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ABSTRACT
The CoRAM memory architecture for FPGA-based comput-
ing augments traditional reconfigurable fabric with a natural
and effective way for applications to interact with off-chip
memory and I/O. The two central tenets of the CoRAM
memory architecture are (1) the deliberate separation of con-
cerns between computation versus data marshalling and (2)
the use of a multithreaded software abstraction to replace
FSM-based memory control logic. To evaluate the viabil-
ity of the CoRAM memory architecture, we developed a
full RTL implementation of a CoRAM microarchitecture in-
stance that can be synthesized for standard cells or emulated
on FPGAs. The results of our evaluation show that a soft
emulation of the CoRAM memory architecture on current
FPGAs can be impractical for memory-intensive, large-scale
applications due to the high performance and area penalties
incurred by the soft mechanisms. The results further show
that in an envisioned FPGA built with CoRAM in mind, the
introduction of hard macro blocks for data distribution can
mitigate these inefficiencies—allowing applications to take
advantage of the CoRAM memory architecture for ease of
programmability and portability while still enjoying perfor-
mance and efficiency comparable to RTL-level application
development on conventional FPGAs.

ACM Categories & Subject Descriptors
C.0 [Computer System Organization]: System Architectures
General Terms: Design, standardization
Keywords: FPGA computing, memory architecture

1. INTRODUCTION
In the quest for energy-efficient computing, Field Pro-

grammable Gate Arrays (FPGAs) have emerged as a class
of general-purpose accelerators to address the increasing
demands for performance while reducing energy consump-
tion. Despite their raw capabilities, today’s commodity FP-
GAs are impractical as general-purpose computing devices.
When developing an application for an FPGA, designers
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are often confronted by: (1) low-level, error-prone hardware
description languages (HDL), (2) “bare-bones” fabric with
nothing but a sea of logic and I/O pins, and (3) low-level,
vendor-specific interfaces and gateware that the application
must be made compatible with.

CoRAM Memory Architecture. To address these limi-
tations, the CoRAM memory architecture [1] is an endeavor
to standardize and simplify how FPGA computing applica-
tions interact with memory and I/O, which is a critical step
towards a portable FPGA abstraction. CoRAM presents a
programmable, customizable view of memory that can be
retargeted to different devices and platforms. The abstrac-
tion modifies the traditional FPGA’s on-die SRAMs to act
as in-fabric distributed portals to off-chip memory and I/O.
A salient feature of CoRAM is the ability to program these
customizable, on-die SRAMs using a software control thread
that is portable and easy-to-use. Compared to the tradi-
tional approach where the FPGA memory hierarchy and
I/O sub-system is hand-built at the RTL-level for each ap-
plication, the CoRAM memory architecture can be used to
efficiently support a broad range of applications.

Evaluating the Viability of CoRAM. The architectural
features of CoRAM, however compelling, cannot be practical
unless efficient underlying implementations are possible. In
this paper, we investigate the extent to which CoRAM suc-
ceeds in serving as a performance- and cost-effective memory
system replacement for FPGA-based applications. A critical
aspect to be examined is whether the software-based control
abstraction in CoRAM can adequately support FPGA ap-
plications with memory-intensive requirements. Our objec-
tives require us to investigate the various ways in which the
CoRAM memory architecture can be realized. At one end of
the spectrum, CoRAM can be emulated on a conventional
FPGA, albeit at the cost of soft logic area and performance.
At the opposite end, general-purpose hard macro blocks can
be embedded within conventional reconfigurable fabric to ac-
celerate and to reduce the overhead of CoRAM operations.
In this paper, we investigate both extremes and compare
these implementations against traditional hand-built RTL
designs on conventional FPGAs.

Prototyping Efforts and Results. Our investigation
is supported by a full-featured prototype of a working
CoRAM microarchitectural instance comprising: (1) a C-
based language specification and compiler for software con-
trol threads, and (2) a highly parameterized RTL design
of an optimized CoRAM microarchitecture retargetable to
either standard cells (to model a future FPGA with hard
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Figure 2: CoRAM Program Model.

