% Logic Other Scheduler State

Virtualized Router

Traffic Sources
Router Logic

< 256 BRAMs
Credit Links

< 1184 Kbits FlitEinks
LUTRAM Flit/Credit Conn. Table
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Direct-Mapped Implementation Results

e LUT usage and frequency for single router
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Virtualized Implementation Results

e LUT usage and frequency for 256-router network
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Results for Contest Networks

® Five network and router configurations

Network Name Routers Ports/router VCs Credit Delay
butterfly 112 3 1
highradix 16 8

mesh 253 5 4 3
torus 252 7 5 2
hypercube 256 9 1 1

All configurations lie at “edge” of design space, i.e. max-out at least one parameter

¢ Implementation results for contest networks

Xilinx Virtex-6 LX240T Xilinx Virtex-6 LX760T
Sim. Type |% LUTs |Speedup| Sim.Type |% LUTs| Speedup

butterfly Direct Map 86% 1511x Direct Map 27% 2330x

highradix Virtualized 63% 6X Direct Map 93% 421x
mesh Virtualized 3% 28x Direct Map 96% 4281x
torus Virtualized 8% 786x Virtualized 2% 789x

hypercube Virtualized 8% 21x Virtualized 2% 33x
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Design Principles

® Correctness First
First only focused on correctness and verify design
Then optimize entire system and individual components

® Parameterization and Modularity
Built parameterized versions of all submodules
Utilize Bluespec’s powerful parameterization mechanisms

® Harnessing the power of Bluespec
Static elaboration for easy parameterization
Define clean interfaces for modularity
Rely on type checking for early bug detection
Maintain high-level of abstraction to harness complexity



Bluespec code sample for virtual design

Il Main simulation rule for virtualized design. Simulates network one router at a time.
rule simulate_vcycle (init_done);

Il Gather incoming flits/credits and router state
let source_flit <- virtualSources.getFlit(cur_router); Il Gather flits from source
‘ in_links.in_flits = gatherincomingFlits(source_flit, flitConnections, flitLinks); // Gather flits from routers
in_links.in_credits = gatherlncomingCredits(creditConnections, creditLinks); // Gather credits
RouterState_t router_state_before = routerState.value(); Il Get router state

Il Simulate cycle for this router and write new router state
let router_simulation_result = virtualRouter.simulateCycle(router_state_before, in_links, ...);
RouterState_t router_state_after = tpl_1(router_simulation_result); // extract new router state
RouterOutLinks_t out_links = tpl_2(router_simulation_result); // extract flits/credits to send
routerState.write(cur_router, router_state_after); Il Write new router state

Il Send outgoing flits/credits
flitLinks.putFlits(cur_router, out_links.out_flits, tickVirtualClock); // Send flits to other routers
virtualSources.putCredits(cur_router, out_links.out_credits[0] ); // Send credits to traffic sources
creditLinks.putCredits(cur_router, out_credits_to_routers, tickVirtualClock); // Send credits

Il Advance to next router
‘ cur_router <= next_router;

endrule
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Taking it to the next level - CONECT

® Direct-mapped approach implements an actual NoC

e Parameterized
e FPGA-friendly
e Supports arbitrary network topologies

@ Build on top of this to create a useful tool!

m'ﬁ : Configurable Network Creation Tool

e Highly parameterized Network-on-Chip generation tool

# routers, topology, routing, allocation, # VCs, buffer width/depth, etc
e Back end developed in Bluespec System Verilog

e Python command-line interface and web interface (demo)
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CONECT Web Interface Demo




Questions?
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