N

((CAl

ol

) Computer Architecture Lab at Carnegie Mellon

’\)/

Fast Scalable FPGA-Based
Network-on-Chip Simulation Models

Michael K. Papamichael

papamix@cs.cmu.edu

Cambridge, UK, July 2011

We thank Xilinx for their FPGA and tool donations. We thank Bluespec for their tool donations and support.

This Year’s MEMOCODE Contest

® Objective
e Build the fastest simulator for a class of Networks-on-Chip
e Replicate cycle-by-cycle behavior of SW reference simulator

e Simulator takes two inputs

1. Network configuration
number and input/output configuration of routers
network topology
number of virtual channels

credit delay cycles

2. Routing info and traffic pattern

e routing information for each network router
e number and type of packets to send

Many parameters -> very large design space!

Dual-Engine NoC Simulator

® FPGA-based solution TR
o Developed in Bluespec System Verilog [[
e Targets the Xilinx ML605 board
e Consists of two NoC simulation engines

® NoC simulation engines
e High-performance direct-mapped engine
e Supports up to moderately sized networks (~100 routers)
e Provides 500x-1000x speedup
e Highly scalable virtualized time-multiplexed engine
e Supports all possible networks in the design space
e Provides 5x-50x speedup

Dual-engine approach effectively covers entire design space

3

Outline

® FPGA-based NoC Simulator
e FPGA Simulation Platform
e Direct-Mapped NoC Simulation Engine

e Virtualized NoC Simulation Engine
® Results

® Discussion

o CUNELT +Demo

Outline

® FPGA-based NoC Simulator
e FPGA Simulation Platform
e Direct-Mapped NoC Simulation Engine

e Virtualized NoC Simulation Engine

FPGA-based Simulation Platform ((cuE

Steps to run a simulation

@ Generate FPGA design for NoC config.

@ Configure FPGA, MicroBlaze & DRAM

o . . . NoC Simulator
@ Initialize NoC sim. w/ routing+traffic

(direct-mapped or virtualized)

@ Run sim. until termination condition

@ Extract simulation results Xilinx ML605 Board

Direct-Mapped NoC Simulator

® Why simulate... when you can prototype!

® Direct implementation of target NoC on the FPGA
Instantiates all routers, links, traffic sources, etc
Collection of routers connected according to NoC configuration

Additional logic required to detect termination conditions

e High performance at the cost of limited scalability
Achieves 500x-1000x speedup over software reference design

ML605 can fit up to ~100 routers of moderate complexity
5-input/output, 4VC router occupies ~1% of LX240T FPGA

Need a more scalable solution for remaining design space

Direct-Mapped Router Architecture (‘cx

e High-level block diagram of parameterized router

Input Ports Router Output Ports

Flit Buffers

Switch

Source
Traffic
Table

In1 (flits) Outl (flits)

Inl (credits) Outl (credits)

In15 (flits)

Outlb5 (flits)
In15 (credits) Outlb5 (credits)

Arbitration & Flow Control State

Virtualized NoC Simulator

e If resources start getting scarce, virtualize!

® Time-multiplexed implementation
Routers are simulated one at a time in successive clock cycles
Router, traffic source and link state stored in on-chip memory
Special care to retain proper ordering of events [Pellauer '11]

Aggressive prefetching to maintain high simulation throughput

® Scales to very large networks with complex routers

Can cover entire design space on ML605

256-router network occupies ~85% of LX240T

Only used when direct-mapped approach will not fit

Virtualized NoC Simulator Details ~ ((<x

Router State

<102 BRAMs
Flit Buffers

ML605 Usage

(for largest network)

