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This Year’s MEMOCODE Contest

 Objective

 Build the fastest simulator for a class of Networks-on-Chip

 Replicate cycle-by-cycle behavior of SW reference simulator

 Simulator takes two inputs

1. Network configuration 

 number and input/output configuration of routers

 network topology 

 number of virtual channels

 credit delay cycles

2. Routing info and traffic pattern
 routing information for each network router

 number and type of packets to send
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Many parameters  very large design space!



Dual-Engine NoC Simulator

 FPGA-based solution

 Developed in Bluespec System Verilog

 Targets the Xilinx ML605 board

 Consists of two NoC simulation engines

 NoC simulation engines

 High-performance direct-mapped engine 

 Supports up to moderately sized networks (~100 routers)

 Provides 500x-1000x speedup

 Highly scalable virtualized time-multiplexed engine

 Supports all possible networks in the design space

 Provides 5x-50x speedup
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Dual-engine approach effectively covers entire design space



Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

4



Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

5



FPGA-based Simulation Platform
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1 Generate FPGA design for NoC config.

Configure FPGA, MicroBlaze & DRAM

3 Initialize NoC sim. w/ routing+traffic
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3

4 Run sim. until termination condition
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5 Extract simulation results
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Steps to run a simulation

Xilinx ML605 Board



Direct-Mapped NoC Simulator

 Why simulate… when you can prototype!

 Direct implementation of target NoC on the FPGA

 Instantiates all routers, links, traffic sources, etc

 Collection of routers connected according to NoC configuration

 Additional logic required to detect termination conditions

 High performance at the cost of limited scalability

 Achieves 500x-1000x speedup over software reference design

 ML605 can fit up to ~100 routers of moderate complexity

 5-input/output, 4VC router occupies ~1% of LX240T FPGA

 Need a more scalable solution for remaining design space
7



Direct-Mapped Router Architecture

 High-level block diagram of parameterized router
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Virtualized NoC Simulator

 If resources start getting scarce, virtualize!

 Time-multiplexed implementation

 Routers are simulated one at a time in successive clock cycles

 Router, traffic source and link state stored in on-chip memory

 Special care to retain proper ordering of events [Pellauer ’11]

 Aggressive prefetching to maintain high simulation throughput

 Scales to very large networks with complex routers

 Can cover entire design space on ML605

 256-router network occupies ~85% of LX240T

 Only used when direct-mapped approach will not fit
9



Router Logic

Virtualized NoC Simulator Details

Flit Links
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Route Tables
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Virtualized Router
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Direct-Mapped Implementation Results

 LUT usage and frequency for single router
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Virtualized Implementation Results

 LUT usage and frequency for 256-router network
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Results for Contest Networks

 Five network and router configurations
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Network Name Routers Ports/router VCs Credit Delay
butterfly 112 3 8 1

highradix 16 16 8 15

mesh 253 5 4 3

torus 252 7 5 2

hypercube 256 9 1 1

 Implementation results for contest networks

Network
Xilinx Virtex-6 LX240T Xilinx Virtex-6 LX760T

Sim. Type % LUTs Speedup Sim. Type % LUTs Speedup

butterfly Direct Map 86% 1511x Direct Map 27% 2330x

highradix Virtualized 63% 6x Direct Map 93% 421x

mesh Virtualized 3% 28x Direct Map 96% 4281x

torus Virtualized 8% 786x Virtualized 2% 789x

hypercube Virtualized 8% 21x Virtualized 2% 33x

All configurations lie at “edge” of design space, i.e. max-out at least one parameter
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Design Principles

 Correctness First

 First only focused on correctness and verify design

 Then optimize entire system and individual components

 Parameterization and Modularity

 Built parameterized versions of all submodules

 Utilize Bluespec’s powerful parameterization mechanisms

 Harnessing the power of Bluespec

 Static elaboration for easy parameterization

 Define clean interfaces for modularity

 Rely on type checking for early bug detection

 Maintain high-level of abstraction to harness complexity
16



Bluespec code sample for virtual design
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// Main simulation rule for virtualized design. Simulates network one router at a time.

rule simulate_vcycle (init_done);

// Gather incoming flits/credits and router state
let source_flit <- virtualSources.getFlit(cur_router);                                                // Gather flits from source
in_links.in_flits = gatherIncomingFlits(source_flit, flitConnections, flitLinks);    // Gather flits from routers
in_links.in_credits = gatherIncomingCredits(creditConnections, creditLinks);   // Gather credits
RouterState_t router_state_before = routerState.value();                                       // Get router state

// Simulate cycle for this router and write new router state       
let router_simulation_result = virtualRouter.simulateCycle(router_state_before, in_links, …);

RouterState_t router_state_after = tpl_1(router_simulation_result);    // extract new router state

RouterOutLinks_t out_links = tpl_2(router_simulation_result);    // extract flits/credits to send

routerState.write(cur_router, router_state_after);                                     // Write new router state

// Send outgoing flits/credits
flitLinks.putFlits(cur_router, out_links.out_flits, tickVirtualClock);  // Send flits to other routers

virtualSources.putCredits(cur_router, out_links.out_credits[0] );    // Send credits to traffic sources

creditLinks.putCredits(cur_router, out_credits_to_routers, tickVirtualClock);  // Send credits

// Advance to next router
cur_router <= next_router;

endrule
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Taking it to the next level - CONECT

 Direct-mapped approach implements an actual NoC
 Parameterized 
 FPGA-friendly
 Supports arbitrary network topologies
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Build on top of this to create a useful tool!

: Configurable Network Creation Tool

 Highly parameterized Network-on-Chip generation tool

 # routers, topology, routing, allocation, # VCs, buffer width/depth, etc

 Back end developed in Bluespec System Verilog

 Python command-line interface and web interface (demo)



CONECT Web Interface Demo
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Thanks!
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Questions?


