(7 FACS

d I I Jd J . .
\\ M FPGA-Accelerated Multiprocessor Cache Simulator
J\\j//)
Michael Papamichael [papamix@cs.cmu.edu], Wei Yu [wy@andrew.cmu.edu], Yongjun Jeon [yongjunj@andrew.cmu.edu]
Computer Architecture Lab at http://www.cs.cmu.edu/~mpapamic/projects/facs.html
Carnegie Mellon

Summary Architecture

FACS

L1 Caches L2 Cache

Current architectural-level full-system software-based

simulators (e.g. Virtutech Simics) are limited in throughput,
especially when simulating multiprocessor systems. The
slowdown becomes even higher when attaching additional
modules to the simulator, such as cache simulators.

FACS (FPGA-Accelerated Cache Simulator) is a fully
parameterizable trace-based hardware functional piranha-
based multiprocessor cache simulator that precisely
replicates the behavior of the existing software-based
TraceCMPFlex cache model. Our results show that FACS is
over 200x faster than TraceCMPFlex.

Instruction Caches wo wl w2 w3 w4 w5 wée w7

L1-1 Cache 0 L1-I Cache 15

way0 wayl way0 wayl

Y L.
16 64KB 2-way set-associative caches

Statistics

References

Contents

Data Caches

L1-D Cache O L1-D Cache 15

way0 wayl way0 wayl

Y
8 512KB ways (4MB total)

8-way Pseudo-LRU

X mrmnnQOO-Q0>X T

Y L.
16 64KB 2-way set-associative caches

Statistics Statistics

FACS in a Nutshell

® Hardware Multiprocessor Cache Model
e Piranha-based 2-level Coherent Cache Hierarchy Methodology
e 6-stage Pipeline Implementation
e Fully Parameterizable Design ® Collected memory reference traces from Apache workloads and fed to
* number of cores, L1/L2 block size, L1/L2 cache size, L2 associativity e TraceCMPFlex (SW) running on Intel Xeon 5130 @ 2GHz (4MB L2) with 8GB RAM

Runs on Real Hardware (FPGA) e FACS (HW) running on a BEE2 board @ 100MHz
e Tested on BEE2 and XUP boards @ 100 MHz e Verifying Correctness

o High Throughput: 100 million references/sec e Matched cache statistics and contents for both SW and HW cache models
e PowerPC Interface

» feed references, read cache contents, read/write statistics memory ® Measuring Performance
e Traces reside on DRAM or Compact Flash Cards e SW performance measured by actually timing the SW-based cache simulator

: S e HW performance estimated by calculating best and worst case performance
Precise Repllcatlon Of TraCECMPFlex SW mOdEI o Best case: less than half of the memory references miss in one of the L1 caches and have to travel to the L2 cache

e Over 200x Speedup o Worst case: all of the references miss in the L1 caches and have to travel to the L2 cache

Implementation Details Performance Results

® 2500 lines of Verilog code ® Processing rate of references: FACS vs. TraceCMPFlex

® Functional Model
e Only tags and status bits stored and updated

® L1 Caches

e Implemented as 2-stage pipeline
e All 16 L1 I/D caches simultaneously accessed

TraceCMPFlex (SW) FACS, .., FACS,,. .,
Processing rate 455K refs/sec 50M refs/sec | 100M refs/sec

® Speedup: 110x — 220x

® L2 Cache Note: In all of our workloads the performance of FACS was very close to the best case performance.
e Victim cache (only inserts evicted blocks from L1) FACS performs worse than the best case only when the L1 miss rate exceeds 50%, which is

e Each reference is processed in 2 cycles (not pipelined) very uncommon for any kind of workload.

Hardware Specs and Results Lessons Learned & Future Work

FPGA: Xilinx V2P70 (BEE2 board) ® Lessons Learned
Clock Frequency: 100 MHz e Simultaneous access to all of the L1 caches makes routing hard and limits scalability

e L1 cache size should be chosen to match well with the FPGA BlockRAM dimensions

Cache configuration
e Verilog needs better support for writing synthesizable parameterizable modules

e 16 private 64KB 2-way split I&D L1 caches

e 4MB 8-way shared L2 Future Work
FPGA Utilization e Increase L2 cache size without significantly reducing frequency

o LUTs: 7602 (11%) o Take Memory Level Parallelism (MLP) effects into consideration
o BlockRAMSs: 136 (41%) e Support larger cache sizes through virtualization of the tag arrays

Acknowledgments

We would like to thank Eric Chung for his support on the BEE2 development board and Nikos Hardavellas for helping us out with the TraceCMPFlex software cache
model. We would also like to thank James Hoe for providing us with previously developed pieces of Verilog code that greatly reduced the required implementation time.