CoRAM support) or conventional FPGAs (as a soft logic
emulation). We select three diverse applications to eval-
uate the hard versus soft CoRAM implementations. Our
evaluation results suggest that a soft emulation of CoRAM
falls short in large-scale, memory-intensive applications due
to the high performance and area penalties incurred by the
soft mechanisms. However, our results show that the in-
troduction of hard macro blocks for data distribution in
a future FPGA with CoRAM support can mitigate these
inefficiencies—allowing applications to achieve performance
and efficiency comparable to tuned applications on a con-
ventional FPGA.

2. CORAM BACKGROUND
Assumptions. At the system level, CoRAM assumes
the existence of FPGA-based accelerators co-existing with
general-purpose processors on a shared memory interconnect
(see Figure 1). Within an FPGA, CoRAM assumes that
one or more load-store interfaces provide external memory
accesses at the boundaries of the fabric. The same assump-
tions are similarly applicable in a single-chip hetereogeneous
multicore where cores and fabric co-exist on the same die.

CoRAM Program Model. When developing an applica-
tion with CoRAM support, the user perceives a simplified
view of fabric as depicted in Figure 2. The core logic compo-
nent is an isolated, contiguous region of fabric that preserves
the hardware-centric view familiar to designers that target
FPGAs today. Applications that are mapped to core logic
can be programmed with any hardware synthesis language
supported by contemporary tools from low-level RTL (e.g.,
Verilog) to high-level languages (e.g., C-to-gates, Bluespec).
To create a uniform abstraction that can be made portable
across different devices and platforms, the CoRAM program
model restricts all communication by the core logic to the
external environment through the embedded CoRAM blocks
shown at the edges of core logic in Figure 2. The embed-
ded CoRAM blocks are user-instantiated, parameterizable
SRAM modules that follow a similar usage paradigm of con-
ventional embedded SRAMs [3]. On one hand, like SRAM
blocks, CoRAM blocks offer customizable high-bandwidth
storage, provide deterministic access ports to independent
banks with local addresses, and can be composed with flex-
ible aspect ratios to match the requirements of the applica-

tion. On the other hand, unlike passive SRAM blocks, the
contents of embedded CoRAM blocks are dynamically man-
aged (such as loading and unloading against external main
memory) using software control threads depicted in the right
of Figure 2.

Software Control Threads. Software control threads
form a fabric-distributed collection of logical, asynchronous
control state machines for managing and mediating the
data transfers between embedded CoRAM blocks and the
edge memory interfaces. The software control threads and
core logic are asynchronous peer entities in charge of data
marshalling and computation, respectively; they communi-
cate over bidirectional command queues. At a high level,
the threads can be viewed as programmable mechanisms
for prefetching an application’s required data from the
edge memory interface to the fabric-distributed embedded
CoRAM blocks. At the lowest level, threads describe an
ordered sequence of memory commands directed by control
flow. The application developer relies solely on instantiated
control threads to access shared memory and I/O from the
beginning to end of computation.

Control threads can be used to express a rich variety of
memory access patterns (e.g., random access, streaming,
etc.) while maintaining portability. For example, a random-
access cache controller could be implemented by combining
soft logic and embedded CoRAM blocks (serving as the data
array) and a control thread that implements a miss handler
to memory. A stream FIFO could also be implemented by
instantiating an embedded CoRAM block as a circular buffer
with an associated control thread that fills or drains the
buffer as needed. These portable memory building blocks
can be expressed succinctly with relatively few lines of code
(in most cases, under 100 lines of C) [1].

3. CORAM PROTOTYPE
There are two requirements to execute an application de-

scription in CoRAM: (1) interpreting or synthesizing high-
level control threads into state machines, and (2) transport-
ing data efficiently between memory interfaces and fabric-
distributed embedded CoRAM blocks. To facilitate these,
we developed a full-featured RTL prototype and control
thread compiler for the CoRAM memory architecture. Our
framework comprises: (1) the CoRAM Control Compiler
(CORCC), which is an LLVM-based backend1 that synthe-
sizes C-based control thread programs into hardware finite
state machines, (2) CONNECT [4], a flexible network-on-
chip (NoC) generator tuned for the Virtex-6 architecture,
and (3) pre-optimized macro blocks in Verilog for request
handling, scoreboarding, and data distribution for the em-
bedded CoRAM blocks. The RTL generated by our frame-
work can be synthesized to standard cells for estimating
the area, power, and performance in a hypothetical future
FPGA with hardwired CoRAM support.

