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Abstract

Evidence grids provide a uniform representation for
fusing temporally and spatially distinct sensor read-
ings. However, the use of evidence grids requires that
the robot be localized within its environment. Odome-
try errors typically accumulate over time, making lo-
calization estimates degrade, and introducing signifi-
cant errors into evidence grids as they are built. We
have addressed this problem by developing a method
for “continuous localization”, in which the robot cor-
rects its localization estimates incrementally and on
the fly. Assuming the mobile robot has a map of its
environment represented as an evidence grid, local-
ization is achieved by building a series of “local per-
ception grids” based on localized sensor readings and
the current odometry, and then registering the local
and global grids. The registration produces an offset
which is used to correct the odometry. Results are
gwen on the effectiveness of this method, and quantify
the improvement of continuous localization over dead
reckoning. We also compare different techniques for
matching evidence grids and for searching registration
offsets.

1 Introduction

For mobile robots to perform autonomously in dy-
namic environments, they need to have the ability to
determine their location in their environment. Previ-
ous techniques for localization have looked at learning
and recognizing landmarks in the environment, either
as geometric representations or as a representation of
sensor readings. In this study, the robot does not need
to rely on the presence of specific landmarks, but in-
stead uses the entire local environment of the robot
to determine its location.

An important issue in localization is how often to
relocalize the robot in its environment. Many exist-
ing techniques only occasionally relocalize when either
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an error in position is detected or after an unaccept-
able level of positional error has accumulated. Many
techniques attempt to model the actual error bounds.
Here we propose to use continuous localization (CL).
In CL, the robot is continuously relocalized making
regular small corrections instead of occasionally mak-
ing large corrections. The benefit is that the error is
known to be small, and fast correction techniques can
be used.

Other important issues are the sensors used for lo-
calization and the representation used to capture the
sensed data. A wide variety of representations and
sensors have been used, but in most cases, the data
has come from a single sensor type, such as stereo
optic vision. In this work, an evidence grid represen-
tation has been used [3, 8, 9]. Evidence grids provide a
uniform representation for fusing temporally and spa-
tially distinct sensor readings. All robot sensors can
contribute to the task of localization, and the system
is robust in the face of sensor failures and noise in
individual sensor readings.

In this work, we have an a priori long-term map!
which is an evidence grid representation of the re-
gion (room). The robot builds short-term perception
maps of its immediate environment. These maps are
of a short duration, and typically contain only very
small amounts of positional or rotational error. These
short term maps are then used to position the robot
within the long-term map via a registration process,
the offset of which is used to correct the robot’s cur-
rent odometry.

In this paper, we show that this technique is capa-
ble of eliminating accumulated odometry errors with
a resulting constant translational error on the order of
five inches, or approximately the size of an evidence
grid cell. We also compare different techniques for
matching evidence grids and for searching for regis-
tration offsets.

In Section 2, we briefly describe our representation

!Current work is examining how to simultaneously learn
maps while using them to stay localized[12].



for long-term and short-term perception maps, and
describe how these maps may be registered. In Sec-
tion 3, the method for CL is described. The robotic
platform used in our experiments is presented in Sec-
tion 4. We give the results of several experiments
that demonstrate the technique’s ability in Section 5.
In Section 6 we describe related work, and we give a
conclusion in Section 7.

2 Representation

With evidence grid representations a volume is di-
vided into cells. Each cell contains a real value in
the range (—1,1) that represents the amount of evi-
dence that a cell is occupied (1) or unoccupied (-1),
or indicates that there is not enough information to
determine the occupancy of the cell®>. Cells are up-
dated from sensor readings that are filtered through
a stochastic sensor model that determines the sensor
reading’s influence on each cell, based on the pose
(position and orientation) of the sensor at the time
of the reading. After each sensor reading, all relevant
cells are updated using the new evidence from the sen-
sor. Several techniques have been used to update the
evidence in the evidence grid representation includ-
ing Bayesian techniques [8, 3], and Dempster-Shafer
techniques [9]. In the work reported here, Bayesian
updating is used.

