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ABSTRACT

Recent advances in silicon technology allow today’s systems to host a few processor cores in the
same chip. In the upcoming manycore era, parallel systems will depend on multi-core chips to
allow their performance to scale. Scalability can only be achieved with a synergistic use of the
available cores and thus the efficient communication between them is increasingly important.
This Interprocessor Communication takes place in the processors’ Network Interfaces (NIs) and
thus requires low-cost and high performance NI architectures.

Our current research focus is on future on-chip NIs where the NIs are tightly coupled to the
processors and the memory hierarchy. This paper introduces the on-chip environment for these
NIs and discusses the scalability issues. We propose the integration of the NI inside the cache
controller and a simple interface that allows only a few store/load instructions to send/receive
messages at L1 cache rates.
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1 Introduction

Networks originated in the seventies, with interconnection links of a few Kbits/s in through-
put. Under those circumstances the network was treated as “just another” peripheral I/O
device. Networking protocols were defined in that slow environment and everything was
performed in software. Current systems and protocols, unfortunately, are still carrying ele-
ments inherited from those early choices. In traditional, non-virtualized NI’s, an operating
system call is needed to start up any network operation, resulting in very heavy overhead.
Research in the nineties [MK96, MFHW96] led to virtualized NI's that allow user-level access
to their control registers, thus avoiding the system call; still, the I/O bridge separates the NI
from the processor and the memory, thus imposing a latency overhead of tens or hundreds
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of nanoseconds on operation start up [BAHT05]. In such loosely-coupled NI architectures,
because of the above overheads, programmers consider that only large-block transfers are
efficient. This, however, is an artifact of the traditional NI organization, and not an intrinsic
necessity in interprocessor communications. Over time, conditions have radically changed:
network throughput is no longer small, when compared to processor-memory throughput;
and the network is no longer “just another” I/O device. The new situation dictates that
the communication between compute engines located on the same chip will be achieved
through a Network-on-Chip (NoC) that will replace the old-times “memory bus”. Processors
will communicate with each other, and with all memory levels but L1, through this new
“network”. Hence, the throughput of this new network is by definition equal to the memory
throughput; and individual processors see no other I/O than this new network.

2 Scalability at low cost

In this new environment we have to take into serious consideration the cost and scalability
of the architectural decisions for the NIs. Traditional NIs are expensive because they require
extensive dedicated buffer memory in order to perform accesses to it when the processor
accesses its own memory in parallel; the main-memory throughput is not sufficient for both
of them in order to meet real-time latency guarantees. The future on-chip NIs will be tightly
coupled to the processor, L1 caches, accelerators and their local memories. These Level-1 (L1)
NIs are the interfaces between the individual cores and the NoC that is used for on-chip
(short-range) communication.

However, each core should be able to communicate with off-chip (long-range) resources,
which we believe will require a Level-2 (L2) NI; potentially more than one will exist in a chip.
The challenge is to unify the interprocessor communication protocols either on-chip or off-chip
to support a fully range of extensible systems (multi-chip multi-core processors / systems /
clusters).

Our current focus is on L1 NIs and we consider that they should be low-cost enough in
order to afford having them next to each and every processor in a chip. They should have
a reasonable cost when compared to units that they connect to: processors, L1 caches, ac-
celerators, local scratchpad memories. Thus, future NIs cannot afford to require extensive
dedicated memory, but must instead share local memory with the processing engines. Shar-
ing must be dynamic: when a core executes compute-intesive tasks, most of its memory must
be allocatable to them; when core executes communication-intensive tasks, a larger portion
of its memory can be used by the NI

The low cost requirement dictates that the NI (L1) must use a very small number of
dedicated registers or small FIFOs, and for the rest of its requirements must share the node
memory. Within this node memory, NI tables, queues and buffer areas must occupy a space
that is reasonably small, depending on the current intesity of communication, and also con-
figurable at run-time.