Figure 3 shows how a high-level CoRAM application is
mapped into the synthesizable RTL generated by our frame-
work. The embedded CoRAM blocks instantiated within the
application are mapped into physical macro blocks called
clusters, which aggregate up to 64 homogeneous 1024x32b
SRAMs2 into a single node. Embedded CoRAM blocks

1Low-Level Virtual Machine [2].
2Corresponding to the default aspect ratio of a typical
FPGA BlockRAM [3].



Max-Cfg Cluster Mesh Router

Soft Hard Soft Hard

LUTS+LUTRAMS 7615 - 6002 -
FFs 4741 - 1144 -
Clock (MHz) 108 840 125 610
SRAM Area (mm2) - 0.57 - 0.23
Die Area (mm2) 23 0.74 18.1 0.3

Table 1: 65nm Characteristics of Single Cluster and
Mesh Router.

LUT FF BRAM MHz

Microblaze (min-area-cfg) 1210 973 4 161
Stream Loop 155 118 0 345
Matrix Matrix Multiplication 2581 2802 0 192
Non-blocking Cache Miss Handler 242 316 0 354
Stream FIFO Producer Thread 544 523 0 204

Table 2: Control Thread Synthesis (Virtex-6, -2).

with aspect ratios larger than 1024x32b are constructed by
spanning across multiple SRAMs within a cluster.3 The
clusters are connected to external memory links through a
CONNECT-generated NoC. Figure 3 illustrates how each of
the clusters are attached to one or more Control Finite State
Machines (C-FSM) generated by CORCC from the control
threads. At run-time, the C-FSMs issue memory commands
to the NoC—the subsequent memory responses are collected
at the clusters, which are responsible for steering and align-
ing the memory data to the destination CoRAM blocks.

Soft vs. Hard Macro Blocks. The C-FSMs, clusters,
and NoC are performance- and area-critical macro blocks
that can either be soft-emulated in today’s FPGAs or em-
bedded as hard logic in a future FPGA. Although we omit
the details, a substantial effort was invested in optimiz-
ing the macro blocks for the Virtex-6 architecture. Ta-
ble 1 compares the cost of a single maximally-configured
cluster and mesh router for both hard and soft implemen-
tations.4 Note that a maximally-configured cluster sup-
ports up to 64 SRAMs, 16 control threads, and 128 con-
current transactions to memory. In practice, a soft clus-
ter can be configured less aggressively depending on the
application—as little as 2KLUTs. When normalized to die
area, both the hard cluster and mesh router achieve an
order-of-magnitude improvement in area efficiency as ex-
pected. The hard macro blocks also operate at higher clock
frequencies (e.g., 610MHz vs. 125MHz for the mesh router).
Table 2 further shows the soft logic area of various control
threads synthesized to FPGA fabric using CORCC. Across
most applications, the area consumption is modest when
compared to a minimally-configured Microblaze core, which
suggests that control threads can be supported practically
in conventional fabrics.

4. EVALUATION
Methodology. For our evaluation, we study the use
of CoRAM in three diverse RTL applications reflecting

3The maximum size of the cluster can either be set auto-
matically or configured by the user.
4FPGA results were obtained with XST 13.1 for the Virtex-
6; ASIC results were obtained using CACTI 6.5 [5] and Syn-
opsys Design Compiler configured with commercial 65nm
standard cells.
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Figure 3: CoRAM Microarchitecture.

500K 1M 2M 4M

Technology 45nm 32nm 22nm 16nm
Die Area (mm2) 600 600 600 600
LUTs (K) 500 1000 2000 4000
Frequency (MHz) 200 200 225 250
Bandwidth (GB/s) 25.6 51.2 102.4 204.8
4kB CoRAM blocks 1024 2048 4096 8192

S
o
ft

Cluster/NoC clock (GHz) 0.2 0.2 0.225 0.25
Cluster/NoC link width 128 128 128 128
Clusters/Nodes Application-dependent

H
a
rd

Cluster/NoC clock (GHz) 0.8 0.8 0.9 1
Cluster/NoC link width 128 128 128 128
Clusters 16 32 64 128
Nodes (clusters+DRAM links) 20 40 80 160
SRAMs per Cluster 64 64 64 64
Die Area Ovhd (%) 1.7 1.7 1.4 1.4

Table 3: Evaluation Parameters.

