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Introduction: 

Current architectural-level full-system software-based simulators (e.g. Virtutech Simics) are 

developed to run on single-threaded hosts and are thus limited in throughput, especially when simulating 

multiprocessor systems. The slowdown becomes even higher when attaching additional modules to the 

simulator, such as cache models. Simulating a uniprocessor system is typically thousands of times slower 

than the actual single CPU system, which is still considered an acceptable slowdown by software 

researchers. However, simulation of a multiprocessor system on a single host is up to a million times 

slower than the real hardware. This makes execution of large multiprocessor workloads - be it scientific 

or server workloads - prohibitively slow. 

Statistical sampling of computer system simulation [1, 2, 3] can reduce simulation times by roughly 

a factor of 10000. This is done by employing systematic sampling to measure only a very small portion of 

the entire workload being simulated. Between measurements, a simplified functional simulation model of 

the system that also advances the architectural state of the system is used to fast-forward through the 

workload. Actual measurements are taken using detailed timing-accurate models of the components 

comprising the simulated system. The use of checkpointing to capture the architectural state of the system 

can even further accelerate simulation [3].   

In addition to statistical sampling, recent research in the field of hybrid simulation has also greatly 

accelerated multiprocessor system simulation using FPGAs (e.g. Protoflex [4, 5]). This corresponds to 

arrow 1 in figure 1. Protoflex uses transplant technology to dynamically accelerate only common-case 

behaviors while relegating infrequent, complex behaviors (e.g., I/O devices) to software simulation. 

Transplanting avoids having to implement the entire target system in an FPGA. Protoflex is an invaluable 

http://www.cs.cmu.edu/~mpapamic/projects/facs.html


tool for fast-forwarding through large workloads and collecting checkpoints. However attaching 

additional software-based simulator components, such as cache models, greatly limits simulation speed 

and throughput of Protoflex.  

 

 

At this point there are two software-based cache models that were developed in the scope of the 

SimFlex project [1], which both implement a piranha-based cache hierarchy, similar to the one seen in 

figure 2. “CMPFlex” implements a detailed timing-accurate cache model, while “TraceCMPFlex” is a 

simplified version of “CMPFlex”, which simulates the piranha-based cache model at a functional level.   

FACS Overview 

FACS (FPGA-Accelerated Cache Simulator) is a fully parameterizable hardware functional piranha-

based [6] multiprocessor cache model that precisely replicates the behavior of the existing software-based 

TraceCMPFlex cache model. This corresponds to arrow 2 in Figure 1. FACS can receive and process 

dynamically generated references from Protoflex at full speed, allowing simulation to proceed without 

any slowdown. For each incoming memory reference FACS updates the cache tags and maintains 

coherence among the private L1 caches, while also keeping detailed L1 and L2 cache statistics. Our 

results show that FACS is roughly 200 times faster than the equivalent software functional cache model it 

simulates. When combined with FACS, ProtoFlex can accelerate a full 16-cpu chip multiprocessor with 

private 64KB L1 I&D caches and a 16MB shared L2 by a factor of roughly 100x.  
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Figure 1: Software vs Hardware simulation 



 

 

FACS was written using the verilog hardware description language and is structured as a 6-stage 

pipeline which processes streams of memory references (Instr. Fetches, Stores and Loads) received 

through a FIFO interface. Internally FACS consists of two core modules; one that simulates the set of all 

private L1 implemented as a 2-stage pipeline and one that simulates the single shared L2 cache 

implemented as a 4-stage pipeline. FACS’s pipeline-based design greatly reduces hardware complexity 

and increases memory reference throughput.  

Since FACS implements a purely functional cache model it only stores and updates the tags and the 

status bits for each cache-line. Not storing the data for each cache-line leads to better memory utilization 

on the actual hardware (e.g. the FPGA) allowing for the implementation of larger cache designs and a 

more scalable design in general. As an example modeling 16 128KB L1 caches, along with a 16MB L2 

cache requires less than 500KB of memory, which can easily fit on on-chip FPGA RAM. 

