
FACS
FPGA-Accelerated Multiprocessor Cache Simulator

Michael Papamichael [papamix@cs.cmu.edu], Wei Yu [wy@andrew.cmu.edu], Yongjun Jeon [yongjunj@andrew.cmu.edu]

http://www.cs.cmu.edu/~mpapamic/projects/facs.html

Summary

Current architectural-level full-system software-based

simulators (e.g. Virtutech Simics) are limited in throughput,
especially when simulating multiprocessor systems. The
slowdown becomes even higher when attaching additional
modules to the simulator, such as cache simulators.

FACS (FPGA-Accelerated Cache Simulator) is a fully
parameterizable hardware functional piranha-based
multiprocessor cache simulator that precisely replicates the
behavior of the existing software-based TraceCMPFlex
cache model. Our results show that FACS is over 200x faster
than TraceCMPFlex.

FACS in a Nutshell

 Hardware Multiprocessor Cache Model
 Piranha-based 2-level Coherent Cache Hierarchy
 6-stage Pipeline Implementation
 Fully Parameterizable Design

 number of cores, L1/L2 block size, L1/L2 cache size, L2 associativity

 Runs on Real Hardware (FPGA)
 Tested on BEE2 and XUP boards @ 100 MHz
 High Throughput: 100 million references/sec
 PowerPC Interface

 feed references, read out cache contents, read/write statistics memory

 Traces reside on DRAM or Compact Flash Cards

 Precise Replication of TraceCMPFlex SW model
 Over 200x Speedup!

Hardware Implementation

 2500 lines of Verilog code

 Functional Model
 Only tags and status bits stored and updated

 L1 Caches
 Implemented as 2-stage pipeline
 All 64 L1 caches simultaneously accessed

 L2 Cache
 Victim cache (only inserts evicted blocks from L1)
 Each reference is processed in 4 cycles

Check out our Demo!

 FACS Demo Configuration
 Runs @ 100 MHz
 Supports 16 Cores
 64 Byte Block Size (for both L1 and L2)
 128 KB 2-way set-associative split I&D L1 cache per core
 4 MB 8-way set-associative shared L2 cache

 Menu-driven terminal-based interface

 Real-time viewing of statistics

Architecture

L1 Caches

Instruction Caches

…

L1-I Cache 0

8 2MB ways (16MB total)

8-way Pseudo-LRU

FACS

Statistics

way0 way1

L1-I Cache 15

way0 way1

…

16 64KB 2-way set-associative caches

L1-D Cache 0

Statistics

way0 way1

L1-D Cache 15

way0 way1

Data Caches

Memory

References

w0

L2 Cache

Statistics

16 64KB 2-way set-associative caches

Cache

Contents

Software

 Modified Flexus Components
 FastCache: functional L1 cache model
 FastCMPCache: functional L2 cache model
 DecoupledFeeder: collects/feeds traces
 Stat-Manager: tool for viewing statistics

 Additional Tools Developed to
 Convert traces to between various formats
 Compare FACS and TraceCMPFlex statistics

0

50

100

150

200

250

0M 5M 10M 15M 20M 25M

S
p

e
e
d

u
p

 (
ti
m

e
s
)

of References (in millions)

Speedup
FACS (common) vs. TraceCMPFlex (brackla)

0

10

20

30

40

50

60

70

80

0M 5M 10M 15M 20M 25M

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o
n

d
s
)

of References (in millions)

Performance
FACS vs. TraceCMPFlex (linear Y axis)

TraceCMPFlex (tamdhu) TraceCMPFlex (brackla)

FACS (worst case) FACS (common case)

0.01

0.1

1

10

0M 5M 10M 15M 20M 25M

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o
n

d
s
)

of References (in millions)

Performance
FACS vs. TraceCMPFlex (logarithmic Y axis)

TraceCMPFlex (tamdhu) TraceCMPFlex (brackla)

FACS (worst case) FACS (common case)

-

0.20

0.40

0.60

0.80

1.00

1.20

0M 5M 10M 15M 20M 25M

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o
n

d
s
)

of References (in millions)

FACS Performance
Common vs. Worst Case

FACS (worst case) FACS (common case)

w1 w2 w3 w4 w5 w6 w7

Performance Results

 Collected large memory reference traces from Apache workloads and fed to
 brackla: Intel Xeon 5130 @ 2GHz (4MB L2) with 8GB RAM (4 cores in total)
 tamdhu: Intel Xeon MP @ 2.8 GHz (512KB L2) with 3GB RAM (2 cores in total)

Acknowledgments
We would like to thank Eric Chung for his support on the BEE2 development board and Nikos Hardavellas for helping us out with the TraceCMPFlex software cache
model. We would also like to thank James Hoe for providing us with previously developed pieces of Verilog code that greatly reduced the required implementation time.

