
FORTH-ICS Technical Report TR-376-04-2006

1/26

Design and Implementation of a Multi-Gigabit NIC and a Scalable
Buffered Crossbar Switch

Giorgos Kalokairinos, Vassilis Papaefstathiou, Aggelos Ioannou, Dimitrios Simos, Michail
Papamichail, Giorgos Mihelogiannakis, Manolis Marazakis, Dionisios Pnevmatikatos, and Manolis

Katevenis

Institute of Computer Science (ICS)

FOundation for Research and Technology – Hellas (FORTH)
P.O. Box 1385, Heraklion, Crete, GR-71110 Greece

{george, papaef, ioannou, simos, papamix, mihelog, maraz, pnevmati, kateveni}@ics.forth.gr

FORTH-ICS Technical Report, TR376-04-2006, April 2006

Abstract

High speed interconnection networks are a fundamental component of next-generation, scalable
compute and storage systems. Although already a popular area of research, new application
requirements and technology constraints impose new restrictions and present new opportunities for
the design and implementation of interconnection networks. These include the need to exceed 10
GBit/s speeds, to further reduce host-related overheads, to support applications in a transparent
manner, and to allow system scalability to large numbers of nodes.

This work presents the design and implementation of a multi-gigabit NIC and a scalable buffered
crossbar switch that are currently used for research work in the area. The purpose of this work is to
provide a detailed description of the architecture and its current implementation. We first provide an
overview of the design, then we examine the prototyping infrastructure used, and finally we present
the detailed NIC and switch implementation. Finally, we present the tests used for validating our
implementation and we provide early performance results.

FORTH-ICS Technical Report TR-376-04-2006

2/26

FORTH-ICS Technical Report TR-376-04-2006

3/26

Design and Implementation of a Multi-Gigabit NIC and a Scalable
Buffered Crossbar Switch

Giorgos Kalokairinos, Vassilis Papaefstathiou, Aggelos Ioannou, Dimitrios Simos, Michail
Papamichail, Giorgos Mihelogiannakis, Manolis Marazakis, Dionisios Pnevmatikatos, and Manolis

Katevenis

Institute of Computer Science (ICS)

FOundation for Research and Technology – Hellas (FORTH)
P.O. Box 1385, Heraklion, Crete, GR-71110 Greece

{george, papaef, ioannou, simos, papamix, mihelog, maraz, pnevmati, kateveni}@ics.forth.gr

FORTH-ICS Technical Report, TR376-04-2006, April 2006

Abstract

High speed interconnection networks are a fundamental component of next-generation, scalable
compute and storage systems. Although already a popular area of research, new application
requirements and technology constraints impose new restrictions and present new opportunities for
the design and implementation of interconnection networks. These include the need to exceed 10
GBit/s speeds, to further reduce host-related overheads, to support applications in a transparent
manner, and to allow system scalability to large numbers of nodes.

This work presents the design and implementation of a multi-gigabit NIC and a scalable buffered
crossbar switch that are currently used for research work in the area. The purpose of this work is to
provide a detailed description of the architecture and its current implementation. We first provide an
overview of the design, then we examine the prototyping infrastructure used, and finally we present
the detailed NIC and switch implementation. Finally, we present the tests used for validating our
implementation and we provide early performance results.

1. INTRODUCTION

High speed interconnection networks are a central component of scalable compute and storage systems.
Moreover, their importance is increasing as they are projected to play in increasing role in the design of all
system components, and in particular both network and storage I/O as well as memory and CPU design. Current
technology trends and application requirements impose new restrictions and present new opportunities for
interconnect design.

Current application needs dictate moving to systems that can support higher than 10 GBits/s throughput and low
response times. For instance, large-scale storage systems that require processing (even simple filtering) large
amounts of (automatically generated) data, require moving significant volumes of data between disk, memory,
and CPU. Furthermore, there is a need to scale to large numbers of system nodes, supporting both compute
and storage nodes. To achieve these next generation interconnects there is a need to examine issues in both
network interface controller (NIC) as well as switch architectures.

We believe that real prototypes are an excellent vehicle for studying architectural extensions. Many aspects of
future architectures are the subject of current research. However, certain features, already present in today’s
systems, we believe will also be part of future systems, possibly at higher link speeds. For this reason, we have
implemented a base NIC and switch architecture, encompassing many of these existing features that we believe
will be part of future systems as well. In this work we present our prototype design and implementation, on which
new architectural features will be implemented and evaluated.

The main purpose of this work is to present in detail the implementation of the RDMA-capable NIC and the
buffered crossbar switch to support both future system extensions as well as system evaluation with real-life

FORTH-ICS Technical Report TR-376-04-2006

4/26

workloads. We implement our prototypes using state-of-the-art FPGA boards. The NIC supports asynchronous
RDMA-write operations over multiple physical links. The buffered crossbar supports cut-through operation and
credit-based flow control.

This paper is organized as follows. We first present an overview of the system and the base NIC and switch
architectures in Section 2. Then we examine in detail the implementation of the NIC and the switch, presenting
how these can be used by the operating system and user applications in Section 3. Section 4 briefly discusses
how the implementation has been validated and we present preliminary performance numbers. Finally, in
Section 5 we summarize our work.

2. SYSTEM OVERVIEW

Our system consists of NIC cards which are attached to host machines and the Buffered Crossbar Switch which
provides a fast and efficient interconnect between the NICs of different machines. The switch allows the
machines of the system to communicate with each other and benefit from the services offered by other
machines. The NICs use the remote DMA (RDMA) technique to achieve the fastest possible transfer of large
volumes of data and communicate with each other across the switch. The NICs also have extensive monitoring
and debugging capabilities in order to measure the performance and export the state of the system. Figure 1
illustrates an overview of the system and a real photo of the system is shown in Figure 2.

The switch is a Buffered Crossbar switching fabric developed on a Xilinx Virtex II Pro FPGA with tens of
RocketIOs and offers the connectivity between the NICs. The switch regulates the traffic and handles congestion
with a backpressure flow control protocol between the switch and the NICs.

Each NIC card is developed on a Xilinx Virtex II Pro FPGA and is attached to the PCI-X bus of a host machine
(Intel Xeon). The NIC card is also attached to the switch via the RocketIO network interface which provides the
connectivity with the rest of the system. The PCI-X is the interface of the NIC with the host processor that runs
the actual applications. This interface is used to initiate outgoing packets to the network and deliver incoming
packets to the host memory. The RocketIO is a fast network interface and allows large data volumes to be
exchanged with the other nodes of the network.

The system is used and tested with user initiated traffic but beyond this we have used a remote storage
framework to allow more realistic traffic patterns. In this storage environment one of the machines hosts storage
services and transparently shares a large volume of disk space among the other machines that belong to the
network.

2.1 Network Interface

The prototypes of the NIC cards are developed on boards made by DiniGroup, namely the DN6000K10SC board
[10], and feature a Xilinx Virtex II Pro FPGAs. Each development board has a rich collection of peripheral
components such as SDRAMs, SRAMS and Flash memory while the Virtex II Pro device has 2 embedded
PowerPC processors and 4Mbits of on-chip memory. Moreover the board has 4 RocketIO SMB interfaces and a
64-bit PCI-X interface.

The NIC design implements a 64-bit PCI-X interface which operates at 100MHz and can provide a maximum
theoretical throughput of 760 Mbytes/sec to the host memory. The calculation of this throughput assumes a
datum transferred in every cycle but actually there is the PCI-X protocol overhead. The DMA engine of the NIC
has a fully functional 64-bit PCI-X Initiator with DMA capabilities and thus it can directly read or write to the host
memory. The PCI-X Target interface of the NIC is also 64-bits and is used to accept commands from the host
processor or deliver status and performance information.

Commands to the NIC from the host processor reach the PCI-X target interface and are placed in a memory
mapped region which is called DMA Request Queue (Section 3.1.3). The request queue allows a maximum of
1024 pending operations with a maximum of 4Kbytes per operation (i.e. one operating systems page). The
request queue also allows the user of the NIC to cluster operations and offers on-demand processing of every
single operation. Another important feature of the request queue is the local notification which informs the
processor about the completion of an operation. When the operation is completed, the NIC writes a value to a
pre-specified memory address. The processor can then poll that memory address for the completion of a
specific operation. Moreover the NIC offers the remote notification feature which can inform the processor for an

FORTH-ICS Technical Report TR-376-04-2006

5/26

incoming packet; this notification comes in the form of a level-triggered interrupt.

The NIC also implements a RocketIO network interface which is a high speed network interconnect offering
2.5Gbps of full-duplex network traffic. The RocketIO MultiGigabit Transceivers are offered by the Virtex II Pro
devices and are used for the network transport.

Figure 1: Picture of a 4-node system.