Methodology  

Hardware 

FACS required a significant amount of hardware design, verification and implementation, as well as 

software development. The first task was to design the necessary hardware and describe it using the 

Figure 2: Piranha-based cache hierarchy 
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verilog hardware description language. Next we had to verify the correct behavior of the created verilog 

modules using the verilog simulator Modelsim 6.1e. This was done in two steps. Firstly, we thoroughly 

observed and checked the behavior of our module by feeding small sets of memory references, which 

were manually created and tested various corner cases. Secondly, we fed our module very large traces of 

memory references that were generated using the software-based simulator Flexus and made sure that the 

results obtained by our hardware cache model match with the software-generated results. More details on 

the verification of our cache model can be found in Appendix A. 

After finishing with the verification of our verilog module using simulation the next step was to try it 

on the real hardware. For synthesis, placement and routing we used the Xilinx ISE 9.2i software. Our first 

target was the Xilinx University Program (XUP) development board [7] which is based on a relatively 

small Xilinx FPGA (VirtexIIPro xc2vp30). For our initial test we synthesized a stripped-down version of 

our cache model, which had all 32 – 16 for Instructions and 16 for Data - L1 caches but no L2 cache. A 

small set of static references was fed to the design and our statistics registers were observed using the 

Xilinx Chipscope 9.2i software. Chipscope is a tool that allows real-time monitoring of FPGA signals.  

After verifying our stripped-down cache model using the XUP board, we started working on the 

more sophisticated BEE2 development board [8] that hosts 5 larger Xilinx FPGAs (VirtexIIPro xc2vp70), 

that could fit our whole design. In order to feed our design with larger memory reference traces we 

utilized the PowerPC processor which is embedded in each FPGA using the Xilinx EDK 9.2i software. In 

order for the PowerPC to be able to push references to our design we presented our cache model to the 

PowerPC as a memory-mapped peripheral. This required developing an additional PLB-IPIF [9] interface 

for our cache model that allows the PowerPC to push references, read and write the statistics memories, 

and read out the contents of the cache. 

Each memory reference takes up 40 bits, but the IPIF interface is only 32 bits wide. To avoid having 

the PowerPC make two stores for pushing each reference to our cache model we made the following 

optimization. We mapped a larger portion of the physical address space to our cache model and encoded 

the additional 8 bits as part of the address. This way the effective data width for communicating with our 

cache model was increased to 48 bits. In practice this optimization almost doubled the speed at which the 

PowerPC is able to feed references. 

In our first tests using the BEE2 board we used FPGA on-chip memory (BRAM) to store the traces. 

This limited the maximum traces we could try to approximately 10000 memory references. In addition 

this also limited us from placing larger cache models on the FPGA, since many FPGA resources 



(BRAMs) had to be occupied by the traces. To solve this problem we utilized the onboard DDR2 DRAM 

memory found on the BEE2 board. This increased the maximum number of references to approximately 4 

million per run. As a final step for feeding even larger traces to our cache model we developed software 

that allows the PowerPC to read traces that reside on compact flash cards. The maximum number of 

traces is now only limited by the size of the individual compact flash card.  

Software 

The main software tool we used for FACS was Flexus. Flexus is a collection of modules that attach 

to Virtutech Simics’ Micro-Architecture Interface (MAI) for full-system, timing-accurate simulation of 

multiprocessor systems running unmodified programs. It also has built-in statistics management and 

supports checkpointing. Flexus is written in C++ with the extensive use of the Boost library. At the top 

level, Flexus is invoked using a startup script with a user configuration, a specific simulator and a 

workload. 

A simulator is defined by a wiring.cpp file, which actually reads more like a verilog source file, that 

instantiates and wires together various components such as caches and branch predictors, whose default 

parameters, such as size and associativity can be overridden at runtime to match those of the HW model. 

The individual modules are hooked together during compilation. 

A Flexus component is an individual module that is instantiated by a simulator. The most important 

Flexus component for FACS was TraceCMPFlex, which is a functional Piranha-based multiprocessor 

cache simulator. Below are more details about a few Flexus components that we extensively used in the 

FACS project. 

