

Re-Examining Conventional Wisdom for Networks-on-Chip in the Context of FPGAs

Michael K. Papamichael, James C. Hoe

papamix@cs.cmu.edu, jhoe@ece.cmu.edu

Monterey, CA, February 2012

FPGAs and Networks-on-Chip (NoCs)

- Rapid growth of FPGA capacity and features
 - Extended SoC and full-system prototyping
 - FPGA-based high-performance computing

Need for flexible NoCs to support communication

Map existing ASIC-oriented NoC designs on FPGAs?

FPGAs and Networks-on-Chip (NoCs)

- Rapid growth of FPGA capacity and features
 - Extended SoC and full-system prototyping
 - FPGA-based high-performance computing

Need for flexible NoCs to support communication

Map existing ASIC-oriented NoC designs on FPGAs?

- Inefficient use of FPGA resources
- ASIC-driven NoC architecture not optimal for FPGA

FPGAs and Networks-on-Chip (NoCs)

- Rapid growth of FPGA capacity and features
 - Extended SoC and full-system prototyping
 - FPGA-based high-performance computing

Need for flexible NoCs to support communication

Map existing ASIC-oriented NoC designs on FPGAs?

- Inefficient use of FPGA resources
- ASIC-driven NoC architecture not optimal for FPGA

FPGA-tuned NoC Architecture

- Embodies FPGA-motivated design principles
- Very lightweight, minimizes resource usage
 - ~50% resource reduction vs. ASIC-oriented NoC
- Flexible NoC generator public release today!

Often goes against ASIC-driven NoC conventional wisdom

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

NoC Terminology Overview

Packets

Basic logical unit of transmission

Flits

Packets broken into into multiple **flits** — unit of flow control

Virtual Channels

Multiple logical channels over single physical link

Flow Control

Management of buffer space in the network

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

How FPGAs are Different from ASICs

- FPGAs peculiar HW realization substrate in terms of
 - Relative cost of speed vs. logic vs. wires vs. memory
 - Unique mapping and operating characteristics
- **LUNNEL** focuses on 4 FPGA characteristics:
 - 1 Abundance of Wires
 - 2 Storage Shortage & Peculiarities
 - 3 Frequency Challenged
 - 4 Reconfigurable Nature

FPGA characteristics uniquely influence key NoC design decisions

1 Abundance of Wires

- Densely connected wiring substrate
 - (Over)provisioned to handle worst case
 - Wires are "free" compared to other resources

- Make datapaths and channels as wide as possible
- Adjust packet format
 - E.g. carry control info on the side through dedicated links
- Adapt traditional credit-based flow control

2

Storage Shortage & Peculiarities

- Modern FPGAs offer storage in two forms
 - Block RAMs and LUT RAMs (use logic resources)
 - Only come in specific aspect ratios and sizes
- Typically in high demand, especially Block RAMs

- Minimize usage and optimize for aspect ratios and sizes
 - Implement multiple logical flit buffers in each physical buffer
- Use LUT RAM for flit buffers
 - Block RAM much larger than typically NoC flit buffer sizes
 - Allow rest of design to use scarce Block RAM resources

Frequency "Challenged"

- Much lower frequencies compared to ASICs
 - LUTs inherently slower that ASIC standard cells
 - Large wire delays when chaining LUTs
- Rapidly diminishing returns when pipelining
 - Deep pipelining hard due to quantization effects

- Design router as single-stage pipeline
 - Also dramatically reduces network latency
- Make up for lower frequency by adjusting network
 - E.g. increase width of datapath and links or change topology

Reconfigurable Nature

- Reconfigurable nature of FPGAs
 - Sets them apart from ASICs
 - Support diverse range of applications

- Support extensive application-specific customization
 - Flexible parameterized NoC architecture
 - Automated NoC design generator (demo!)
- Adhere to standard common interface
 - NoC appears as plug-and-play black box from user-perspective

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

CONNECT vs. ASIC-Oriented RTL

16-node 4x4 Mesh Network-on-Chip (NoC)

- SOTA: state-of-the-art high-quality ASIC-oriented RTL*
- CONNECT: identically configured LUNNELT -generated RTL

FPGA Resource Usage

(same router/NoC configuration)

*NoC RTL from http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router

CONNECT vs. ASIC-Oriented RTL

16-node 4x4 Mesh Network-on-Chip (NoC)

- SOTA: state-of-the-art high-quality ASIC-oriented RTL*
- CONNECT: identically configured LUNNELT -generated RTL

FPGA Resource Usage

(same router/NoC configuration)

Network Performance

(uniform random traffic @ 100MHz)

*NoC RTL from http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router

CONNECT Sample Networks

Four sample CONNECT Networks (router, endpoint)

16 endpoints, 2/4 virtual channels, 128-bit datapath

Mesh

All above networks are interchangeable from user perspective

CONNECT Sample Networks

Four sample CONNECT Networks (router, endpoint)

16 endpoints, 2/4 virtual channels, 128-bit datapath

Fat Tree

Mesh

High Radix

All above networks are interchangeable from user perspective

There is no one-size-fits-all NoC! Tune NoC to application.

LUNNELT NoC Generator

Generates FPGA-tuned NoCs

- Used as part of larger system
- Coexist with rest of FPGA-resident components

Lightweight

Minimize FPGA resource usage

Flexible

- Support rapid design space exploration
- Fully parameterized, topology-agnostic architecture
- Standard interface across different configurations

Adjustable

- Trade off performance vs. area
- Public Release Demo!

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

Related Work

FPGA-oriented NoC Architectures

- PNoC: lightweight circuit-switched NoC [Hilton '06]
- NoCem: simple router block, no virtual channels [Schelle '08]

FPGA-related NoC Studies

- Analytical models for predicting NoC perf. on FPGAs [Lee '10]
- Effect of FPGA NoC params on multiproccesor system [Lee '09]

Modify FPGA configuration circuitry to build NoC

- Metawire: use configuration circuitry as NoC [Shelburne '08]
- Time-division multiplexed wiring to enable new NoC [Francis '08]

Commercial Interconnect Approaches

ARM AMBA, STNoC, CoreConnect PLB/OPB, Altera Qsys, etc.

Conclusions

- Significant gains from tuning for FPGA
 - FPGAs and ASICs have different design "sweet spot"
- CONNECT → flexible, efficient, lightweight NoC
- Compared to ASIC-driven NoC, CONNECT offers
 - Significantly lower network latency and
 - ~50% lower LUT usage or 3-4x higher network performance
- Take advantage of reconfigurable nature of FPGA
 - Tailor NoC to specific communication needs of application

- NoC Terminology (single-slide review)
- LUNNEL T Approach
 - Tailoring NoCs to FPGAs
- Results & Demo
- Related Work & Conclusion
- Public Release

Public Release

http://www.ece.cmu.edu/~mpapamic/connect/

- NoC Generator with web-based interface
 - Supports multiple pre-configured topologies
 - Includes graphical editor for custom topologies
 - FreeBSD-like license (limited to non-commercial research use)
- Acknowledgments
 - Derek Chiou, Daniel Becker & Stanford CVA group
 - NSF, Xilinx, Bluespec
- Please come see me for demo!

Thanks!

Questions?