Although evidence grids may represent a three-
dimensional space, our initial results examine a single
horizontal layer of the evidence grid that is located at
the height of the sensors. In Section 7, we will discuss
the use of all horizontal layers of the evidence grid.

Evidence grids have the advantage that they can
perform sensor fusion, that is, they can combine the
results from different sensors into the same represen-
tation. Evidence grids can also be updated in real
time, allowing them to be successfully used for CL.
Also, evidence grids are responsive to slow environ-
mental changes; changes in the environment will be
updated in the representation with additional sensor
readings.

Many researchers currently use evidence grid rep-
resentations in mobile robotics. One problem of using
this representation of space is that the updating of
the map with sensor readings requires that the cur-
rent position and pose of the sensor be known. Unfor-
tunately, odometry errors typically accumulate over

2In the Bayesian method, a value of 0 indicates that being
occupied or being empty are equally likely, and this value is
generally used as the priors. In the Dempster-Shafer method,
not having enough evidence can be explicitly modeled.
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time, making localization estimates degrade, and in-
troducing significant errors into evidence grids as they
are built. We have addressed this problem by devel-
oping the CL technique, in which the robot corrects
its localization estimates incrementally and on the fly.

2.1 Long-term maps

A long-term map is an evidence grid representa-
tion of the environment that is built from many sen-
sor readings, over a long time period in that region of
space. In this paper, the evidence grids are produced
in advance. Typically, each evidence grid will repre-
sent approximately one “room” in the environment.
All sensor data contributes to this map, and this is
the map that is used by other robotic processes, such
as navigation and path planning. Fig. 1 shows an
evidence grid of the robotic laboratory at NCARAL
The white space represents cells that have great evi-
dence of the cell not being occupied (free space), the
larger the circle, the greater the evidence of the cell
being occupied. The medium size circles (like in the
outer parts of Fig. 1) indicate cells where no evidence
exists.

Figure 1: Long-term map of laboratory

2.2 Short-term perception maps

A short-term (or local) perception map represents
the immediate temporal and spatial environment of
the robot as an evidence grid. Only very recent sen-
sor readings of the robot contribute to the local per-
ception map. Several local perception maps of the
robot’s environment may exist at the same time, each
with a different amount of sensor data contributing to
the “maturity” of that map. A short-term perception



map is considered mature when it has reached a limit
in the amount of positional error that may have ac-
cumulated in the map. After a map has matured, it
is used for correction of positional error, and then it
is discarded.

Fig. 2 shows a short-term perception map recorded
by the robot while it was in the upper, left hand corner
of the room in Fig. 1. The circles and white space
have the same meaning as in the previous figure. Note
that objects are present in the short-term map that
were not present when the long-term map was created.

Figure 2: A short-term perception map

3 Continuous Localization

CL exploits the fact that the robot’s odometric er-
ror usually increases gradually over time, except in
extreme cases such as when the robot hits an obsta-
cle, etc. By performing relocalization often, less effort
is required to correct the error in odometry.

Fig. 3 shows a diagram of the CL process. Short-
term perception maps are generated at regular inter-
vals and several are maintained in memory. At the
beginning of each interval, a new short-term percep-
tion map is created. During the time interval, new
sensor data are fed to the new map and the previous
maps still in memory. At the end of the interval, the
oldest (most mature) short-term map is used to per-
form the registration against the long-term map and
then discarded. The number of short-term maps that
exist simultaneously and the amount of data that is
entered into each map are runtime parameters of the
system.

The registration of the short-term map to the long-
term evidence grid produces an offset in both trans-
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lation and rotation between the two. This offset, re-
quired to make the short-term map align with the
longterm-map, is the same offset required to align the
robot with the world, and is directly applied to the
robot odometry (taking into account any robot mo-
tion since the registration was performed). All robot
processes then use this new odometry.