The NIC has two 8Kbyte network FIFOs associated with the incoming and outgoing network traffic. The outgoing
FIFO is used as an elastic buffer but also as a classic input queue regardless of the destination – a virtual output
queue implementation for every network destination is being implemented and we are ‘almost’ ready to use it
and replace single outgoing FIFO. The incoming FIFO is also used as an elastic buffer but also covers the
temporal uncertainties of the PCI-X DMA accesses. The credit based flow control mechanism is QFC-style and
keeps state about every network destination (cross-point buffers in the switch). Credits and data share the same
links and the credits are interleaved between the packets. A more detailed description of the NIC is provided in
Section 3.1.

2.2 Buffered Crossbar Switch

The prototype of the switch is developed in a board made by Xilinx, namely the ML325 board [9], and features a
Virtex II Pro FPGA with 2 embedded PowerPCs, an SDRAM and has 20 Rocket IO SMA interfaces and
therefore is an ideal solution for a switch.

The switch that provides the connectivity in the system is a Buffered Crossbar and therefore the CICQ
Architecture is implemented and RocketIOs serve as network interfaces. It is an 8x8 switch where only 4 ports
are used until now. The switch prototype has 64 cross-point buffers where each of them is 2Kbytes. It has a
single priority and has of course inherent ability to switch variable size packets while no segmentation and

FORTH-ICS Technical Report TR-376-04-2006

6/26

reassembly is needed. The operating frequency is 78.125MHz required by the RocketIOs and combined with the
width of the internal paths is sufficient to fully utilize the network bandwidth. The switch implements a round robin
scheduling policy with an output scheduler (OS) per output port and supports cut-through operation. The flow
control is credit based (QFC-style) and is assigned to the credit schedulers (CS) that exist per input; these
credits are interleaved between the packets. A more detailed description of the Buffered Crossbar Switch is
provided in Section 3.2.

Figure 2: System Overview.

3. HARDWARE PROTOTYPES

In this section we present the hardware prototypes and the system that we built as part of current research. Our
prototypes are developed on high performance FPGAs and offer numerous high speed interfaces that are used
to create a rich and complex environment to host network services.

3.1 Network Interface

3.1.1 PCI-X DMA Engine Module

The block diagram of the PCI-X module is shown in Figure 3. The main NIC components are:

• The Target block implements the PCI-X target interface. The same block is used for the configuration space
and therefore contains all the necessary configuration registers defined by the PCI-X standard. The DMA
request queue, DMA operation registers and the performance counters/timers are updated and read through
this target interface. These transactions can be 32 or 64-bits wide in burst or non-burst mode. The target
block also supports dual address cycle. Moreover, one outstanding split completion is supported. Each such
split completion can be 32 or 64 data bits wide. Finally, the target asserts the interrupt line upon receipt of
the appropriate signal from the DMA Fifo block.

• The DMA Initiator consists of a PCI-X master interface while it also provides the full functionality of a DMA
engine from/to the host’s memory. It uses physical PCI addresses. It starts the DMA transfers according to

FORTH-ICS Technical Report TR-376-04-2006

7/26

their order in the DMA request queue. These PCI-X transactions are multiples of 64-bits (ACK64_ is
ignored) and can issue a dual address cycle access if the 32 most significant address bits are non-zero.

Pin Drivers & Mux

Request Queue

DMA

Countres/Timers

Performance

Op Registers

&

N
et

2
H

o
st

F
if

o

Conf Space

Registers

Target

F
if

o

H
o

st
2

N
et

Initiator

PCI-X

Rocket I/O

Network

Module

Figure 3: PCI-X DMA engine block diagram.

• The Operation Registers & Performance Counters/Timers block contains a control register, registers that
store the PCI addresses for the remote and local notifications and several other performance counters.
These registers are further explained in Section 3.1.4.1.

• The Host to Net Fifo is written by data acquired from the PCI bus, either from a block read transaction
performed by the initiator, or by split completion transactions received by the target module. It also provides
clock domain synchronization between the PCI and network clock. In the current configuration, the size of
this fifo is 1023 words of 64 bits each. The FIFO size is not 1024 because of the design limitation relative to
head and tail pointers.

• The Net to Host Fifo is written by the network module. It also provides clock domain synchronization
between the PCI and network clocks. In the current configuration, the size of this fifo is 1023 words of 64
bits each.

• The DMA Request Queue holds up to 1024 outstanding requests, set by the host (later on they will be set
by the on-chip CPU as well).

• Finally, the Network Interface block enables the communication of the PCI to the network.

3.1.2 PCI Configuration Space

All PCI functional devices must employ a block of 64 configuration 32-bit words for the implementation of their

FORTH-ICS Technical Report TR-376-04-2006

8/26

configuration registers. The next table illustrates the format of the configuration header region implemented in
the NIC.

Address Name

0x00 Device ID Vendor ID
0x04 Status Command
0x08 Class Code Revision ID
0x0C BIST Header Type Latency Timer Cache Line Size
0x10 Base Address Register 0
0x14 Base Address Register 1

0x18 to 0x30 Not implemented
0x34 Capabilities List
0x38 Not implemented
0x3C Not Implemented Interrupt Pin Interrupt Line
0x40 Application Interrupt Register
0x44 Not implemented
0x48 PCI-X Command Next Capability PCI-X Capability ID
0x4c PCI-X Status

• Device ID: This 16-bit value identifies the type of the device. Current value is: 0x17DF

• Vendor ID: This 16-bit value identifies the manufacturer of the device. Current value is: 0x1600

• Status Register: The status register tracks the status of PCI bus-related events. The next table explains the
fields implemented in the NIC:

Status Register

Bit
Location

Description Action

4:0 (LS) Reserved Hardwired to zero.
5 66MHz-Capable Current value is: 1. The NIC is capable of operating at 66 MHZ.
6 UDF Supported Current value is: 0. Device does not support UDFs.
7 Fast Back-to-Back

Capable
Current value is: 0. Device does not support fast back-to-back transfers.

8 Data Parity
Reported

Set by hardware if the master asserts the SERR_ (PCI line) and the parity
error response bit in the Command Register is set.

10 : 9 Device Select
Timing

Current value is: 0x02. The target device’s decode speed is slow (decode
time C).

11 Signaled Target
Abort

Set by target whenever it terminates a transaction with target-abort.

12 Received Target
Abort

Set by the master whenever its transaction is terminated by a target-abort
from the currently addressed target.

13 Received Master
Abort

Set by the master whenever its transaction is terminated due to a master-
abort.

14 Signaled System
Error

This bit should be set whenever a device generates a system error on the
SERR_ PCI line.

15 (MS) Detected Parity
Error

A device should set this bit whenever it detects a parity error.

• Command Register: This 16-bit register provides basic control over the device’s ability to respond to and/or
perform PCI accesses. The next table explains the fields implemented in the NIC:

Command Register

Bit
Location

Description Action

(MS)
15:10

Reserved No action.

9 Fast Back-to-Back Enable Currently hardwired to 0. Thus disabling fast back-to-back transfers
(PCI-X specification requirement).

8 System Error Enable When set the NIC can drive the SERR_ line.

FORTH-ICS Technical Report TR-376-04-2006

9/26

7 Wait Cycle Enable This bit is hardwired to zero (No stepping supported).
6 Parity Error Response When set the device can report parity errors by asserting the PERR_

PCI line.
5 VGA Palette Snoop Enable Currently hardwired to 0. Disable VGA Palette Snoop.
4 Memory Write and

Invalidate Enable
The NIC DMA initiator does not support memory write and invalidate
operations. This bit is ignored.

3 Special Cycle Recognition The NIC do not respond to special cycles. This bit is ignored.
2 Master Enable Enables the DMA initiator when set.
1 Memory Access Enable When set, the device responds to PCI memory accesses.
0 (LS) I/O Access Enable Currently hardwired to 0. Disable I/O access.

• Class Code: This is a 24-bit read only register that defines the revision ID. Current value is: 0x020000

• Revision ID: This 8-bit value is assigned by the manufacturer to identify the revision number of the device.
Current value is: 0x17

• BIST: The NIC does not implement built-in self-test so the value is currently hardwired to 0x00

• Header Type: Currently hardwired to 0

• Latency Timer: The Latency Timer defines the minimum amount of time, in PCI clock cycles that the
master can retain ownership of the bus. The default value is 0x20 and the recommended value is 0xFE.

• Cache Line Size: This read/write configuration register specifies the system cache line size in 32-bit words.
The recommended value is 0x80.

• Base Address Register 0: This register is written by the BIOS at boot time and contains the base address
used to access the NIC RAM (SRAM and DRAM). Currently 27-bit address space is supported by the NIC.

• Base Address Register 1: This register is written by the BIOS at boot time and contains the base address
used to access the DMA initiator registers (addresses 0x000 to 0x1FF) and the DMA request queue BRAM
(addresses 0x200 to 0x3FF).

• Interrupt Pin: This register demonstrates which interrupt pin the device uses. The NIC uses the INTA_ PCI
line so the current value is: 0x01

• Interrupt Line: The Interrupt Line register is read/write and is used to communicate interrupt line routing
information’s.

