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Robot Navigation in Unknown Generalized
Polygonal Terrains Using Vision Sensors

Nageswara S. V. Rao

Abstract— This paper considers the problem of navigating a
point robot in an unknown two-dimensional terrain populated by
disjoint generalized polygonal obstacles. A generalized polygon
consists of a connected sequence of circular arcs and straight-
line segments. The terrain model is not known a priori, but
the robot is equipped with a vision sensor. A discrete vision
sensor detects all visible (from a single position) portions of the
obstacle boundaries in a single scan operation. The navigation
problem deals with moving the robot through the terrain from a
source position to a destination position, and the terrain model
acquisition problem deals with autonomously building a model
of the terrain. A complete solution to either problem is shown
to require an infinite number of scan operations in cusp regions
formed by a pair of convex and concave obstacle edges. Either
problem is considered solved with a precision e if the points that
have not been scanned are those in a cusp region with a clearance
less than € from two obstacle edges. Three methods are proposed
to solve both problems with a precision € based on extensions of
the generalized visibility graph, the generalized Voronoi diagram,
and the trapezoidal decomposition. Then simplified versions of
these structures are proposed to exactly solve the navigation and
terrain model acquisition problems using a continuous vision
sensor that detects all visible obstacle boundaries as the robot
navigates along a path.

I. INTRODUCTION

ATH planning and navigation are very important compo-
nents in the operation of an autonomous mobile robot.

In the past decade, various formulations of this fascinating
" problem have been solved by several researchers; see the
recent book by Latombe [14] and the survey paper by Hwang
and Ahuja [11] for a comprehensive treatment of this topic.
The navigation problem deals with computing a collision-free
path for a robot from a source position to a destination position
in a terrain populated with obstacles. In a known terrain,
a complete model of the terrain is available, and the path
planning can be performed using several techniques such as
retraction, decomposition, etc.; see Sharir [33] for an overview
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of these methods for known terrains. This paper deals with path
planning in an unknown terrain, where the model of the terrain
is not known but a sensor system is employed for navigational
purposes. The navigation algorithms for unknown terrains
are often referred to as the on-line navigation algorithms. In
particular, we are interested in nonheuristic algorithms that can
be shown to be correct within a stated framework of models
for the robot, terrain and sensor system; a survey of these
algorithms can be found in Rao et al. [30] and a comprehensive
treatment of nonheuristic algorithms based on touch sensors
can be found in Lumelsky [18]. For the main part this paper,
we consider a point mobile robot equipped with a discrete
vision sensor, which in a scan operation detects all visible
parts of the obstacle boundary from the present location. We
then briefly consider a continuous vision sensor that detects
all visible parts of the obstacle boundaries as the robot moves
along a path. In general, the operation of a continuous vision
sensor cannot be simulated by a discrete vision sensor if only
a finite number of discrete scan operations are allowed.
Nonheuristic algorithms for the robot navigation in un-
known terrains have been studied by a number of researchers
in the last decade. The navigation algorithms for a point robot
equipped with a touch sensor were pioneered by Lumelsky
and Stepanov [21], and have been extensively studied in
subsequent work [22]. The case of a point robot equipped
with a discrete vision sensor is studied by Rao [27] for terrains
populated by polygonal obstacles; navigation of a polygonal
robot capable of translational motion in the same type of
terrains with the discrete vision sensors is studied by Foux
et al. [8]. The algorithms for a point robot equipped with a
continuous vision sensor are developed by Sutherland [35], and
Lumelsky and Skewis [20]. Cox and Yap [7] present an algo-
rithm to navigate a ladder (rod) with touch sensing capability
in an unknown terrain of polygonal obstacles. Recently, Rimon
and Canny [32] present algorithms to navigate in polyhedral
terrains using abstract sensors called the critical point detectors
and minimum passage detectors. The algorithms of Lumelsky
and Stepanov [21], [20], consider the obstacles of arbitrary
shapes. In these algorithms, the robot does not store the
information about the parts of the terrain that it has sensed.
On the other hand, the algorithms of Oommen er al. [24]
and Rao [27] implement incidental learning, where the robot
builds a model of the terrain by consolidating the sensory
information. Their work, however, is applicable to point
robots navigating only in polygonal terrains; furthermore the
former is restricted only to convex polygonal obstacles. The
navigation of circular robots in two-dimensional polygonal

0018-9472/95$04.00 © 1995 IEEE




948 [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 6, JUNE 1995

obstacles has been studied using techniques based on the
visibility graph [28] and the Voronoi diagram [31]. More
recently, the nonheuristic algorithms that guarantee bounds
on the distance traversed or ratio of the distance traversed
to the shortest path length have received the attention of
several researchers; see Baeza-Yates [2], Papadimitriou and
Yannakakis [25], Blum et al. [5], Bar-Eli et al. [3], and Klein
[13] for interesting formulations in this framework.