The registration process involves a search in the
space of offsets in translation and rotation that mini-
mizes the error in the match between the short-term
and long-term maps. Since we expect the odometry
error to be small, we restrict the registration search to
be between + 6 inches in translation and +2° in angle.
(These values can also be changed as runtime parame-
ters.) This restricted search space allows the search to
be completed quickly, specifically before the interval
expires and the next registration is attempted.

In Section 5.1, we will present an experiment that
shows the effectiveness of CL. In Section 5.2, the ef-
fectiveness of several search and match functions are
examined in detail. As will be shown, the technique is
robust to several methods of both search and match
functions. In the next section, we will describe the
robot platform.

4 Robot and sensor platform

A Nomadic Technologies Nomad 200 robot is used
in the following experiments. The robot uses a three-
wheel synchronized steering system. The robot is con-
trolled by an on-board Pentium-based computer that
is running the Linux operating system. The robot
also has a radio ethernet, allowing processes to run
concurrently on other workstations on the network.

Although the Nomad 200 has other sensors, only
two types of sensors are used for CL in these exper-
iments. A set of 16 sonar sensors are evenly spaced
around the robot approximately 28 inches above the
floor, each with a half-cone of 11.5 degrees and a
range from six inches to ten feet. The robot also has
a triangulation-based structured light range finder.
This system returns 482 range data in a 15 degree
arc parallel to and 31 inches above the floor. The
range of this system, as configured, is 12 feet.

For use with the evidence grids, each sensor has a
sensor model which determines how each cell in the
evidence grid is updated based on the sensor position
and datum returned. For the sonar sensor model, grid
cells in an arc at the sensed range receive a higher ev-
idence of being occupied, while cells between the sen-
sor and the sensed distance receive reduced evidence
of being occupied. Since the sonars are more likely
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Figure 3: Continuous localization

to detect an object near its axis, cells closer to the
sensor’s axis receive larger adjustments than cells far
from the axis. More information on the sonar sensor
model is available in [8]. The sensor model for the
structured light range finder provides strong evidence
at the cell where the range datum lies, but makes no
adjustment to any intermediate cells.

Sonar sensors can provide only coarse evidence of
occupied space due to their wide field, but they are
very effective at determining empty space, as an ob-
ject anywhere within that space would likely have re-
sulted in a shorter sensed range. The structured light
range finder has the opposite properties. It can sense
occupied space at a high resolution, but its horizontal,
2-D nature prevents it from sensing objects above or
below the structured light plane. It therefore cannot
be used with any confidence to rule the intervening
space as empty.

5 Experiments

Several experiments were performed to determine
the effectiveness of CL at reducing odometric error,
and to determine which of several match functions
and search functions yield better results.

5.1 Effectiveness of CL

The first experiment was conducted in a room mea-
suring roughly 26 feet by 30 feet, open in the center
with bookcases, desks, and chairs around the edges
of the room. The robot was commanded to follow a
square path near the center of the room, 8 feet on
each side, by traveling to each corner’s coordinates

in turn. CL ran independently of the motion pro-
cess, maintaining 4 short-term perception maps and
relocalizing approximately every 8 feet (each mature
short-term map contained sensor data gathered dur-
ing the most recent 32 ft of travel). The registration
search method used was center-of-mass with the bi-
nary match function (described in detail in section
5.2).

Ten runs were made, with each run consisting of 80
laps around the square, a distance of 2560 feet (ap-
proximately 2 hours duration). The distance between
the robot’s odometic position and its true position was
computed at the same corner for each lap. This mea-
sure includes rotational error, as motion causes error
in orientation to be reflected as an error in position.

The results are displayed in Fig. 4 as an aver-
age across all ten runs. The robot’s nonlocalized
pose (simple dead-reckoning) steadily drifted, grow-
ing without bound. The localized curve shows that
continuous localization was able to keep the robot’s
pose error at a constant level, averaging 5.35 inches
(136 mm) and with a standard deviation of 2.08 inches
(53 mm) across all points of all runs.

5.2 Search and Match Functions

The second set of experiments were run to deter-
mine the best of several search routines and matching
functions that could be used to register the long-term
and short-term perception maps.