• Application Interrupt Register: This register is read/write and contains information about the interrupts
generated from the NIC. The next table explains the fields of the register:

Application Interrupt Register Bits

Bit
Location

Description Action

0 (LS) Remote Interrupt
Enable

If set, an interrupt is generated when a data packet from the network has
arrived, provided that the corresponding operation code for this packet had the
Interrupt bit set.

3:1 Reserved Reserved for future expansion
4 Remote Interrupt

Flag
Set by hardware when a data packet from the network has arrived, and its
operation code had the Interrupt bit set.

7:5 3’b0 These bits are hardwired to zero.
15:8 8’b0 These bits are hardwired to zero.
23:16 Tail Pointer Value of the request queue tail pointer.
23 1’b0 This bit is hardwired to zero.
30:24 Head Pointer Value of the request queue head pointer.
31(MS) 1’b0 This bit is hardwired to zero.

• Capabilities List Register: The Capabilities Register points to the first item in the list of capabilities. This
item is the PCI-X Command Register set therefore the Capabilities Register is hardwired to 0x48

• PCI-X Capability IC: This field is hardwired to 0x07 and identifies the Capabilities List as a PCI-X register
set.

• PCI-X Next Capability: This field is hardwired to 0x00 and identifies that the PCI-X register set is the last
entry of the Capabilities List.

• PCI-X Command: This register is read/write. The next table explains the fields of the register.

PCI-X Command

Bit Description Action

FORTH-ICS Technical Report TR-376-04-2006

10/26

Location

0 (LS) Data Parity Error
Recovery Enable

If set the device will attempt recovery from data parity errors.

1 Enable Relaxed
Ordering

If set the device is permitted to set the relaxed ordering bit in the
requester attribute phase.

3:2 Maximum Memory Read
Byte Count

This register sets the maximum byte count the device is permitted to
use when the initiating a sequence with one of the burst memory read
commands.

6:4 Maximum Outstanding
Split Transactions

This register sets the maximum number of split transactions the device
is permitted to have outstanding at any time.

(MS)
15:7

Reserved These bits are hardwired to zero.

• PCI-X Status: This register is read only. The next table explains the fields of the register.

PCI-X Status

Bit
Location

Description Action

2:0 (LS) Function Number Read only. Contains the Function Number.
7:3 Device Number Read only. Contains the Device Number.
15:8 Bus Number Read only. Contains the Bus Number.
26 64- bit Device Hardwired to 1. The device supports 64 bits transfer.
17 133 MHz Capable Hardwired to 1. The device is 133 MHz capable.
18 Split Completion Discarded This bit is set if the device discards a split completion because

the requester would not accept it.
19 Unexpected Split Completion This bit is set if an unexpected split completion with this

device’s requester ID is received.
20 Device Complexity Hardwired to 0 representing a simple device.
22:21 Designed Maximum Memory

Read Byte Count
Hardwired to 2’b11. The maximum memory read byte count is
4096 bytes.

25:23 Designed Maximum Outstanding
Split Transactions

Hardwired to 3’b000. The device supports only one outstanding
split transaction.

28:26 Designed Maximum Cumulative
Read Size

Hardwired to 3’b010 The maximum cumulative read size is 4K
bytes

29 Received Split Completion Error
Message

This bit is set if the device receives a split completion message
with the split completion error attribute bit set.

(MS)
31:30

Reserved These bits are hardwired to zero.

3.1.3 DMA Request Queue

The DMA Request Queue is a cyclic queue and uses two 2-port memories (implemented with BRAMs) in
parallel with 2048 word x 32-bits configuration each and two pointers. We use two memories to allow 32-bit or
64-bits burst accesses to the queue via the PCI target interface. Each request is described with 2 entries in the
queue. The first defines the PCI source address and the second the operation, word count and the remote host
destination address as shown in Figure 4.

The Head Pointer points to the DMA request to be served and the Tail Pointer to the next free Entry of the DMA
Queue (the head pointer follows the tail pointer even they wrap-around). The Tail Pointer is 10 bits (we can have
up to 1024 pending Requests). The Head Pointer is 11-bits. The 10 most significant bits point to the currently
served DMA Request and the least significant bit is used to copy each of the 2 request entries to the DMA
engine. The DMA Request Queue is memory mapped and is accessible by the Host using the PCI target
interface in the address range (Base Address Register 1 + 0x4000) up to (Base Address Register1 + 0x4FFF).

The structure of an entry in the DMA Queue is:

• The PCI Source address is used to define the physical host address where the data to be transmitted exist.
These data will be read from the host memory with a DMA operation.

• The Remote Host Destination address is the physical address of the receiver where the data will be

FORTH-ICS Technical Report TR-376-04-2006

11/26

transferred. Bits [31:0].

• The word count field indicates the size of the transfer in 64-bits words. The maximum size of each transfer is
512 words therefore 4096 bytes. Bits [41:32].

• The operation field indicates the features of the transfer. Bits [63:59]. These bits include a Remote
Notification Flag (Bit [62]), Local Notification Flag (Bit [61]), Remote Interrupt Flag (Bit [60]) and a Start Flag
(Bit [59]), which initiates the requests from the head pointer until the current request (clustering).

Destrination Address

Remote Host

Word Count

Operation

63 MSB 0 LSB32 31

PCI Source Address

Tail Pointer

Head Pointer

Figure 4: DMA request queue.

3.1.4 Operation Registers, Performance Counters, and Timers

This block contains several registers. These registers are accessible via the PCI target interface using the
content of the Base Address Register 1 and the address offsets given by the next table:

Address
Offset

Register Name

DMA Operation Registers

0x00 Control Register
0x04 Head Tail Pointers
0x08 Remote -Notification PCI Address Low
0x0C Remote-Notification PCI Address High
0x10 Local -Notification PCI Address Low
0x14 Local -Notification PCI Address High

Network Module Counters

0x80 Outgoing Net Cycles Counter
0x84 Incoming Net Cycles Counter
0x88 Rocket I/O Unknown Character

Counter

Address
Offset

Register Name

Performance Counters/Timers

0x20 Host2NicDMAops Counter
0x24 Nic2HostDMAops Counter
0x28 Host2NicReq Counter
0x2C Nic2HostReq Counter
0x30 Host2NicQWord Counter
0x34 Nic2HostQWord Counter
0x38 Host2NicDMAactive Timer
0x3C Nic2HostDMAactiveTimer
0x40 Host2NicBusGranted Timer
0x44 Nic2HostBusGranted Timer
0x48 Host2NicDisc Counter

FORTH-ICS Technical Report TR-376-04-2006

12/26

0x8C Rocket I/O Loss of Sync Counter
0x90 Rocket I/O Parity Error Counter
0x94 Rocket I/O Tx Buffer Full Counter
0xA8 Outgoing Net Packets Counter
0xAC Dequeued Words Counter
0xB0 Incoming Net Packets Counter
0xB4 Enqueued Words Counter
0xB8 Header CRC Error Counter
0xBC Net Fifo Alignment Error Counter
0xC0 Net Backpressure Cycles Counter
0xC4 Host2Net Start Counter
0xC8 Net2Host Start Counter

0x4C Nic2HostDisc Counter
0x50 IRQ Active Timer
0x54 IRQ Assertions Counter
0x58 Local Notification Counter
0x5C Remote Notification Counter
0x60 Split Operations Counter
0x64 Split Duration Timer
0x68 Packet Body CRC Error Counter
0x6C Packet Header Alignment Error Counter
0x70 Cumulative Timer
0x74 Host2NetfiFullError Counter
0x78 Nic2HostfiFullError Counter
0x7C Interval Timer Max Value Register
0x80 Sample Counter
0x84 Sampling Memory Data

3.1.4.1 DMA Operation Registers

• DMA Control Register: This register is used for debugging purposes. The next table explains the fields of
the register:

DMA Control Register [31:0]

Bit
Location

Description Action

31:30 Net Loop Back When set the net loop back is activated.
29:25 Not currently used.
24 Head and Tail Pointers Reset When set it resets the head and tail Pointers
23:5 Not currently used.
4 Software Reset If set by software, the fifos are cleared and

the FSMs are set to their initial states.
3:1 Not currently used.
0 Initiator Enable DMA Initiator enable bit.

• Remote-Notification PCI Address Low: The Remote-Notification PCI Address Low 32-bit R/W register
contains the low order bits of the PCI address to which the remote notification message will be written.

• Remote -Notification PCI Address High: The Remote-Notification PCI address high 32-bit R/W register
contains the high order bits of the PCI address to which the remote notification message will be written.

• Local-Notification PCI Address Low: The Local-Notification PCI address low 32-bit R/W register contains
the low order bits of the PCI address used for the DMA finish notification.

• Local -Notification PCI Address High: The Local-Notification PCI address high 32-bit R/W register
contains the high order bits of the PCI address used for the DMA finish notification.