bandwidth-bound, compute-bound, and latency-bound char-
acteristics [1]: (1) Black-Scholes Options Pricing (BS),
(2) Matrix-Matrix Multiplication (MMM), and (3) Sparse
Matrix-Vector Multiplication (SpMV). Our evaluation con-
siders the cost and performance of the CoRAM memory ar-
chitecture across multiple dimensions: (1) VLSI technology,
(2) NoC topology, and (3) hard vs. soft logic implementa-
tions. Table 3 shows the parameters and characteristics of
the selected FPGA configurations. All configurations (with
or without hard CoRAM support) assume the existence of
hard memory controllers that provide high external memory
bandwidth to the fabric. All soft-logic designs are tested
against different NoC topologies (ring, mesh, crossbar) to
reflect the option of customization in a soft-logic implemen-
tation. Furthermore, in the soft designs, the number of
clusters and SRAMs per cluster are tuned for each respec-
tive application. The hard implementation assumes a mesh
topology with a fixed number of clusters and SRAMs per
cluster.

Results. Figure 4 (top) shows the performance trends for
all applications. On the x-axis, labels prepended with “soft”
indicate designs using a soft-logic implementation on a con-
ventional FPGA. Designs labeled “hard” indicate FPGAs
with dedicated CoRAM support operating at 4X the clock
rate of the soft-logic design. The right-most design point
of each graph shows the results for an “ideal” application
running on a conventional FPGA that can access external
DRAM with no on-chip delay or soft logic area overheads.
Figure 4 (bottom) shows the LUT area breakdown and LUT-
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Figure 4: Performance and Area Efficiency Trends.

normalized performance for the same corresponding perfor-
mance points.

What Is The Gap Between Soft versus Hard? The
overall trends in Figure 4 show a gap in performance and ef-
ficiency between soft and hard implementations of CoRAM.
In MMM, the performance is comparable across all design
points (except for the soft ring network, which suffers from
high contention). When normalized to area, however, a sig-
nificant gap in efficiency (about 2X) separates soft versus
hard implementations of CoRAM. The NoCs expend con-
siderable soft logic area in buffering, which is the largest
contributer to overhead. In the more memory-intensive ap-
plications such as BS and SpMV, the biggest impact on per-
formance is the increased queuing delay as a result of higher
latency and contention in the soft data distribution mecha-
nisms. This impacts SpMV the greatest (which is latency-
sensitive)—resulting in a 2X gap in performance between
the soft versus hard CoRAM implementations.

Do Software Control Threads Limit Efficiency or
Performance? A notable result of Figure 4 (bottom) is
that the synthesized control threads constitute only a rela-
tively small fraction of the overall area. What also stands
out is that with an efficient implementation of CoRAM us-
ing hard macro blocks, the use of software-based control
threads does not limit the peak performance potential of
the various applications. Both SpMV and Black-Scholes,
for example, were able to achieve bandwidth-limited perfor-
mance even though the logic used to generate their mem-
ory accesses were described using high-level, C-based con-
trol threads. These results support the hypothesis that a
high-level software-based abstraction for memory manage-
ment does not fundamentally limit the performance poten-
tial of memory-intensive FPGA-based applications.

Hard CoRAM vs. Conventional FPGA. A key result
of Figure 4 is that applications mapped to a hard imple-
mentation of CoRAM are capable of achieving performance
and efficiency comparable to tuned applications on conven-
tional FPGAs (labeled“ideal”). Recall, the measured results
of “ideal” applications are based on simulations and synthe-

sis of core logic that do not incur any overheads in latency
or area from memory control logic or data distribution be-
tween the core logic and the external memory interfaces.
This suggests that hard macro blocks for CoRAM can re-
duce the tuning effort needed by designers when optimizing
the memory accesses for an application.

5. CONCLUSIONS
This paper presented a full-featured RTL prototype of the

CoRAM memory architecture for FPGA-based computing.
Our prototype enabled us to investigate designs across the
continuum—from soft-logic emulation on conventional FP-
GAs to hard macro blocks in future FPGA fabrics. Despite
our best efforts, our soft implementations of CoRAM fell
short of being practical in large-scale, memory-intensive ap-
plications. Our results show that the hardening of macro
blocks for data distribution in CoRAM enables application
development using a high-level software memory abstraction
to achieve performance and efficiency that is comparable to
optimized RTL development on a conventional FPGA.
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