In order to describe the search routines, it is use-
ful to first describe the search space in which they
work. The search space is all possible poses within
+ 6 inches in translation and +2° in rotation of the
robot’s current pose. This corresponds to a 3-D space
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Figure 4: Experiment 1: Effect of continuous local-
ization

with axes x, y and theta.

The two search routines tested were an iterated hill-
climber and a center-of-mass calculation.

The iterated hillclimber search (designated in the
text and graphs as H) uses an initial resolution to di-
vide the space into pose cells. The match between the
short-term map and the long-term map is computed
for the robot’s pose and the center of the 26 immedi-
ately neighboring pose cells (3% — 1). If a neighbor is
found with a better match, then the process repeats
using that pose cell as the center. If no neighbor is
found to be better, then the hillclimber re-divides the
space at double the resolution and repeats the process.
The search stops when a predetermined resolution is
reached. For the experiments reported here, an initial
step size of 1.5 inches and 1.25 degrees was used, with
a final resolution of 0.375 inches and 0.3125 degrees.

The “center-of-mass” search (designated in this
paper as C) similarly divides the search space into
pose cells, but picks a random pose within each pose
cell and uses those random poses to compute a set
of match scores that are distributed throughout the
search space. The match scores are normalized to the
range [0,1], raised to the fourth power to exaggerate
the peak, and then a center-of mass calculation is per-
formed for all cells. The exaggeration of the peak is
necessary because the match score is typically very
flat within the small search space, and without it the
center-of-mass calculation would always pick a pose
near the center of the search space (very close to the
robot’s current pose). The center-of-mass calculation

is preferable to simply choosing the pose cell with the
maximum score because the sparse sampling of the
space (one pose per pose cell) can create additional
noise, and sampling at a higher resolution would be
computationally prohibitive for real time operation.

The two match functions examined in this work
are designated the binary match (referred to in this
paper as B), and the product match (referred to in this
paper as P). For both functions, the short-term map
is aligned with the long-term map according to the
pose from the pose cell the search is processing. The
evidence from each grid cell of the short-term map is
compared to the spatially-correspondent grid cell of
the long-term map, and the score summed across all
grid cells. Given the alignment for which the match
score is to be computed, if Cy, is the corresponding
cell in the long-term map to the short-term map cell
Cs, then we define the match score:

MatchScore = Z CellScore(Cs,, Cr;)
allCs

For each match function, the cell scores are de-
termined as follows. The binary match function (B)
compares the cells’ evidence for simple agreement. It
returns 1 if the cells agree occupied or agree empty,
and returns 0 if they disagree or if either cell has no
evidence (a value of 0).

1 f0<Cs,,0<Cy,
CellScore(Cs,, Cr,) =< 1 if0>Cs,,0>Cy,
0 otherwise

The product match function (P) determines the
degree of agreement, taking the product of the cells’
actual evidence, a value between -1 (empty) and 1
(occupied). Cells in agreement produce a score in
the range (0, 1], depending on the confidence of their
individual evidence. Cells in disagreement produce a
score in the range [-1, 0), and if either cell has no
evidence, a score of 0 is produced.

CellScore(Cs;, C1.) = Cs, Cr,

Early work with the CL method revealed that the
search space had large regions in which many regis-
tration poses resulted in the same match scores. This
effect was suspected of causing the hillclimber to give
up early due to the inability to find a better neighbor
in the search space, resulting in a non-optimal choice
of pose. To counter this problem, interpolation (des-
ignated with a I in the following text and graphs)
can be performed on the long-term grid cells, such
that the center of each grid cell retains its original ev-
idence, but other locations within that grid cell have
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evidence values bilinearly interpolated with neighbor-
ing grid cells. When the search routine aligns the
center of the short-term map cells with the longterm
map cells, the interpolated evidence value is used for
computing the match score. Small variations in pose
(map alignment) can thus yield differing correspond-
ing long-term map cell values and thus differing over-
all match scores.