3.1.4.2 Performance Counters / Timers

• Host2NicDMAops Counter: The Host to NIC DMA Operations counter is a 32-bit R/W counter incremented
every time a DMA transfer from Host to NIC is completed (request queue FSM transition to state NoPndOp).

• Nic2HostDMAops Counter: The NIC to Host DMA Operations counter is a 32-bit R/W counter incremented
every time a DMA transfer from NIC to host is completed (request queue FSM transition to state NoPndOp).

• Host2NicReq Counter: The Host to NIC Request counter is a 32-bit R/W counter incremented every time a
PCI bus request from Host to NIC is completed (request queue FSM transition to state NoPndOp).

• Nic2HostReq Counter: The NIC to Host Request counter is a 32-bit R/W counter incremented every time a
PCI bus request from NIC to host is completed (request queue FSM transition to state NoPndOp).

• Host2NicQWord Counter: The Host to NIC Quad-Word counter is a 32-bit R/W counter incremented every
time a 64-bit word is transferred from the host to the NIC during a DMA operation.

• Nic2HostQWord Counter: The NIC to Host Quad-Word counter is a 32-bit R/W counter incremented every
time a 64-bit word is transferred from the NIC to the host during a DMA operation.

• Host2NicDMAactive Timer: The Host to NIC DMA Active timer is a 32-bit R/W timer measuring the
duration in clock cycles of the DMA transfers from host to NIC. The time interval starts when the REQ_ PCI
signal is asserted and ends when the DMA is completed (request queue FSM transition to state NoPndOp).

FORTH-ICS Technical Report TR-376-04-2006

13/26

• Nic2HostDMAactive Timer: The NIC to Host DMA Active timer is a 32-bit R/W timer measuring the
duration in clock cycles of the DMA transfers from NIC to Host. The time interval starts when the REQ_ PCI
signal is asserted and ends when the DMA is completed (request queue FSM transition to state NoPndOp).

• Host2NicBusGranted Timer: The Host to NIC Bus Granted timer is a 32-bit R/W timer measuring the sum
of the time intervals during which DMA transfers from host to NIC take place. The time interval starts when
the FRAME_ PCI signal is asserted and ends when the last data phase is completed (request queue FSM
transition to state NoPndOp).

• Nic2HostBusGranted Timer: The NIC to Host Bus Granted timer is a 32-bit R/W timer measuring the sum
of the time intervals during which DMA transfers from NIC to host take place. The time interval starts when
the FRAME_ PCI signal is asserted and ends when the last data phase is completed.

• Host2NicDisc Counter: The Host to NIC Disconnect counter is a 32-bits R/W counter. The value of the
timer is incremented every time a DMA transfer (Host to NIC) is disconnected due to a latency timer timeout.

• Nic2HostDisc Counter: The NIC to Host Disconnect counter is a 32-bits R/W counter. The value of the
timer is incremented every time a DMA transfer (NIC to host) is disconnected due to a latency timer timeout.

• IRQActivet Timer: The Interrupt Request Active timer is a 32-bits R/W timer. This timer counts the PCI
clock cycles that the interrupt request line INTA_ remains Active.

• IRQ Assertions Counter: The IRQ Assertion counter is a 32-bits R/W Counter. This counter is incremented
at the interrupt line’s negative edge.

• Local Notification Counter: The Local Notification counter is a 32-bits R/W counter. This counter is
incremented with the completion of a local notification.

• Remote Notification Counter: The Remote Notification counter is a 32-bits R/W counter. This counter is
incremented with the completion of a remote notification.

• Split Operations Counter: The Split Operations counter is a 32-bits R/W counter. This counter is
incremented upon receipt of a split response.

• Split Duration Timer: The Split Duration timer is a 32-bits R/W counter. This counter is incremented at
every clock edge between the receipt of the split response and the receipt of the first datum of the first split
completion is supplied.

• Packet Body CRC Error Counter: The Packet Body CRC Error counter is a 16-bits R/W counter. The
value of this counter is incremented every time a packet body CRC error is detected.

• Packet Header Alignment Error Counter: The Packet Header Alignment Error counter is a 16-bits R/W
counter. The value of this counter is incremented every time an alignment error is detected

• Cumulative Timer: The Cumulative timer is a 32-bits R/W timer. The timer is activated by writing an initial
value (eg: 0). Upon the assertion of the REQ_ PCI signal of the first DMA transfer the timer starts counting.
Each subsequent read of this timer returns the time interval from the 1

st
 request until the completion of the

last DMA transfer that has finished. In other words, this timer is updated with the clock cycle count on the
UpdtCnt state of the request queue FSM.

• Host2NetFifoFullError Counter: The Host to Net Fifo Full Error counter is a 32-bit R/W counter
incremented every time a 64-bit word is transferred from the host to the Net during a DMA operation and is
lost due to full Fifo enqueue.

• Net2HostFifoFullError Counter: The Net to Host Fifo Full Error counter is a 32-bit R/W counter
incremented every time a 64-bit word is transferred from the Net to the host during a DMA operation and is
lost due to full Fifo enqueue.

• Configurable Sampling Facility: The board offers a configurable sampling facility to estimate the inbound
and outbound bandwidth. After specifying a sampling interval duration (expressed in PCI-X cycles) and a
sample count, the board records in internal memory the number of 64-bit words transmitted and received
during each of the sampling intervals. The internal sampling memory can hold up to 2048 samples. The
collection of samples begins with the first DMA transaction after setting up the sample count parameter. The
counts of inbound and outbound 64-bit words are accumulative. A utility program can read the sampling
memory and compute the aggregate bandwidth (in MBytes/sec).

• Interval Timer Max Value Register : This 32-bit read write register holds the sampling duration expressed
in PCI-X cycles.

• Outgoing Net Packets Sample Counter : This 32-bit read write counter holds the number of samples to be
collected.

• Sampling Memory Data: For each sampling interval, this memory module holds two 32-bit counts,
corresponding to the number of 64-bit words transmitted and received during each of the sampling intervals.
This memory module can hold up to 2048 samples.

3.1.4.3 Network Counters

The next 19 counters are used for debugging purposes and are read clear counters. The software can read their

FORTH-ICS Technical Report TR-376-04-2006

14/26

value performing a load operation to the corresponding offset or clear all the counters simultaneously performing
a store operation to the offset 0x80.

• Outgoing Net Cycles Counter: The Outgoing Net Cycles Counter is incremented in every network clock
cycle the network block transmits data or credits.

• Incoming Net Cycles Counter: The Incoming Net Cycles Counter is incremented in every network clock
cycle the network block receives data or credits

• Rocket I/O Unknown Character Counter: The Rocket I/O 0 Unknown Character Counter is incremented
every time the Rocket I/O 0 detects an Unknown Character.

• Rocket I/O Loss of Sync Counter: Rocket I/O 0 Loss of Sync Counter is incremented every time the
Rocket I/O 0 detects a Loss of Sync.

• Rocket I/O Parity Error Counter: The Rocket I/O 0 Parity Error Counter is incremented every time the
Rocket I/O 0 detects a Parity Error.

• Rocket I/O Tx Buffer Full Counter: The Rocket I/O 0 Tx Buffer Full Counter is incremented every time the
Rocket I/O 0 is forced to discard a byte due to the Tx buffer being full.

• Outgoing Net Packets Counter: The Outgoing Net Packets Counter is incremented every time a packet is
send.

• Dequeued Words Counter: The Dequeued Words Counter counts the numbers of words send by the
network block.

• Incoming Net Packets Counter: The Incoming Net Packets Counter is incremented every time a packet is
received.

• Enqueued Words Counter: The Enqueued Words Counter counts the number of words received from the
network block.

• Header CRC Error Counter: The Header CRC Error Counter is incremented every time the network
module detects a header CRC error.

• Net Fifo Alignment Error Counter: The Net Fifo Alignment Error Counter is incremented each time
incoming network data are misaligned.

• Net Backpressure Cycles Counter: The Net Backpressure Cycles Counter represents the network clock
cycles the network module was forced to wait due to lack of credits (backpressure).

• Host2Net Start Counter: The Host2Net Start Counter counts the assertions of the Host2Net Start signal.

• Net2Host Start Counter: The Net2Host Start Counter counts the assertions of the Net2Host Start signal.

3.1.5 Link Interface

The network interface module utilizes mainly two FIFOs that are used so as to store the outgoing
(Host2NicFIFO) and incoming (Net2HostFIFO) data to/from the network modules of the NIC. The size of the
FIFOs is 1023 68-bit words and they also provide four control signals, namely empty, almost empty, full and
almost full, along with the actual utilization of the FIFO (i.e. the number of entries currently occupied). The words
are 68-bits since the 64 LS bits are used for the data and the other 4-bit carry control information such as start of
packet (bit 65), end of packet (bit 66) and the next 2 bits are reserved for word enables to show which 32-bit
data words are valid. Those FIFOs are connected to the network modules using the interface specified in the
following table.