 DecoupledFeeder 

In Flexus, the DecoupledFeeder module connects the processors and the L1 caches. It receives a 

serial stream of memory references from the processors and pushes them into the appropriate caches. 

Most of our modifications were in this module, and the modified version provides the timing information 

and supports TRACE-OUT and TRACE-IN modes in which the module outputs and takes as input 

serialized memory references in a file. The exact format of the memory references file is described in 

Appendix A. 

 



 

 FastCache 

The FastCache module corresponds to each one of the simulated L1 Instruction and Data caches. In 

terms of the statistics counters, we were able to achieve exact behavioral replication of L1 caches without 

any modifications to the FastCache module itself. 

 FastCMPCache 

The FastCMPCache is instantiated as the Piranha-based functional L2 cache in the Flexus simulator. 

It is worth noting that this module, by default, classifies some of the statistics a bit differently from our 

HW module, and a modification was necessary to get the statistics to perfectly match up.  

 Stat-manager 

The stat-manager is a built-in statistics management tool for analyzing the results of a workload 

simulation. By default, it reports only the aggregate statistics for all of the L1 caches, so it had to be 

modified to preserve and report the statistics from all individual L1 caches. 

Implementation 

FACS Architecture 

The architecture of FACS at the module-level is depicted in the block diagram of figure 3. As seen 

in the previous section at the highest level FACS consists of two core modules; one that simulates all of 

the L1 caches and one that simulates the L2 cache. The “L1 Caches” module contains two identical 

instances of the same submodule, one for implementing the Instruction and one for implementing the 

Data caches. Each such submodule (Instruction or Data) instantiates a statistics module and 16 “L1cache” 

modules. Finally, the L1cache module represents the private cache of each CPU in the system and 

contains the LRU logic along with two submodules that simulate each one of the two ways that belong to 

the L1 cache of each processor. The L2 cache module is quite simpler; it instantiates the 8 2MB ways, 

implements the LRU logic and also keeps statistics.  



 

 

The actual implementation contains numerous other basic modules, such as FIFO queues, that act as 

building blocks for creating the higher-level modules mentioned above. FACS uses FIFO queues for 

receiving references from the “outside world”, forwarding references from the “L1 caches” to the “L2 

cache” module and for scanning out the actual L1 and L2 cache contents. Other examples of basic 

modules include fully parameterizable decoders, multiplexors and dual-port memories. 

L1 Caches 

The default L1 cache configuration in FACS consists of 32 2-way set-associative 64KB L1 caches; 

16 dedicated to data and 16 for instructions. The default size of each cache block is 64 bytes. In an actual 

implementation of a piranha-based cache a copy of the L1 cache tags is stored in the L2 cache to be used 

as a directory for maintaining coherence. When a CPU misses in its local L1 cache the memory reference 

travels to the L2 cache and consults the directory to find out if a remote L1 cache has a copy and take 

appropriate coherence actions. However, given the fact that ProtoFlex generates memory references 

serially, FACS is able to follow a simpler approach.  

L1 Caches 

Instruction Caches 

Data Caches 

… 

16 64KB 2-way set-associative caches 

L1-I cache 0 

way0 way1 way1 way0 
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way0 way1 way1 way0 
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Figure 3: Architecture of FACS 



For each received memory reference all 64 cache ways are simultaneously accessed. Regardless of 

the memory reference type, both Instruction and Data caches are accessed to maintain Instruction and 

Data cache coherence. If the local cache hits then only the LRU needs to be updated. If the local L1 cache 

experiences a miss, the remote L1 caches are updated to maintain coherence and the memory reference is 

forwarded to the L2. In case of a read miss the remote caches downgrade their copy to the shared state. In 

case of a write miss the remote caches must invalidate their copy. Contrarily, in a real system the remote 

L1 caches would only be updated after the reference reached the directory residing in L2.  