To evaluate the various combinations, the same en-
vironment was used as in the first experiment, with
the robot following the same square path and with
pose error being measured at the same corner. Eight
trials were conducted, with each trial being a unique
combination of search routine, match function and in-
terpolation. (In the following figures and discussion,
each trial is designated by the combination of letters
H,C, B, P, I indicating which of the above techniques
are being used. For each trial, 5 runs were made (ex-
cept CP, CPI which had 10 runs). Each run consisted
of 40 measured points (40 laps), with the pose error
measured as before.

Shown in Fig. 5 is the average pose error across
all runs for each trial. Error bars indicate a 95%
confidence interval. As a group, the center-of-mass

combinations were significantly better (p = .01) than °

those using the hillclimber. In all cases, the binary
and product match functions performed equivalently.
Being of roughly comparable computational cost, we
have chosen the product match function (B).

The CP and CPI combinations did not have sig-
nificantly different performance, nor did interpola-
tion have any consistent effect overall. Interpolation’s
smoothing of the search space appears unnecessary
when used with the center-of-mass search, which per-
forms its own smoothing during the averaging process
inherent to it. Since interpolation incurs additional
computational cost without providing any additional
benefit, the CP combination was selected for future
work.

6 Related work

In [11}], Yamauchi uses evidence grids to perform
occasional localization by matching evidence grids. In
that study, evidence grids are created for each specific
“place” along the robots path. When the robot revis-
ited a specific place, it created a new evidence grid to
match against the evidence grid for that location to
correct its position.

An alternate search method by Lu [7] looks promis-
ing although it is intended for free-form scans without
the use of evidence grids, and the effect of using it on
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Figure 5: Experiment 2: Different search and match
functions compared

the artificially rasterized data of evidence grids is an
open question.

In an approach similar to that presented here,
Schiele and Crowley [10] compared grid matching to
other localization methods that included detecting
and matching edge segments in the evidence grids.
Their work did not give quantitative results on match-
ing evidence grids, nor did it examine various meth-
ods for matching or searching for poses. The work
presented here seeks to determine the sensitivity of
grid matching to changes in some of its fundamental
parameters and determine suitable values for them.

Many localization techniques rely on structures in
the environment that can serve as landmarks, for ex-
ample, vertical structures such as door posts and poles
[2], large planes [5], or other geometric beacons [6].
Using specific landmarks often requires the robot to
perform special maneuvers in order to locate or recog-
nize these landmarks [1]. In our work, such maneuvers
are unnecessary. Because our method uses all avail-
able sensor data without the requirement of specific
features in the environment, the robot can localize it-
self transparently while carrying out its assigned task.

7 Conclusions/continued work

Many match functions and search methods are pos-
sible and we have only shown the performance of a few
combinations. However, the method of continuous lo-
calization presented here has been shown to be robust



to the registration search method and match function.
We have achieved an average pose error equivalent to
the size of the evidence grid cell, and do not believe
that other combinations would produce significantly
better performance. Because evidence grids can fuse
sensor readings, other combinations of sensors can be
used. In future studies, we are interested in how other
combinations of sensors will perform.

One problem others have noted with evidence grids
is the inability to handle dynamic environments. We
are looking at a method of updating the long-term
map with the short-term map in order to track slow
changes in the room, such as moved furniture, doors
opened or closed, and blocked passages. Initial results
indicate that the long-term map can be adaptive to
changing environments, and still allow CL to work
well [4].

A second problem occurs when there is a sudden
large change in the robot’s odometry, such as a hard
collision that allows the wheels to slip. We are inves-
tigating techniques that will allow the CL algorithm
to detect these conditions, and expand the range of
the search in pose space.

We believe that the CL method will be robust to
the underlying grid representation. We will demon-
strate the CL method using a Dempster-Shafer ver-
sion of evidence grids [9].

Continuing work also includes the integration of
CL with frontier-based exploration [12] in order to
map the room while remaining localized, eliminating
the a priori map requirement and providing an accu-
rate, learned long-term map. Initial results indicate
that accurate maps of the room can be simultaneously
learned and used for continuous localization.
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