The terrain model acquisition problem deals with acquiring
a complete model of the terrain by systematically visiting
portions of the terrain. The motivation for this problem is
that once the terrain model is completely built, the navigation
algorithms of known terrains can be employed. Hence, the
sensor can be switched off (at least in theory), thereby avoiding
acquisition and processing of sensor data. Further, paths with
the shortest distance between the start and goal positions can
be computed using the terrain model (for example, using
the algorithm of Laumond [15] for the present formulation);
note that if the terrain model is not available, no algorithm
can guarantee the shortest paths always. The terrain model
acquisition problem for three-dimensional polyhedral terrains
has been solved by using the visibility graph structure by Rao
et al. [29] for the case of a discrete vision sensor. In the plane,
the restricted visibility graph, which is obtained by removing
all nonconvex vertices from the visibility graph, is shown to
suffice [28]. The same problem can also be solved by using a
method based on the Voronoi diagram [31]. The terrain model
acquisition problem in the case of a robot with a continuous
vision sensor has been solved by Lumelsky et al. [19].

In the case of a discrete vision sensor, there is a unifying
theme behind the solutions of the navigation and terrain model
acquisition problems based on a structure called the navigation
course. The navigation course is a 1l-skeleton (a collection
of one-dimensional curves) embedded in the set of all free-
positions of the robot. Rao [27] showed that if the navigation
course satisfies the four properties of finiteness, connectivity,
terrain-visibility and local-constructibility (precise definitions
of these properties are given in Section II), then both the
problems can be solved by employing a graph search algorithm
on the navigation course. Informally, finiteness requires that
the number of vertices and edges of the navigation course
be finite; connectivity requires the topological connectedness
of the navigation course; terrain visibility requires that every
point in the free-space be visible from some vertices of the
navigation course; and the local-constructibility requires that
the navigation course be incrementally constructible by using
the sensor information. For polygonal terrains, we can employ
navigational structures based on the visibility graphs and the
Voronoi diagrams [27]. In this paper, we present another
method based on the trapezoidal decomposition of free-space;
the idea of this method was first proposed by Kim [12], but
we are unaware of the analysis of this method. It is not direct
to extend the navigational algorithms for polygonal terrains
to the generalized polygonal terrains where the boundary of
each obstacle is a connected sequence of straight-line segments
and circular arcs. As will be discussed later, the properties
of terrain-visibility and local-constructibility are nontrivial to
establish in this case.

Any navigation algorithm for generalized polygonal terrains
(including the algorithms presented in this paper) can be
used to solve the navigation problem for a circular robot
in polygonal terrains. By using the technique of “obstacle
growing,” the path planning problem for a circular robot of
radius r in polygonal terrains can be reduced to that for a
point robot, where each obstacle is expanded by taking its
Minkowski sum with a circle of radius r {17]. A critical
point to note is that in the “grown” terrain, each circular
segment of the boundary has the same radius. However,
the transformation of path planning problem for a point
robot in generalized polygonal terrains to that of a circular
robot in polygonal terrains is, in general, not that direct
(if indeed possible). The main difficulty seems to be that
there is no easy way of taking into account the different
radii of the boundaries of the obstacles. Extension of a path
planning algorithm of a point robot to a circular one has
been proven to be nontrivial even in known terrains. For
example, the solution to the problem of planning a shortest
path for a circular robot does not directly follow from that
for a point robot as shown in Chew [6]; a generalization of
the idea behind this extension is presented by Hershberger
and Guibas [10]. The problem of navigating a point robot
in a “known” generalized polygonal terrain has been solved
by Laumond [15] by using the generalized visibility graph.
The retraction method of O’Dunlaing and Yap [23] can be
used to solve this problem by using the Voronoi diagram
proposed by Yap [35]. In general, the structures of known
terrains satisfy the properties of finiteness and connectivity and
some augmentation to these structures is necessary to ensure
the properties of terrain-visibility and local-constructibility. In
addition to the retraction and visibility graph methods, we also
propose a method based on a trapezoidal decomposition of the
free-space.

We first show a general result that a solution to the navi-
gation problem (or terrain model acquisition problem) could
require an infinite number of scan operations in cusp regions
formed by a pair of convex and concave obstacle edges. Thus
if the obstacle boundaries consist of segments which are of
higher algebraic complexity than a straight line, then it is not
possible to completely solve the navigation problem using a
vision sensor capable of only discrete scan operations. In a
practical scenario consisting of curved objects, we either have
to use additional sensors such as touch sensors, or continuous
vision sensors, etc., or solve the problem approximately. We
first follow the latter approach in this paper, and then show
how a continuous vision sensor can be employed to exactly
solve the problem.