“PCI-block to Network” Module Interface

Pin Name Type Size
(bits)

Description

Host2NetFiDt Output 68 Host to network FIFO data out.
Host2NetFiDeq Input 1 Network to host FIFO dequeue.
Host2NetPReady Output 1 Host to network packet ready.
Net2HostfiDt Input 68 Network to host FIFO data in.
Net2HostfiEnq Input 1 Network to host FIFO enqueue.
Net2HostfiSt
(Synchronized with the
Network Module)

Output 9 Network to host FIFO status: Number of 64-bit words
contained in the net to host FIFO.

Net2HPReady Input 1 Net to host packet ready. This signal indicates that the
incoming packet is in the net to host FIFO.

Net2HHReady Input 1 Net to host header ready This signal indicates that the
header of the incoming packet is in the net to host FIFO.

NetPcktError Input 1 Net packet error. This signal indicates the network detects a
header error.

Loop Output 2 Network Loop Back.

FORTH-ICS Technical Report TR-376-04-2006

15/26

00: Normal operation.
01: Not supported.
10: Not supported.

On the outgoing path, Host2NetPReady is asserted every time a full packet is enqueued into the Host2NetFIFO
and thus it is ready to be transmitted over the network. The Host2NetPReady signal is synchronous to the net
clock and is asserted for one clock cycle. Then the network module, when it decides that it can process the
packet, is responsible for raising the Host2NetFiDeq signal so as to start the dequeue from the Host2NetFIFO.
The Host2NetFiDtout is the 68-bit data bus that is connected to the output of the Host2NetFIFO. There is also
the Host2NetFiSt status bus that is synchronized with the network module’s clock and is used so as to allow the
network module to read the status of the Host2NetFIFO.

A network packet consists of the header part, the data part (body) and the CRC part. The header part is the first
68-bit words of the packet and is explained in the table below. Their four most significant bits identify all such
parts. A value of zero represents a data word, a value of one a packet header and a value of two a body CRC
word. The CRC we use is the popular CRC32-Ethernet / AAL5 which is 32-bits and its polynomial is:

x
32

+ x
26

 + x
23

 + x
22

 + x
16

 + x
12

 + x
11

 + x
10

 + x
8
 + x

7
 + x

5
 + x

4
+ x

2
 + x

1
 + 1

Header Part Fields

Bit
Location

Description Action

(MS) 67:64 Word Identifier The value of these bits is 4’b0001 for the header part
63 Packet Type Identifier This bit is set to 0
62:56 Node ID 128 nodes are supported
55 This bit is set to 0
54 Remote Completion Notification Flag
53 Local Completion Notification Flag
52 Remote Interrupt Flag
51

Operation Code

This bit is set to 1
50:42 Not implemented Hardwired to zero
41:32 Packet Size This field contains the payload size in 64 bit words
31:0 (LS) Designation Address This field contains the destination PCI Address

3.1.6 RocketIO Module

The Network Interface (NetIF) Module is the part of the design that enables the communication of the rest of the
FPGA modules with the network. This interface is implemented with the Xilinx RocketIO transceivers. The
communication with the rest of the fpga is accomplished through a very simple interface, which mainly uses
asynchronous fifos (as different clock domains are crossed), and just a few handshaking signals.

FORTH-ICS Technical Report TR-376-04-2006

16/26

AS_sender

1

68

PCI MODULE

68

Net2Host FIFO Host2Net FIFO

CORE MODULE

68

64

34

32 32

32

32

e
rr

o
rs

s
ta

rt

s
ta

rt

lo
o
p

pckt_cntr

RIO

32-bit align

 MODULE comma mngnt

Check Header
& Body CRC Insert Header

& Body CRC

Credit Extraction

Credit Insertion

Figure 5: Network interface module block diagram.

The basic structure of the NetIF is outlined in the block diagram of Figure 5. We will carry on explaining the
functionality of the NetIF as we look at this block diagram. At the bottom of the diagram we see a small part of
the PCI module, which is the one directly linked to the NetIF. For each direction, incoming and outgoing, the PCI
module deploys a separate asynchronous fifo. The width of the fifo is 68 bits, from which 64 are used for data,
and the remaining 4 bits for tagging (flags for several purposes). This width of each of the two fifos is directly
linked to the data format exchanged among the two modules. The data to be exchanged is formed into packets,
and is then send to the NetIF. The NetIF on the other hand, takes that packet, sends it to the network after
applying the needed modifications and additions. At the receiving side, it takes a packet, and after striping any
network overhead, gives it to the PCI module (or any other receiving module). Explanations on the packet format
can be found in Section 3.3.

Let us first describe the transmitting side of the diagram. After the PCI module has inserted a complete packet
into the Host2Net fifo, it raises the start signal for a single clock cycle. The NetIF knows that now at least a
single full packet resides in the fifo. As many packets can simultaneously reside in the fifo, it is the NetIF’s
responsibility to keep track of the number of packets still residing therein. This of course must be done correctly
even if a packet transmission is active at the time a “start” is signaled. This functionality is carried by the module

FORTH-ICS Technical Report TR-376-04-2006

17/26

tagged pckt_cntr (packet counter) in the diagram. Any time a full packet resides in the fifo, the NetIF has the
responsibility to read it, and safely transmit it to the network. To have additional error checking capabilities, the
NetIF adds a header CRC while transmitting, right after the header is send. This is a CRC calculated on the
header bits, which are the most critical data of a packet. Details on the CRCs used can be found in the table
below. As seen in the diagram the data are sent to the network through the RocketIO transceiver. The RocketIO
can reach up to 3.125 GBaud (2.5 Gbps). We use them at this maximum rate. The AS_sender module, which is
directly linked to the RocketIO, adds synchronization information to the link, at the time periods that no useful
network traffic exists.At the receiving side, each AS sender has a small synchronization fifo. This is used in
order to form 64-bit words, by combining the two 32-bit words of each link. This is needed, as the exact arriving
time of the bits at each link may and will differ, and so the 32-bit words are not presented always at the same
clock cycle from the RocketIO to the AS_sender. The fifo then serves for removing this uncertainty. Before this,
the problem of the alignment must be solved.

As the RocketIO sends data through a serial link, the deserialization process at the receiving side can cause
misalignment of the bytes. That is the bytes may be found shifted in the received 32-bit word. This problem can
be overcome by using a separate circuit for each link, which uses two consecutive words to form a valid one.
This module is the rcv_align module. This is responsible for taking the misaligned incoming stream, extract the
SOP and synchronization information from the link, and deliver the packet in its original from. The data are also
accompanied by a start flag, in order to pass delimiting information to the core module.

 # bits Function

Header CRC 16

Polynomial: (0 5 12 16),
data width: 64,
initial CRC value: 16’hFFFF
first serial data bit: D[63]

Body CRC 32

polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32),
data width: 64,
initial CRC value: 32’hFFFF_FFFF
first serial data bit: D[63]

The whole information (data and flags) are enqueued in the small fifo mentioned earlier, and through it are
delivered to the core module. After the data are restored to the state they were sent, the incoming data
processing can be made easier. In the beginning we check for credits, and after zero or more credits, zero or
one data packets can follow. The data packet starts with the header, followed by the header CRC. The header
CRC is checked and if it is found to be wrong the packet received is not passed to the PCI module. If it is
correct, it is send, but only after it is correctly added to a 68-bit word, and the flag bits (the 4 MS bits) of each
packet word are accordingly set. At the end of the packet the body CRC is checked. Correct or not, the packet
has already been enqueued, so the result of the body CRC is just passed across to the other module. On a NIC,
both the header and the body CRC are striped from the packet before it gets delivered. However on the slightly
differentiated version for the crossbar switch, the body CRC is delivered. Finally let as mention that the output
labeled “errors” represent a number of signals that inform the other module of some common errors (header and
body CRC error, alignment error). The last data word is accompanied by an eop flag (bit 65).

3.1.6.1 Logic FSMs

Figure 6 depicts the FSM that serves the outgoing path (PCI module to network). This diagram just includes the
states and the transitions, but bare in mind that quite excessive checking is included in most of the states, in
order to accommodate for proper traffic manipulation. This also stands for the outgoing path FSM, which we will
describe shortly.

As we see in Figure 6 the FSM starts from the idle state, and stays there as long as no traffic exists. When a full
valid packet is found in the Host2Net fifo, the circuit starts sending the module. As a complete packet is
enqueued before this process starts, the FSM can handle the whole packet non-stop, as the difference between
the frequencies of the clocks for the two different sides does not matter. First the SOP is send to the network.
This is not included in the packet, and is added as a network delimiter to a new packet. Then the header is read
and sent. At the next cycle, a header CRC is calculated and is sent over the network. Again, this is not part of
the original packet, and will be used by the receiving network interface, and will then be striped off. Then the
data is sent. The circuit has two ways to double check when the data ends. One is the size that was found in the
header, and the other is the flag at the last 68-bit word that signals the last word. At the end the body CRC,
which was calculated all the way through the payload data transmission, is given. Notice that in order to enhance
performance, the next state of “body_CRC” is not only the “idle”, but it can also be “sop”. This is done when a

FORTH-ICS Technical Report TR-376-04-2006

18/26

new packet is ready at the time the current packet is being sent. At this circumstance, we can immediately move
to the “sop” state, and avoid the many unneeded commas.