Apart from updating the tag and status bits for the respective referenced L1 cache block the L1 cache 

module also updates the LRU memory, and updates the statistics counters. The following 5 statistics 

counters are kept for each L1 cache: 

 Number of Read (load) Hits 

 Number of Write (store) Hits 

 Number of Read (load) Misses 

 Number of Write (store) Misses 

 Number of Write (store) Misses that lead to an upgrade (local cache had read-only copy)  

As stated earlier the L1 cache module is implemented as a 2-stage pipeline. In the first pipeline stage 

all of the L1 caches are read and in the second pipeline stage the updated values are written back. It is 

important to note that once a memory reference goes through this 2-stage pipeline it will never “bother” 

the L1 cache module again. 

L2 Cache 

In piranha-based cache schemes the L2 caches act as victim caches. This means that blocks are 

inserted in the L2 cache only when they are evicted from some L1 cache. In the specific cache model 

(TraceCMPFlex), blocks are also inserted into the L2 cache to facilitate block transfers from one L1 to 

another L1 cache. For instance, if a CPU attempts to write a cache block that also resides in a remote L1 

cache, the cache block will also be inserted into the L2 cache. As far as LRU is concerned FACS 

precisely replicates the pseudo-LRU algorithm used in the software implementation of the cache model 

(TraceCMPFlex). 

 The default L2 cache configuration in FACS consists of an 8-way set-associative 16MB shared 

cache, which is common for both data and instructions. The default size of each cache block is 64 bytes 

(equal to the L1 cache block). In an actual piranha-based L2 cache implementation, the L2 cache would 

also keep copies of all L1 cache tags. However in FACS L1 caches are already fully updated and coherent 



when the memory references reach the L2 cache. Thus the L2 cache does not need to keep any additional 

information; it only stores the tags and status bits for its own cache blocks.  

Each memory reference that misses in its local L1 cache is forwarded to the L2 cache module, 

which, as mentioned previously, is implemented as a 4-stage pipeline. In the first 2 pipeline stages FACS 

checks if the initially requested block resides in the L2 cache. If this block was found in another L1 cache, 

then it has to also be inserted into the L2 cache to simulate L1 to L1 block transfers. During the remaining 

2 pipeline stages the block that was evicted from L1 is inserted into the L2 cache. As each memory 

reference is processed by the L2 the LRU memory and statistics counters are also updated. 

The following statistics counters are kept for the L2 cache: 

 Number of Read (load) Hits 

 Number of Write (store) Hits 

 Number of Read (load) Misses 

o Served from main memory 

o Served from another L1 cache 

 Number of Write (store) Misses 

o Served from main memory 

o Served from another L1 cache 

 L2_Victim_Hits 

 L2_Victim_Misses 

 

Parameters 

FACS was written as a fully parameterized set of modules, allowing for effortless experimentation 

with different settings. Parameters include: 

 Number of Address Bits (default value: 32) 

 Number of CPUs/L1 Private Caches (default value: 16) 

 L1 Block Size (default value: 64 bytes) 

 L1 Way Size (default value: 32KB) 

 L2 Block Size (default value: 64 bytes) 

 L2 Associativity/Number of Ways (default value: 8 ways) 

 L2 Way Size (default value: 2MB) 

 Statistics Granularity (default value: 32 bits) 

 



Software Development 

FACS also required a significant amount of software development, which mainly concerned Flexus, as 

mentioned in the software methodology section above. In addition, a couple of additional tools were 

developed to help analyze the cache statistics results from FACS and Flexus: 

Converter 

Converter is a simple C++ program to translate the dumped memory references from Flexus into the 

binary format recognizable by FACS. The devising of a binary format involved a fair amount of hacking 

to overcome the architectural characteristics of the PowerPC on the BEE2 board, as mentioned in the 

hardware methodology section above. 

Comparator 

Comparator is a simple Python script to automate the comparison of the L2 and the 16 L1 I- and D-

cache statistics from FACS and Flexus. It reports the total references from each model and displays any 

discrepancies. A thorough analyses of the L1 and L2 statistics is presented in Appendix A.  

Results 

In order to evaluate FACS we compared the time it takes to process references using the software 

TraceCMPFlex cache model against the time it takes to process the references using FACS. Figures 4 and 

5 plot the required time to process millions of references and Figure 6 shows the equivalent speedup 

values. For the Flexus TraceCMPFlex software-based cache simulator we plot two curves, which 

correspond to the execution on two different machines with the following specifications. 

