
Fast Scalable FPGA-Based

Network-on-Chip Simulation Models

Cambridge, UK, July 2011

Computer Architecture Lab at Carnegie Mellon

Michael K. Papamichael
papamix@cs.cmu.edu

We thank Xilinx for their FPGA and tool donations. We thank Bluespec for their tool donations and support.

This Year’s MEMOCODE Contest

 Objective

 Build the fastest simulator for a class of Networks-on-Chip

 Replicate cycle-by-cycle behavior of SW reference simulator

 Simulator takes two inputs

1. Network configuration

 number and input/output configuration of routers

 network topology

 number of virtual channels

 credit delay cycles

2. Routing info and traffic pattern
 routing information for each network router

 number and type of packets to send

2
Many parameters  very large design space!

Dual-Engine NoC Simulator

 FPGA-based solution

 Developed in Bluespec System Verilog

 Targets the Xilinx ML605 board

 Consists of two NoC simulation engines

 NoC simulation engines

 High-performance direct-mapped engine

 Supports up to moderately sized networks (~100 routers)

 Provides 500x-1000x speedup

 Highly scalable virtualized time-multiplexed engine

 Supports all possible networks in the design space

 Provides 5x-50x speedup

3
Dual-engine approach effectively covers entire design space

Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

4

Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

5

FPGA-based Simulation Platform

6

Host PC

NoC Simulator
(direct-mapped or virtualized)

DRAM

Com
m

ands R
es

ul
ts

MicroBlaze

2

1 Generate FPGA design for NoC config.

Configure FPGA, MicroBlaze & DRAM

3 Initialize NoC sim. w/ routing+traffic

2

3

4 Run sim. until termination condition

4

5 Extract simulation results

1

5
Steps to run a simulation

Xilinx ML605 Board

Direct-Mapped NoC Simulator

 Why simulate… when you can prototype!

 Direct implementation of target NoC on the FPGA

 Instantiates all routers, links, traffic sources, etc

 Collection of routers connected according to NoC configuration

 Additional logic required to detect termination conditions

 High performance at the cost of limited scalability

 Achieves 500x-1000x speedup over software reference design

 ML605 can fit up to ~100 routers of moderate complexity

 5-input/output, 4VC router occupies ~1% of LX240T FPGA

 Need a more scalable solution for remaining design space
7

Direct-Mapped Router Architecture

 High-level block diagram of parameterized router

8

Out1 (credits)

Out15 (flits)

Out15 (credits)

Out1 (flits)

Out0

…

Flit Buffers
VC 0

VC 7

A
rb

it
ra

ti
o

n

Sink

Output Ports

…

VC 0

VC 7

…

VC 0

VC 1

…

R
o

u
ti

n
g

Switch

…

Router

Traffic
Table

Arbitration & Flow Control State

…

Input Ports

In0

In1 (flits)

In1 (credits)

In15 (flits)

In15 (credits)

Source

Virtualized NoC Simulator

 If resources start getting scarce, virtualize!

 Time-multiplexed implementation

 Routers are simulated one at a time in successive clock cycles

 Router, traffic source and link state stored in on-chip memory

 Special care to retain proper ordering of events [Pellauer ’11]

 Aggressive prefetching to maintain high simulation throughput

 Scales to very large networks with complex routers

 Can cover entire design space on ML605

 256-router network occupies ~85% of LX240T

 Only used when direct-mapped approach will not fit
9

Router Logic

Virtualized NoC Simulator Details

Flit Links

Router State

Flit Buffers

Credits

Route Tables

Other Scheduler State

Virtualized Router

Virtual Links

Flit Links

Credit Links

Flit/Credit Conn. Table

Traffic Sources

Traffic Table

≤ 1184 Kbits
LUTRAM

≤ 40% Logic

≤ 256 BRAMs

Delay

BRAMs

LUTRAM

Logic

ML605 Usage
(for largest network)