Figure 7 depicts the FSM that serves the incoming path (network to PCI module). It starts with the start state.
This state has the responsibility to find a start of packet from both of the links, which have been already properly
aligned. This state also manages the incoming credit management. Transmissions can consist only of credits, or
credits and a data packet, in which case one or more credits precede the packet. If errors occur, the erroneous
packet is discarded, and a new packet arrival is awaited. If the process succeeds, we move on to the
“headerCRC” state along with the enqueing of the header to the Net2Host FIFO. However, this is not done
before this state, the “header_CRC”, receives the Header CRC, and checks its correctness. If it is valid the
packet will be enqued to the fifo, as the FSM advances to the next state. However, if it is found to be wrong, the
enqueuing is deactivated, and the rest of the states are used to just discard the packet. At this time, the NetIF
signals to the PCI module that a packet has arrived, and so the later can start dequeuing it from the Net2Host
fifo. Although this is not absolutely true, it will not result to any errors, as the network runs with a faster clock
compared to the PCI module (78.125MHz vs. 66.67MHz). This way cut-through is implemented in the network-
to-host stream. In later versions that use PCI-X with faster clocks (100MHZ-133MHz) this is not implemented.
Instead a mechanism which is aware of the two frequencies (through user definitions) calculates a suited time in
order to signal start and thus begin cut-through as soon as possible. When all the data are enqueued to the
Net2Host fifo, the EOP flag will be received along with the last data word. Then the body_CRC will be checked
and the FSM will get to the “start” state.

Outgoing path (Host to Network)

credit

idle

data

header_CRC

header

body_CRC

sop

Figure 6: Host to network FSM.

Incoming path (Network to Host)

body_CRC

No data/
Credits/Start

(Credits/Header)
Error

header_CRC

data

EOP

Figure 7: Network to host FSM.

3.1.6.2 Round Trip Time (RTT) Considerations

The time that is needed for information to travel from the transmitter to the receiver and again back at the
transmitter (the RTT) is a quite important parameter of a system. For this system we have measured the RTT
with two different manners: theoretically and through lab testing. In this way we have been able to compare the
two results and see if they agree, in order to have a more reliable RTT value. For the lab testing we have added
some logic in our original design that performs the following measurement. It counts cycles spent from the
beginning of a packet transmission up to the point that an updated credit gets received. In this way we are sure
that the packet has started being delivered at the receiving host, and after some time, a credit arising from that
packet delivery is formed and sent back to the transmitter. Different experiments have been carried, with
different packet sizes to make sure of the correctness for the lab measurement. The resulting RTT is about 90
network side clock cycles (78,125MHz clock) plus a number of cycles equal to packet-size/4. This last term is
due to the cut-through latency, which delays a packet from being delivered from the NIC to the receiving host.
The “/4” is for the latest system that uses PCI-X at 100MHz, and thus is capable of starting delivering the packet
to the host, after the first quarter has arrived from the network.

FORTH-ICS Technical Report TR-376-04-2006

19/26

cc
sizepacket

RTT)
4

_
90(+=

This number conforms to the theoretical approach and thus the lab measurement seems quite robust. Briefly
referring to the theoretical approach, we mention that the 90 clock cycles mostly involve RocketIO-to-network
and vice-versa (about 45cc), credit granularity (32cc) and NIC-to-PCI latency (about 5cc).

3.1.6.3 RocketIO Transceiver Instantiation

In this paragraph we will take a look at some detail concerning the way the RocketIO is used by our design. The
reader should be familiar with Xilinx’s RocketIO transceiver. A reference for this is “RocketIO Transceiver User
Guide” by Xilinx. The GT_CUSTOM primitive was used, as it is the most flexible, allowing the most user
modifications. In the current fpga, xc2vp40, the X1Y1 and X2Y1 MGT locations at the top of the fpga were used.
The COMMA character was chosen to be the default one, K28.5 (‘hBC), and K27.7 (‘hFB) is used as the SOP
character. BREFCLK2 was used as the clock input, as the clock we provide is of a frequency greater than
2.5GHz. Actually the crystal mounted on the board gives the higher accepted frequency, which is 3.125GHz.
BREFCLK2 was used instead of BREFCLK, as the crystal output on the board enters the fpga through pins H17
and J17, and so the internal clock routing of the MGTs obligates us to use BREFCLK2. The USERCLKs are
produced from the clock given to the MGTs, with the help of a DCM. The USERCLK is given the MGT clock
divided by two, as we use a user datapath width of 32 bits. The USERCLK2 is the USERCLK shifted by 180
degrees. As far as clock recovery is concerned, CLK_CORRECT_USE is set to true, to allow correction.
CLK_COR_REPEAT_WAIT is set to 0 and CLK_COR_KEEP_IDLE is set to false, to allow the maximum
capability for clock correction. The RX_BUFFER is set to true to also aid this cause. CLK_COR_SEQ_1_1 is set
to the COMMA character, and CLK_COR_SEQ_LEN is set to 1, to allow single COMMA to be the sequence that
is allowed to be removed. The CRC insertion is set to inactive, as the header CRC insertion and checking is
done through user designed circuits. One last thing concerning the RocketIO attributes is that the
TX_DIFF_CTRL is set to 800 instead of the default value 500, and TX_PREEMPHASIS is set to 3 instead of the
default value 0. These two values are based on lab testing, as the default values lead to a very high error rate.
Note however that even more moderate setting (e.g. 500 and 2 respectively) could probably lead to a working
set. Finally, as far as loopback is concerned, the core_AS module has a 2-bit input that accepts the loopback
mode. The coding of the modes is the one given by the RocketIO specifications, and the user must be cautious
to drive this input at the correct value at all times.

3.2 Buffered Crossbar

In this section we present the organization and the building blocks of the buffered crossbar switch regarding the
prototype implementation in a high performance FPGA. This implementation is based on the research results
presented in [5] and the initial design [8] that proved the feasibility of a 32x32 buffered crossbar in modern ASIC
technology. The current report focuses on porting the latter design in a high end FPGA environment which can
support millions of transistor logic, several Mbits of on-chip memory and many multi-gigabit network links.

3.2.1 Buffered Crossbar Organization

The buffered crossbar switch is implemented in a development board made by Xilinx. We use the ML325
Characterization Board [9] with features a Virtex II PRO XC2VP70K device and has 20 RocketIO SMA interfaces
on the board. The FPGA device has 74K logic cells and 6Mbits of on-chip memory in 328 embedded Block
RAMs (BRAMs) of 18Kbits each. Moreover, its 20 RocketIO hard-blocks operate at 156.25 Mhz and each one
provides 2.5Gbps of full duplex network throughput. The internal interfaces of the RocketIOs operate at
78.125Mhz on a 32-bit datapath, hence this fact sets the frequency limit of the crossbar. Since the RocketIOs
are placed in both the top and bottom side of the FPGA, the manufacturer demands two clocks deriving from
different crystals and therefore we consider two clock domains for the switch. Those features of the board
enable us to develop a prototype of the buffered crossbar with decent size, performance and real life
characteristics.

The architecture of the crossbar is based on the work of [5] and [8] where all the related details are discussed.
We have implemented an 8x8 buffered crossbar, with 32-bit datapath, on the FPGA whereas we managed to
achieve a 10x10 configuration utilizing 65% of the FPGA logic. This configuration seems to be the practical limit
for the current FPGA device since there are too many wires to be routed.

For the 8x8 configuration we have 64 cross-point buffers with 2Kbytes and 8 RocketIOs for the network
interfaces. In our custom network protocol the packet headers/trailers are 16 bytes and the minimum payload

FORTH-ICS Technical Report TR-376-04-2006

20/26

size is 8 bytes (one 64-bit word of NIC’s PCI-X). Consequently the minimum size of a packet is 24bytes which is
translated in 6 clock cycles in our 32-bit datapath. We also defined the maximum payload size to 496 bytes
hence the maximum packet size is 512 bytes (128 cycles). This maximum size is an effect of the size of each
cross-point buffer and the round trip time (RTT) of the network, as explained in [5].

Figure 8: Buffered crossbar internal architecture.

The building blocks of the switch are:

• Cross-point buffers and associated logic.

• Output schedulers (OS) per output.

• Credit schedulers (CS) per input.

• Per link RocketIO interfaces.

The block diagram of a 4x4 buffered crossbar is shown in Figure 8 and a real photo in Figure 9.