 

 An Intel Xeon @ 2.8GHz with 512KB L2 cache and 3GB RAM (2 cores in total; machine 

tamdhu in the ECE Scotch cluster) 

 

 A dual Intel Xeon 5130 running at 2GHz with 4MB shared L2 cache and 8GB RAM (4 cores in 

total; machine brackla in the ECE Scotch cluster) 

For FACS, our hardware cache model, we also plot two separate curves. The first curve corresponds 

to the common case, where the average L1 cache hit rate is above 75%. This is typical for most programs 

and was true for all of the workloads that we tried. The second curve corresponds to the worst case, where 



all references miss in the L1 cache (0% L1 cache hit rate). In either case FACS is roughly 200 times faster 

than the software cache simulator, regardless of which machine is it executed on.  

 

 

 

 
Figure 5: Performance of FACS vs. TraceCMPFlex 

Figure 4: Performance of FACS vs. TraceCMPFlex 



 

 

Figure 7 plots the time required for FACS to process a varying number of references for both the 

common case and the worst case. Clocked at 100MHz, FACS can process L1 requests through its 2-stage 

pipeline at 100 million references per second. However for the L2 cache each reference requires 4 cycles 

to be processed. As an effect the actual processing rate of the FACS L2 cache is 25 million references per 

second. However in almost all cases this does not slow down the aggregate throughput of FACS, since the 

L1 caches act as “reference filter” for the L2 cache. In other words only L1 cache misses will be 

forwarded to the L2 cache. If the average L1 hit rate is above 75% then FACS can achieve is peak 

throughput of 100 million references per second. In the very rare case, where the L1 average miss rate is 

above 25%, FACS throughput will decrease. The worst case scenario, where every memory reference 

misses in the L1 caches and has to travel to the L2 cache, limits the throughput of FACS to 25 million 

references per second, which is still enormously higher than what the software can achieve. 

 

Figure 7: Performance of FACS: Common vs. Worst Case 
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Figure 6: Performance of FACS vs. TraceCMPFlex 



Conclusions & Future Work 

In this report we presented FACS, a fully parameterizable FPGA-based hardware piranha-based 

multiprocessor cache model that precisely replicates the behavior of the existing software-based 

TraceCMPFlex cache model. Our performance results show that FACS outperforms the software cache 

model by 2 to 3 orders of magnitude, achieving an aggregate throughput of 100 million references per 

second and a speedup of roughly 200x over the software model. FACS is a proof of concept project that 

shows the potential of FPGA-accelerated simulation. FACS can be easily integrated with the hybrid 

FPGA-accelerated simulator ProtoFlex to achieve speedups of about 100x when compared to Simics and 

the TraceCMPFlex software cache model. We are very satisfied with the results of our project and are 

proud to say that we surpassed our initial 125% goal and also partially reached our 150% goal. 

FACS opens up many opportunities for future work. As a first step one could add finer grain 

statistics counters to get a better understanding of the detailed cache behavior. Another interesting 

direction would be to build a distributed hardware cache model that utilizes more than one FPGA. This 

would allow for a more scalable solution that allows the simulation of larger multiprocessor cache 

systems. Even further, it would be interesting to experiment with other multiprocessor cache models and 

see how easily they could be ported to hardware and what speedup they can achieve. 
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Appendix A  

Verifying our cache model 

A large portion of our time and effort in this project went towards verifying the functional correctness of 

FACS. We used Modelsim SE 6.1e to simulate our verilog hardware model and compared the hardware 

statistics results with the statistics obtained from Flexus and the TraceCMPFlex software cache model. 

Reference Generator 

We used simpler manually generated traces, as well as larger traces generated by Flexus using the 

TRACE-OUT mode of the modified DecoupledFeeder component. Each line in a trace file represents a 

memory reference, represented in the following format: 

<CPUID> <ADDRESS>  <RorW>  <IorD> 

where RorW and IorD are 1-bit values indicating whether a particular reference is a memory read or write 

(RorW=1 or RorW=0) and whether a it should be sent to the instruction or the data cache (IorD=1 or 

IorD=0). CPUID is a 4-bit quantity that identifies the processor that made the request (0-15) and 

ADDRESS is a 32-bit quantity used to store the reference address. 