10

≤ 102 BRAMs

360 BRAMs
(87%)

75%
LUTRAM

60%
Logic

Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

11

Direct-Mapped Implementation Results

 LUT usage and frequency for single router

12

0

5000

10000

15000

20000

25000

30000

35000

40000

4 8 12 16

LU
Ts

Number of Input/Output Ports

2 VCs
4 VCs
8 VCs

@
 1

0
1

 M
H

z

@
 1

5
2

 M
H

z

@
 5

9
 M

H
z

@
 5

4
 M

H
z

@
 8

1
 M

H
z

@
 3

3
 M

H
z

@
 3

6
 M

H
z

@
 6

2
 M

H
z

@
 2

0
 M

H
z @

 3
0

 M
H

z

@
 4

5
 M

H
z

@
 1

4
 M

H
z

0

20000

40000

60000

80000

100000

120000

4 8 12 16

LU
Ts

Number of Input/Output Ports

2 VCs
4 VCs
8 VCs

Virtualized Implementation Results

 LUT usage and frequency for 256-router network

13

@
 5

6
 M

H
z

@
 6

6
 M

H
z

@
 3

4
 M

H
z

@
 2

8
 M

H
z

@
 3

5
 M

H
z

@
 1

7
 M

H
z

@
 1

6
 M

H
z

@
 3

0
 M

H
z

@
 1

0
 M

H
z

@
 1

2
 M

H
z

@
 1

7
 M

H
z

@
 7

 M
H

z

Results for Contest Networks

 Five network and router configurations

14

Network Name Routers Ports/router VCs Credit Delay
butterfly 112 3 8 1

highradix 16 16 8 15

mesh 253 5 4 3

torus 252 7 5 2

hypercube 256 9 1 1

 Implementation results for contest networks

Network
Xilinx Virtex-6 LX240T Xilinx Virtex-6 LX760T

Sim. Type % LUTs Speedup Sim. Type % LUTs Speedup

butterfly Direct Map 86% 1511x Direct Map 27% 2330x

highradix Virtualized 63% 6x Direct Map 93% 421x

mesh Virtualized 3% 28x Direct Map 96% 4281x

torus Virtualized 8% 786x Virtualized 2% 789x

hypercube Virtualized 8% 21x Virtualized 2% 33x

All configurations lie at “edge” of design space, i.e. max-out at least one parameter

Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

15

Design Principles

 Correctness First

 First only focused on correctness and verify design

 Then optimize entire system and individual components

 Parameterization and Modularity

 Built parameterized versions of all submodules

 Utilize Bluespec’s powerful parameterization mechanisms

 Harnessing the power of Bluespec

 Static elaboration for easy parameterization

 Define clean interfaces for modularity

 Rely on type checking for early bug detection

 Maintain high-level of abstraction to harness complexity
16

Bluespec code sample for virtual design

17

// Main simulation rule for virtualized design. Simulates network one router at a time.

rule simulate_vcycle (init_done);

// Gather incoming flits/credits and router state
let source_flit <- virtualSources.getFlit(cur_router); // Gather flits from source
in_links.in_flits = gatherIncomingFlits(source_flit, flitConnections, flitLinks); // Gather flits from routers
in_links.in_credits = gatherIncomingCredits(creditConnections, creditLinks); // Gather credits
RouterState_t router_state_before = routerState.value(); // Get router state

// Simulate cycle for this router and write new router state
let router_simulation_result = virtualRouter.simulateCycle(router_state_before, in_links, …);

RouterState_t router_state_after = tpl_1(router_simulation_result); // extract new router state

RouterOutLinks_t out_links = tpl_2(router_simulation_result); // extract flits/credits to send

routerState.write(cur_router, router_state_after); // Write new router state

// Send outgoing flits/credits
flitLinks.putFlits(cur_router, out_links.out_flits, tickVirtualClock); // Send flits to other routers

virtualSources.putCredits(cur_router, out_links.out_credits[0]); // Send credits to traffic sources

creditLinks.putCredits(cur_router, out_credits_to_routers, tickVirtualClock); // Send credits

// Advance to next router
cur_router <= next_router;

endrule

2

3

4

1

Outline

 Introduction

 FPGA-based NoC Simulator

 FPGA Simulation Platform

 Direct-Mapped NoC Simulation Engine

 Virtualized NoC Simulation Engine

 Results

 Discussion

 + Demo

18

Taking it to the next level - CONECT

 Direct-mapped approach implements an actual NoC
 Parameterized
 FPGA-friendly
 Supports arbitrary network topologies

19

Build on top of this to create a useful tool!

: Configurable Network Creation Tool

 Highly parameterized Network-on-Chip generation tool

 # routers, topology, routing, allocation, # VCs, buffer width/depth, etc

 Back end developed in Bluespec System Verilog

 Python command-line interface and web interface (demo)

CONECT Web Interface Demo

20

Thanks!

21

Questions?