Credits

FOINCRE]ES

< 40% Logic Other Scheduler State

Virtualized Router

Traffic Sources
Router Logic

< 256 BRAMs
Credit Links

< 1184 Kbits FlitEinks
LUTRAM Flit/Credit Conn. Table

Outline

® Results

~
N~

11

Direct-Mapped Implementation Results

e LUT usage and frequency for single router

LUTs

40000

35000

M 2VCs

@ 14 MHz

30000

m4VCs
8 VCs

25000

20000

15000

@ 36 MHz

10000 -

5000 -

N B E
I
g B

T
|
o
LN
-
®

-

(o))
=l N
3'@)-
®

T
=
o
©
®

0 -

4

@ 20 MHz
@ 45 MHz

8 12
Number of Input/Output Ports

16

12

Virtualized Implementation Results

e LUT usage and frequency for 256-router network

120000

100000

80000

LUTs

@ 7 MHz

m2VCs
M 4VCs

8 VCs

4 8 12 16
Number of Input/Output Ports

13

Results for Contest Networks

® Five network and router configurations

Network Name Routers Ports/router VCs Credit Delay
butterfly 112 3 1
highradix 16 8

mesh 253 5 4 3
torus 252 7 5 2
hypercube 256 9 1 1

All configurations lie at “edge” of design space, i.e. max-out at least one parameter

¢ Implementation results for contest networks

Xilinx Virtex-6 LX240T Xilinx Virtex-6 LX760T
Sim. Type |% LUTs |Speedup| Sim.Type |% LUTs| Speedup

butterfly Direct Map 86% 1511x Direct Map 27% 2330x

highradix Virtualized 63% 6X Direct Map 93% 421x
mesh Virtualized 3% 28x Direct Map 96% 4281x
torus Virtualized 8% 786x Virtualized 2% 789x

hypercube Virtualized 8% 21x Virtualized 2% 33x
14

Outline

® Discussion

/~> 1)

23
< S5)

/,

Design Principles

® Correctness First
First only focused on correctness and verify design
Then optimize entire system and individual components

® Parameterization and Modularity
Built parameterized versions of all submodules
Utilize Bluespec’s powerful parameterization mechanisms

® Harnessing the power of Bluespec
Static elaboration for easy parameterization
Define clean interfaces for modularity
Rely on type checking for early bug detection
Maintain high-level of abstraction to harness complexity

Bluespec code sample for virtual design

Il Main simulation rule for virtualized design. Simulates network one router at a time.
rule simulate_vcycle (init_done);

Il Gather incoming flits/credits and router state
let source_flit <- virtualSources.getFlit(cur_router); Il Gather flits from source
‘ in_links.in_flits = gatherincomingFlits(source_flit, flitConnections, flitLinks); // Gather flits from routers
in_links.in_credits = gatherlncomingCredits(creditConnections, creditLinks); // Gather credits
RouterState_t router_state_before = routerState.value(); Il Get router state

Il Simulate cycle for this router and write new router state
let router_simulation_result = virtualRouter.simulateCycle(router_state_before, in_links, ...);
RouterState_t router_state_after = tpl_1(router_simulation_result); // extract new router state
RouterOutLinks_t out_links = tpl_2(router_simulation_result); // extract flits/credits to send
routerState.write(cur_router, router_state_after); Il Write new router state

Il Send outgoing flits/credits
flitLinks.putFlits(cur_router, out_links.out_flits, tickVirtualClock); // Send flits to other routers
virtualSources.putCredits(cur_router, out_links.out_credits[0]); // Send credits to traffic sources
creditLinks.putCredits(cur_router, out_credits_to_routers, tickVirtualClock); // Send credits

Il Advance to next router
‘ cur_router <= next_router;

endrule
17

Outline

~
N~

18

Taking it to the next level - CONECT

® Direct-mapped approach implements an actual NoC

e Parameterized
e FPGA-friendly
e Supports arbitrary network topologies

@ Build on top of this to create a useful tool!

m'ﬁ : Configurable Network Creation Tool

e Highly parameterized Network-on-Chip generation tool

routers, topology, routing, allocation, # VCs, buffer width/depth, etc
e Back end developed in Bluespec System Verilog

e Python command-line interface and web interface (demo)

19

CONECT Web Interface Demo

Questions?

21