There are four possible different types of memory references:  

1. Data Read (Load): For instance “6 136d369c 1 0” indicates that CPU 6 issued a data load from 

memory address 0x136D369C. 

 
2. Data Write (Store): For instance “4 1324c345 0 0” indicates that CPU4 issued a data store to 

memory address 0x1324C345. 

 
3. Instruction Read (Fetch): For instance “9 a0f9790 1 1” means CPU9 issued a fetch from 

memory address 0xA0F9790.   

 
4. Instruction Write: While instruction writes are theoretically possible they do not appear in actual 

workloads. However they are supported by FACS. 

The generated traces were fed to both FACS and Flexus using the TRACE-IN mode of the 

DecoupledFeeder component. The statistics from both models were then collected and compared against 

each other using the comparator tool described in the software implementation section. 



Details about the Statistics  

TraceCMPFlex collects very detailed statistics for its cache model. After simulating the execution of 

a workload, the statistics are dumped to the stats_db.out.gz file. Out of the many statistics that are kept by 

TraceCMPFlex the following are of interest to us: 

 

 

 

 

 

 

The L1 cache statistics obtained from Flexus and TraceCMPFlex match directly to those from 

FACS. For the L2 cache statistics, some additional work needs to be done. FACS maintains four counters 

for L2 cache statistics: 

1. L2_MissesfromL1:Read 

2. L2_MissesfromL1:Write 

3. L2_MissesfromMem:Read 

4. L2_MissesfromMem:Write 

L2_MissesfromMem:[Read, Write] corresponds to the case where an L1 cache has a local miss, and 

there are no other L1 caches that contain the requested block. In this case, L1 needs to bring in the block 

from the main memory, and the block gets stored directly into the requesting L1 cache and not the L2 

cache. 

L2_MissesfromL1:[Read, Write] corresponds to the case where an L1 faces a local miss, and the 

requested block resides in the L1 cache of another processor. In this case, the requesting L1 cache brings 

in the block from the other L1 cache, and the requested block is also inserted into the L2 cache.  

The following tables summarize the relationship between the TraceCMPFlex and FACS statistics: 

 

 

L1cache statistics L2 cache statistics 

NN-L1[I,D]-Hits:Read 
NN-L1[I,D]-Hits:Write 
NN-L1[I,D]-Misses:Read 
NN-L1[I,D]-Misses:Write 
NN-L1[I,D]-Misses:Upgrade 

where NN is the CPUID 

sys-L2-Hits:Fetch 

sys-L2-Hits:Read 

sys-L2-Hits:Write 

sys-L2-Hits:Custom:From:kUpgradeMiss:WriteReq 

sys-L2-Misses:Fetch 

sys-L2-Misses:Read 

sys-L2-Misses:Write 



For the L1 cache statistics there is a direct mapping: 

TraceCMPFlex   FACS 
NN-L1[I,D]-Hits:Read 

NN-L1[I,D]-Hits:Write 

NN-L1[I,D]-Misses:Read 

NN-L1[I,D]-Misses:Write 
NN-L1[I,D]-Misses:Upgrade 

  

where NN is the CPUID 

= 

= 

= 

= 

= 

NN-L1[I,D]-Hits:Read 

NN-L1[I,D]-Hits:Write 

NN-L1[I,D]-Misses:Read 

NN-L1[I,D]-Misses:Write 
NN-L1[I,D]-Misses:Upgrade 

  

 

For the L2 cache statistics the following formulas have to be used: 

TraceCMPFlex  FACS 

sys-L2-Hits:Fetch + L2-Hits:Read 

sys-L2-Hits:Write + sys-L2-Hits:Custom:From:kUpgradeMiss:WriteReq 

sys-L2-Misses:Fetch + L2-Misses:Read 

sys-L2-Misses:Write 

= 

= 

= 

= 

L2_Hits:Read + L2_MissesfromL1:Read 

L2_Hits:Write + L2_MissesfromL1:Write 

L2_MissesfromMem:Read 

L2_MissesfromMem:Write 

As mentioned earlier, static traces are generated using the TRACE-OUT mode of the 

DecoupledFeeder component. We fed the static traces into TraceCMPFlex and FACS and analyzed the 

cache statistics from both. We also present results from large trace files, for purpose of thorough testing.  