3.2.2 Cross-point Buffers

Each cross-point buffer is a 2Kbyte dual ported show-ahead FIFO in a 512x32 configuration and utilizes 1 BRAM
for each buffer. The logic of the cross-point receives the packets and the associated flags (start of packet and
end of packet) from the network interface and enqueues them to the memory. When a new packet starts
entering the cross-point buffer then the logic informs the output scheduler (OS) of the crossbar column through
a synchronizer circuit; remember that there are two clock domains. Additionally, the cross-point buffer is able to
dequeue a 32-bit word in every cycle when the OS requests it.

FORTH-ICS Technical Report TR-376-04-2006

21/26

Figure 9: Picture of switch prototype board.

3.2.3 Output Scheduler (OS)

The output scheduler (OS) is responsible to select an eligible flow (cross-point buffer) from the column and
forward the existing packet(s) to the network interface. It also generates the corresponding credit (the size of the
outgoing packet) and sends that to the associated credit scheduler (CS) of the input.

For every cross-point of the column the OS keeps the number of enqueued packets for each buffer in counters
and based on these it generates an eligibility mask. When there are eligible flows in the column then the OS
selects one of them by applying plain round robin policy and informs the network interface. The round robin
policy is implemented with a priority enforcer which keeps state of the last served flow and it requires a single
clock cycle for the decision. The cross-point logic needs 3 clock cycles due to synchronization to inform the OS
for the packet and then the OS applies the scheduling policy and informs the network interface. This sequence
of events requires only 5 clock cycles and therefore the OS can support cut-through operation even for minimum
sized packets (24 bytes = 6 clock cycles). In order for OS to support back to back transmission to the network
and to hide the scheduling latency it performs pre-scheduling. While a packet is transmitted and there are
eligible flows, then the OS selects the next eligible flow according to the policy and informs the network interface
3 cycles before the previous packet finishes.

The packets are dequeued from the network interface when it has credits for the outgoing path while the cross-
point selection of the OS is transparent to the interface. When the transmission starts then the OS informs the
associated CS with the size of the packet.

3.2.4 Credit Scheduler (CS)

The credit schedulers (CS) are dedicated per input, follow the QFC-like approach [8] and hold the number of
bytes that departed for a specific pair of input and output. Each CS receives from every OS the number of bytes
that departed and originated from the associated input. The CS keeps state, in counters, of the accumulated
bytes that departed whereas the wrap-around of the counters does not affect the protocol and the correctness of
the system as described in [5],[8]. Note also that the OS and CS might work in different clock domains so the
credit data are synchronized in 3 clock cycles.

The CS also interacts with the network interface and provides the credit data to be transmitted when requested;
one credit at a time. However, CS is responsible to provide credits for every possible destination/output the input
sends the packets. Therefore, the CS provides the credits to the network interface in a round robin fashion. The
round robin policy is applied initially at the modified credits values and later at the unmodified to compensate for
possible credit corruptions or losses.

FORTH-ICS Technical Report TR-376-04-2006

22/26

3.2.5 RocketIO Network Interface

Each RocketIO network interface is responsible to decode the packet headers and enqueue the incoming
packets in the appropriate cross-points of the associated crossbar row. It also keeps state of the incoming
credits that concern the incoming buffer of the connected NIC. Besides, the network interface should transmit
the outgoing packets and the credits it receives from the associated OS and CS whenever it has credits.

3.3 Data Packet Format

The data to be exchanged with the NetIF module are formed into packets. Figure 10 will guide us through this
description. Each packet is formed from 68-bit words at the interface. These words exchanged to and from the
NetIF module include 64 MS bits for the actual data, and the remaining 4 MS bits of each word add tagging
(flags) and are only used to enhance the communication of the two modules (SOP, EOP, RFU). The data
includes header and body (payload).The packet starts with a 68-bit (one word) header. The format of the actual
header (the 64 bits) is shown in Figure 11. The 32 LS bits include the PCI address. The next 10 bits correspond
to the packet size. The size is measured in words (64 bit words), and only the payload (the useful data -or body-)
are measured. The header is thus excluded. The next 10 bits are Reserved for Future Use (RFU). Then, bits 51
through 55 form the opcode, something of no relevance to the NetIF. This will just be transmitted and will be
used by the receiving side’s PCI module. The next 7 bits carry the flow ID, which must be taken into account by
the NetIF. The bit 63 is a flag that tells if the word is a header or a credit. 0 is used for header, 1 for a credit.
Finally the 4 MS bits (only for the interface - not shown) carry the flags. For the header bit 64 bit must be set to 1
to signal SOP and the rest three to 0. For the other words all four must be zero, excluding the last word which
must have bit 65 set to 1 to signal EOP.

,

module's i/f

8 Bytes 8 to 496 Bytes (multiple of 8)

S
O

P

Cr Cr Header H
C
R
C

B
C
R
C

Payload

xmit: 2 or more
rcv: 0 or more

on the line

1 or more

, ,...

Figure 10: Packet format.

fID

03141505563 62

PCI AddressSizeRFUOp

Figure 11: Packet header format.

P
a

ri
ty

01314 615

1 Flow ID Counter Value

Figure 12: Credit format.

3.3.1 Credit Format and Credit Protocol

Figure 12 depicts the credit format. Each credit is 16 bits wide. The first 7 bits concern the credit value. How
this value is calculated will be explained shortly. The next 7 bits describe the flow ID, which means the flow that
this credit is meant for. With 7 bits we can support as much as 128 different flows. Bit 14 is the parity, which is
the xor of the previous 14 bits (bits [13:0]). This is created at the transmitter and checked at receiver. If it is
found to be wrong, the credit is discarded, i.e. it is not taken into account. Finally the MS bit, bit 15, is the flag
that differentiates between a credit and a header, and should be 1 to designate a credit.

Now let us see the credit protocol in some detail. This way we will also understand the meaning of the “Counter
Value” field, seen in Figure 12. The protocol is based on two cumulative counters at each NIC. One of these is

FORTH-ICS Technical Report TR-376-04-2006

23/26

counting the complete number of words that have been transmitted to the network since power up. The other
counter keeps track of the number of words that have been forwarded from the network to the host, again in a
cumulative manner since power up. This second counter is transmitted through the “Counter Value” of the credit
to the other side. When the other side receives this credit, it has to compare it with its first counter (the one
counting transmitted packets to the network) and see if there is enough space to send a new packet with a
known size (the packet size is known through its header). In order for this protocol to work, correct initialization
of the counters is needed. That is the fifo size at the other end must be taken into account, so that at start up
this is the free space downstream. One other thing to take into account, is that a cumulative counter will
sometime overflow. In order to compensate for this, the comparators at each side must be aware of value wrap
around. Two extra bits for each counter are enough to implement this mechanism. A last issue concerns the
width of the counters. Based on the RTT of the system, and the need for wrap around support, our counters end
up being 12 bits wide. So the “Counter Value” of the credit is a subfield of the corresponding counter. Only the 7
most significant bits (bits [11:5]) are transmitted through the credit. The remaining 5 LS bits are not transmitted,
and the receiver treats them as being all zero. This gives as a more coarse grained granularity for the credits, as
an updated credit at the receiver will only be seen for every 32 (2

5
) words transmitted. This however does not

create any trouble.

4. VALIDATION AND PERFORMANCE RESULTS

4.1 NIC Validation

As part of our research, in parallel with the hardware prototype implementation we have also built a prototype I/O
stack in the Linux kernel that makes use of the NIC prototype. In validating the NIC design we have so far used
a setup of two nodes connected directly. The benchmarks we have used for validating our design are:

• Various user-level micro-benchmarks that access directly the NIC control registers for generating traffic.
The micro-benchmarks use special driver calls to map the NIC control registers to program address space.

• The xdd micro-benchmark [11] with the -dio option to bypass the initiator's buffer cache. We vary the
request size from 4 KBytes up to 1 MBytes, for both read and write accesses. Each experiment transfers a
total of 4 GBytes between the initiator and the target.

• Filesystem-based experiments, where a filesystem is built on top of remote block device and the following
operations are performed:
o Create filesystem on top of the block storage volume, using the mkfs command-line utility. We build a

filesystem of ReiserFS, with block-size equals to 4 KBytes.
o Mount the filesystem, using the mount command-line utility.
o Copy a compressed tar archive file from the dedicated IDE system disk to the filesystem. Specifically, we

copy the source tree of the Linux kernel version 2.4.30, a tar file compressed using bzip2. The file size is
29.7 MBytes.

o Extract the files from the compressed tar file. This step produces a 184.9 MBytes directory/file tree.
o Create a tar archive file that contains the directories and files extracted in the previous step.
o Compress the tar archive file produced in the previous step, using the bzip2 command-line utility.
o Recursively remove all directories and files in the filesystem.
o Un-mount the filesystem, using the umount command-line utility.