On the other hand, the scalability requirement dictates that each NI must be able to op-
erate in a system where potentially thousands of nodes exist to communicate with. At the
same time, scalability with respect to virtualization must be provided: it must be possible
to have multiple processes and threads, each with its own protected communications envi-
ronment. For such systems to become feasible, we must avoid NI data structures that grow
linearly with the number of nodes in the system, and we must restrict the space occupied by



NI data structures to be proportional to the current degree of virtualization or the current
number of active connections.

3 Cache integration of the Network Interface

Our view in that tightly coupled environment is that the processor’s interface with the NI
can be as as simple and as fast as the local memory interface. This on-going work studies
the aspects of such an architectural decision and presents some key issues that need to be
addressed.

Aload-store interface could allow a series of memory accesses (e.g. stores) in pre-configured
(but run-time configurable) addresses to result in a message transmission to the NoC. If the
local memory is configured as cache, we need to carefully map these addresses into cache-
lines and conform with the cache mechanisms. The above restriction requires support by
the cache controller so as to be able to allocate portions of the cache memory for special
functions supporting messaging.

The allocation of a cache segment could be either coarse-grained (e.g. allocate one or a
few ways from an N-way set associative cache) or fine-grained (e.g. allocate only a num-
ber of cachelines). The granularity of allocation is essential for the applications running on
the processor. Computation-intensive applications can benefit from the use of this memory
resource mostly as a cache/scratchpad and on the other hand communication-intensive ap-
plications can benefit from using a large portion of this memory for fast message transmition
and reception.

This allocation will need support from the run-time system, possibly in conjunction with
a user-level library to handle the low-level details. A few bits located in the tag part of
each cacheline are enough to mark a specific cacheline for special use. Moreover, we need
a few programmable registers inside the cache controller to control its behaviour on those
special cachelines. In order to set up the cache controller and use the special cachelines —
issue stores and loads — we have two choices: (i) we can reserve a bit in the address (shadow
address space) or (ii) request for an additional bit in the TLB — set by the run-time system
upon configuration — that will be supplied to the cache.

Moreover, we need to map the NI data structures into the data and tag parts of the cache.
The actual message data are stored in the data part of the cacheline and the state in the
tag part. The tags of a cacheline marked for NI use are can be ignored by the traditional
matching mechanism and can always return a hit.

These special cachelines map very well with queues as a generic communication prim-
itive. They can be used for composing and sending messages to many potential destina-
tions as well as receiving messages atomically from potentially many sources. The multi-
destination queues avoid the need for large number of queues that grow linearly with the
number of communicating nodes. Likewise, the multi-source queues avoid the need for
per-source buffers and can also serve as a synchronization mechanism. We can also sup-
port queues with multiple readers that are valuable for job dispatching. For each message a
header is required, which carries at least a destination address and a size field.

The addressing scheme greatly depends on the system and the on-chip network and has
not been yet finalized. We could follow a global address space approach where the addresses
might have some virtual part to be translated by the network switches and/or the network
interfaces — this approach could allow transparent process/thread migration.



The use of NI, as sketched above is based on the stores and loads that reach the cache.
We have to carefully design the way addresses are used by software and reach the cache
and how message completions are triggered; either for incoming or outgoing messages. We
consider two alternatives: (i) all words can be written/read to/from the same address —
signaling enqueues/dequeues — or (ii) each word in a message can have its own address
— indicating a specific word inside the cacheline. Each of the two alternatives has its own
implications. The first choice implies that the accesses must arrive in order to the cache in-
terface — so as to correctly compose/receive a message — while in the second choice each
operation is self contained. The message completion in the first alternative can be imple-
mented with a simple counter while the second choice might require a completion bitmask.
As far as the above issues are concerned, we have to carefully consider the optimizations
performed by the modern processors to boost performance (out-of-order execution, weak
memory ordering, speculative execution ) that might cause undesired behaviors.

All the above ideas on the cache integrated NIs are currently elaborated while the most
mature of them are prototyped in FPGAs. We are also studying the NoC aspects and ad-
vanced network features for the NIs, such as flow-control and retransmissions, and their
integration into the memory hierarchy.
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