Simple memory reference traces 

The following table shows the contents of a simple trace file. 

Reference 
Number 

CPU ID Address RorW IorD 

1 
2 
3 
4 

5 
6 
7 
8 
9 

1 
1 
1 
2 
2 
2 
2 
2 
2 

103C0 
103C2 
103C4 
103C6 
103C8 
183C8 
183C8 
183C8 
183C8 

1 
0 
1 
1 
0 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

Here is what happens at each instruction. 

1. CPU 1 reads (loads) from 0x103C0 (TAG=0x2, INDEX=0xf, OFFSET=0x0) 

Expected result is a L1 read miss.  

2. CPU 1 writes (stores) to 0x103C2 (TAG=0x2, INDEX=0xf, OFFSET=0x2) 

Expected result is a write miss that causes an upgrade.  

3. CPU 1 reads (loads) from 0x103C4 (TAG=0x2, INDEX=0xf, OFFSET=0x4) 

Expected result is a read hit.  

4. CPU 2 reads (loads) from 0x103C6 (TAG=0x2, INDEX=0xf, OFFSET=0x6) 

Expected result is a read miss that will also downgrade the CPU1 cache block. 

5. CPU2 writes (stores) to 0x103C8 (TAG=0x2, INDEX=0xf, OFFSET=0x8) 

Expected result is a write miss that causes an upgrade and also invalidates CPU1 cache block. 



6. CPU 2 Reads (loads) from 0x183C8 (TAG=0x3, INDEX=0xf, OFFSET=0x8) 

Expected result is a read miss that fills the second way of the cache set at index 0xF. 

7. CPU 2 Reads (loads) from 0x103C8 (TAG=0x2, INDEX=0xf, OFFSET=0x8) 

Expected result is a read hit.  

8. CPU 2 Reads (loads) from 0x283C8 (TAG=0x5, INDEX=0xf, OFFSET=0x8) 

Expected result is a read miss that replaces the second way of cache (replacing 0x183C8). 

9. CPU 2 Reads (loads) from 0x183C8 (TAG=0x3, INDEX=0xf, OFFSET=0x8) 

Expected result is a read miss. 

Figure A-1 shows the Modelsim waveform window, where we can observe the following events: 

1. CPU1 gets a read miss 

2. CPU1 gets a write miss upgrade 

3. CPU1 gets a read hit 

4. CPU2 gets a read miss 

5. CPU2 gets a write miss upgrade 

6. CPU2 gets a read miss 

7. CPU2 gets a read hit 

8. CPU2 gets a read miss 

9. CPU2 gets a read miss 

 

Figure A-1: Modelsim simulation wave window for pathological case 

  

 

 

 



Figure A-2 is a snapshot of the Flexus and TraceCMPFlex console output: 

 

Figure A-2: Flexus statistics 

Large memory reference traces 

We also tested both models using large trace files generated from Flexus by running multiprocessor 

server and scientific workloads. Here we show statistics from both the software TraceCMPFlex cache 

model and the FACS hardware cache model running a 16-cpu version of the apache webserver with 40 

clients. 

L1 statistics 

Table A-1 shows the sum of individual counters for 16 processors. The corresponding counters 

from TraceCMPFlex and FACS match perfectly. 