• A sequence of filesystem operations that manipulate a 515.4-MByte trace-file:
o Copy the compressed trace-file from the dedicated IDE system disk to the filesystem.
o Uncompress the trace-file, using the bunzip2 command-line utility.
o Scan the trace-file, one-byte-at-a-time, using the wc command-line utility. The trace-file is in ASCII

format, and contains 2,169,400 lines, each consisting of approximately 250 characters.
o Compress the trace-file produced in the previous step, using the bzip2 command-line utility. This step

produces a file of size 23.16 MBytes.

• A sequence of filesystem operations that result from the execution of the Postmark benchmark [12].
PostMark creates a set of files with random sizes within a configurable range, and then performs a number
of transactions, consisting of a randomly-chosen pairing of file creation or deletion with file read or append.
We setup Postmark to perform 5000 transactions, over a set of 1000 files, with sizes varying from 10
KBytes to 10 MBytes, no bias toward read/write transactions, and the read/write block size set to 4 KBytes.
With these settings, Postmark reads 15.2 GBytes of data, and writes 21.6 GBytes.

FORTH-ICS Technical Report TR-376-04-2006

24/26

4.2 Switch Validation

For the verification of the switch we developed software modules that initiate network traffic from the NICs to the
switch with programmable packet sizes and programmable network destinations. These modules also examine
the received and transmitted packets and report CRC error, packet losses or other system errors. We have run
extensive tests on the system to verify the correct operation of the switch. The tests we have run are the
following:

• Ping-pong test between two NICs through the switch: One of the machines is the initiator of the test which
transmits a packet and waits the other machine, the target, to respond with the same packet. We have run
this test with many different packet sizes in the range of 24bytes – 512bytes. We have made billions of
iterations and overnight tests involving billions of packets to ensure the correct operation. Our system has
not reported errors; hence the system passed successfully these tests.

• 1-way test through the switch: One of the machines is the initiator of the test which transmits back to back
packets to a target machine through the switch without waiting any response. We have run this test with
many different packet sizes in the range of 24bytes – 512bytes. We have made billions of iterations and
overnight tests involving billions of packets to ensure the correct operation. Our system has not reported
errors; hence the system passed successfully these tests. The measured throughput was 287 Mbytes/sec
(theoretical max. 300 Mbytes/sec).

• 1-way test to itself through the switch: The initiator of the test transmits back to back packets to itself
through the switch without waiting any response. We have run this test with many different packet sizes in
the range of 24bytes – 512bytes.We have made billions of iterations and overnight tests involving billions of
packets to ensure the correct operation. Our system has not reported errors; hence the system passed
successfully these tests. The measured throughput was 270 Mbytes/sec since there is both incoming and
outgoing traffic to the NIC (theoretical max. 300 Mbytes/sec).

• 1-way test with 3 senders and 1 receiver: There are 3 initiators that transmit back to back packets to 1 single
receiver through the switch without waiting any response. This test stresses out the switch because is
generates output contention and activates the flow control mechanisms of the NICs and the switch. We
have run this test with many different packet sizes in the range of 24bytes – 512bytes.We have made
billions of iterations and overnight tests involving billions of packets to ensure the correct operation. Our
system has not reported errors; hence the system passed successfully these tests. The measured
throughput was 93 Mbytes/sec on every sender, hence 279 Mbytes/sec on the receiver (theoretical max.
300 Mbytes/sec).

• Round robin 1-way test to any network destination: There are 4 initiators that transmit in round robin fashion
to all the network destinations without waiting any response. The round robin policy is applied in a per packet
basis. This and all the other tests have fair temporal randomness since the network nodes obtain their
packet data through PCI-X DMA accesses which come under the arbitration policy of each host’s PCI-X
bridge. This test also stresses out the switch because is generates output contention and activates the flow
control mechanisms of the NICs and the switch. We have run this test with many different packet sizes in
the range of 24bytes – 512bytes.We have made billions of iterations and overnight tests involving billions of
packets to ensure the correct operation. Our system has not reported errors; hence the system passed
successfully these tests.

The next step, as part of future work, is to accurately measure the metrics that indicate the buffered crossbar
performance under balanced or unbalanced traffic, with more random network destination and packet sizes.

4.3 Preliminary Performance Results

Figure 13 shows the throughput for a simple, user-level benchmark on top of two nodes connected directly
(without the switch), using a pair of RocketIO links. The prototype we use in our experiments consists of two Dell
1600SC servers, each with a single Intel Xeon CPU, running at 2.4 GHz, 512 MBytes of main memory, and two
64-bit PCI-X buses running at 100 MHz. The two nodes have a dedicated IDE system disk, and two types of
interconnects: (a) a Gigabit Ethernet adapter for system administration and monitoring and (b) our custom NIC
for all data transfers. The theoretical maximum throughput of the host-NIC DMA engine is one 64-bit word at
every 100-MHz PCI-X clock cycle or 762.9 MBytes/s (assuming zero bus arbitration and protocol overheads).
The theoretical maximum throughput for the pair of RocketI/O links is one 64-bit word at every 78.125-MHz
Rocket-I/O clock cycle or 596 MBytes/s. Therefore, the maximum theoretical end-to-end throughput is limited to
that of the network links, i.e. 596 MBytes/s.

FORTH-ICS Technical Report TR-376-04-2006

25/26

Figure 13: Throughput for two nodes connected directly, for a one-way (1-way)
and a ping-pong test (2-way).

5. CONCLUSIONS

In this work we present the detailed implementation of a multi-gigabit NIC and a scalable buffered crossbar
switch. The implementation is based on an FPGA-based prototyping platform. The prototypes have been
implemented and validated using both micro-benchmarks as well as a real I/O protocol stack in a 4-node setup.
The prototypes are aimed to support research in high-speed interconnects. The current prototypes include
features found in state-of-the-art systems today and are currently used for examining issues in supporting higher
network speeds using multiple physical links, new ordering semantics, and flow-control mechanisms.

6. ACKNOWLEDGEMENTS

We would like to thank the members of ICS-FORTH that have participated in numerous useful discussions. We

thankfully acknowledge the support of the European FP6-IST program through the SIVSS (STREP 002075) and

UNIsIX (MC EXT 509595) projects and the HiPEAC Network of Excellence (NoE 004408).

7. REFERENCES

[1] D. Stephens, Hui Zhang: "Implementing Distributed Packet Fair Queueing in a Scalable Switch
Architecture", IEEE INFOCOM'98 Conference.

[2] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: "A Four-Terabit Packet Switch Supporting Long
Round-Trip Times", IEEE Micro Magazine, Jan./Feb. 2003, pp. 10-24.

[3] N. Chrysos, M. Katevenis: "Weighted Fairness in Buffered Crossbar Scheduling", Proceedings of the IEEE
Workshop on High Performance Switching and Routing (HPSR 2003), Torino, Italy, June 2003, pp. 17-22;
http://archvlsi.ics.forth.gr/bufxbar/bxb_scheduling.html

[4] G. Sapountzis, M. Katevenis: "Benes Switching Fabrics with O(N)-Complexity Internal Backpressure",
Proceedings of the IEEE Workshop on High Performance Switching and Routing (HPSR 2003), Torino, Italy,
June 2003, pp. 11-16; http://archvlsi.ics.forth.gr/bpbenes/

[5] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos: "Variable Packet Size Buffered Crossbar
(CICQ) Switches", Proc. IEEE International Conference on Communications (ICC 2004), Paris, France, 20-
24 June 2004, vol. 2, pp. 1090-1096.

[6] M. Katevenis, G. Passas: "Variable-Size Multipacket Segments in Buffered Crossbar (CICQ) Architectures",
Proc. IEEE International Conference on Communications (ICC 2005), Seoul, Korea, 16-20 May 2005, CR-
ROM paper ID "09GC08-4", 6 pages.

Request size

FORTH-ICS Technical Report TR-376-04-2006

26/26

[7] N. Chrysos, M. Katevenis: "Multiple Priorities in a Two-Lane Buffered Crossbar", Proc. IEEE Globecom 2004
Conference, Dallas, TX, USA, 29 Nov. - 4 Dec. 2004, CR-ROM paper ID "GE15-3", 7 pages;

[8] D. Simos: "Design of a 32x32 Variable-Packet-Size Buffered Crossbar Switch Chip", Technical Report
FORTH-ICS/TR-339, Inst. of Computer Science, FORTH, Heraklion, Crete, Greece; M.Sc. Thesis, Univ. of
Crete; July 2004, 102 pages.

[9] Xilinx ML325 Characterization Board. URL: http://www.xilinx.com/xlnx/xebiz/designResources/ip_product
_details.jsp?key=HW-V2P-ML325&sGlobalNavPick=PRODUCTS&sSecondaryNavPick=BOARDS.

[10] DiniGroup DN6000K10SC Development Board. URL: http://www.dinigroup.com/DN6000k10SC.php.
[11] I/O Performance Inc. The xdd i/o benchmark. http://www.ioperformance.com.
[12] J. Katcher. Postmark: A new file system benchmark, 1997. Technical Report TR3022, Network Applicance

Inc.