 1 million mem 

refs 

2 million mem 

refs 

3 million mem 

refs 

4 million mem 

refs 

SW HW SW HW SW HW SW HW 

L1D-Hits:Read 145740 145740 288006 288006 439323 439323 594804 594804 

L1D-Hits:Write 62305 62305 124439 124439 183886 183886 242926 242926 

L1D-Misses:Read 8646 8646 16309 16309 24408 24408 31105 31105 

L1D-Misses:Write 2442 2442 4679 4679 6436 6436 7925 7925 

L1D-Misses:Upgrade 2649 2649 5267 5267 7900 7900 10151 10151 

L1I-Hits:Read 762261 762261 1532763 1532763 2296802 2296802 3060975 3060975 

L1I-Hits:Write 0 0 0 0 0 0 0 0 

L1I-Misses:Read 15957 15957 28537 28537 41245 41245 52114 52114 

L1I-Misses:Write 0 0 0 0 0 0 0 0 

L1I-Misses:Upgrade 0 0 0 0 0 0 0 0 

Table A-1: L1 cache statistics from TraceCMPFlex and FACS 



L2 statistics 

 Table A-2 shows the L2 cache statistics from TraceCMPFlex and FACS. Once again after applying the 

above mentioned formulas the software and hardware results match perfectly. 

 

1 million 2 million 

SW HW SW HW 

L2Hits:Fetch 10611 L2Hits:Read 9975 L2Hits:Fetch 21392 L2Hits:Read 23588 

L2Hits:Read 2896 L2MissesfromL1: 

Read 

3532 L2Hits:Read 6705 L2MissesfromL1: 

Read 

4509 

L2Hits:Fetch+ 
L2Hits:Read 

13507 L2Hits:Read+ 
L2MissesfromL1: 
Read 

13507 L2Hits:Fetch+ 
L2Hits:Read 

28097 L2Hits:Read+ 
L2MissesfromL1: 
Read 

28097 

L2Hits:Write 217 L2Hits:Write 179 L2Hits:Write 548 L2Hits:Write 482 

L2Hits:Custom 13 L2MfL1:Write 51 L2Hits:Custom 50 L2MfL1:Write 116 

L2Hits:Read+ 
L2Hits:Custom 

230 L2Hits:Write+ 
L2MfL1:Write 

230 L2Hits:Read+ 
L2Hits:Custom 

598 L2Hits:Write+ 
L2MfL1:Write 

598 

L2Misses:Fecth 5346 L2Missesfrom 

Mem:Read 

11096 L2Misses:Fecth 7145 L2Missesfrom 

Mem:Read 

16749 

L2Misses:Read 5750 L2Misses:Read 9604 

L2Misses:Ft+Rd 11096 L2Misses:Ft+Rd 16749 

L2Misses:Write 2212 L2MfMem:Write 2212 L2Misses:Write 4081 L2MfMem:Write 4081 

3 million 4 million 

SW HW SW HW 

L2Hits:Fetch 33711 L2Hits:Read 39555 L2Hits:Fetch 44111 L2Hits:Read 53434 

L2Hits:Read 11319 L2MissesfromL1: 

Read 

5475 L2Hits:Read 15257 L2MissesfromL1: 

Read 

5934 

L2Hits:Fetch+ 
L2Hits:Read 

45030 L2Hits:Read+ 
L2MissesfromL1: 
Read 

45030 L2Hits:Fetch+ 
L2Hits:Read 

59367 L2Hits:Read+ 
L2MissesfromL1: 
Read 

59368 

L2Hits:Write 1030 L2Hits:Write 907 L2Hits:Write 1558 L2Hits:Write 1433 

L2Hits:Custom 82 L2MfL1:Write 205 L2Hits:Custom 127 L2MfL1:Write 252 

L2Hits:Read+ 
L2Hits:Custom 

1112 L2Hits:Write+ 
L2MfL1:Write 

1112 L2Hits:Read+ 
L2Hits:Custom 

1685 L2Hits:Write+ 
L2MfL1:Write 

1685 

L2Misses:Fecth 7534 L2Missesfrom 

Mem:Read 

20623 L2Misses:Fecth 8003 L2Missesfrom 

Mem:Read 

23851 

 

 
L2Misses:Read 13089 L2Misses:Read 15848 

L2Misses:Ft+Rd 20623 L2Misses:Ft+Rd 23851 

L2Misses:Write 5324 L2MfMem:Write 5324 L2Misses:Write 6240 L2MfMem:Write 6240 

 

Table A-2: L2 cache statistics from Flexus and FACS. 