The navigation or terrain model acquisition problem is
considered to be solved with a precision ¢ if only parts of
the free-space that are not scanned consist of points within
a distance of ¢ from two obstacle edges in a cusp region;
these points can be imagined to constitute fictitious obstacles.
Intuitively, we ignore “narrow and curved corridors” by re-
garding them as obstacles. If the robot has nonzero dimensions,
it would be natural to choose a value for € such that the robot
cannot be placed in the regions of fictitious obstacles without
intersecting the obstacles.
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We propose three navigational structures for generalized
polygonal terrains that yield solutions to both the navigation
and terrain model acquisition problems with a precision e.
The first one is obtained by suitably extending the generalized
visibility graph (GVG) of Laumond [15] so that it satisfies
the properties of terrain-visibility and local-constructibility.
The second structure is obtained by extending the generalized
Voronoi .diagram (GVD) of Yap [35]. The third structure is
obtained by using a dual graph based on the trapezoidal
decomposition of the free-space.

‘We then consider the case of continuous vision sensors. The
properties of connectivity and terrain-visibility are sufficient
to ensure that a search algorithm invoked on the navigation
course will solve the navigation and terrain model acquisition
problems. We propose navigation courses with these properties
by using simplified versions of the above three structures.

The organization of this paper is as follows. We discuss
the definitions of the generalized visibility graph, Voronoi dia-
gram, and dual graph based on the trapezoidal decomposition,
and an algorithmic framework for the navigation in unknown
terrains in Section II. In Section III, we present a result on the
number of scan operations needed in solving the navigation
and terrain model acquisition problems. In Section IV, we
present the augmented versions of the generalized visibility
graph, Voronoi diagram and dual graph based on trapezoidal
decomposition that are suitable for navigation in unknown
terrains using a discrete vision sensor. The algorithms for the
navigational problem and terrain model acquisition problem
are briefly discussed in Section V. In Section VI, simplified
navigational courses based on the structures of Section IV
are shown to providé solutions for the navigation and ter-
rain model acquisition problems using a continuous vision
Sensor.

II. PRELIMINARIES

We consider a finite two-dimensional terrain populated by
a finite and nonintersecting set O = {04, Og,---,0,} of
generalized polygons. Each obstacle O; € O is a generalized
polygon with a finite number of vertices, whose boundary is
a sequence of circular arcs and straight-line segments. Let
N denote the total iumber of obstacle vertices. A convex
arc is the circular arc boundary of an obstacle such that the
obstacle locally lies to the right of the local tangent as we
move along the arc in the clockwise direction. If the obstacle
locally extends to the left of the local tangent as we move
along the arc in the clockwise direction, then the arc is called
concave. An obstacle vertex is called a convex vertex if the
angle included inside the obstacle by the edges that meet at
this vertex is less than 180 degrees, and the obstacle vertex is
called concave otherwise.

Let the free-space, denoted by 2, be the subset of the plane
given by NI, OF, where OF denotes the complement of O;
in the plane. Let £ denote the closure of Q2. Two points p and
g in Q are visible to each other if the line segment joining p
and ¢, denoted by g, is completely contained in ©.

The robot, denoted by R, is point-sized and equipped with
a vision sensor. A discrete vision sensor is characterized

@ location of discrete scan

— path along which terrain
is continuously scanned

discrete vision sensor continuous vision sensor

B obstacle
B}  visible region
(@ ®)

Fig. 1. Discrete and continuous vision sensors. In (a) the region visible in a
single scan operation performed from location P is shown. In (b) the visible
region corresponds to a continuous scan along the shown path.

by a scan operation: A scan operation performed from a
position (point) p returns the visibility polygon of p, which
is the general polygonal region consisting of all points in the
terrain visible to p (Fig. 1(a)). A continuous vision sensor
when invoked as the robot moves along a path P returns
the generalized polygonal region such that every point of this
polygon is visible from some point on P (Fig. 1(b)), i.e., the
polygon returned in this case is the union of the visibility
polygons of all points on P. Thus, in general, the operation of
a continuous vision sensor cannot be simulated by a discrete
vision sensor if only a finite number of discrete scan operations
are allowed. For the purpose of navigation, discrete vision
sensors are sufficient for a terrain with polygonal obstacles, but
not so with generalized polygonal obstacles. Continuous vision
sensors are, however, adequate for a terrain with generalized
polygonal obstacles as will be shown later.

We now describe three geometric structures that can be
employed for the navigation in unknown terrains.

1) Generalized Visibility Graph (GVG): Lozano-Perez and
Wesley [17] proposed one of the earliest methods for the
path planning of a polygonal robot translating through a
known polygonal terrain using the visibility graph. Laumond
[15] proposed an algorithm for a polygonal robot through a
known terrain composed of generalized polygons based on
an extension of the visibility graph, called the generalized
visibility graph. The generalized visibility graph is defined as
follows [15]: i) An obstacle vertex p and an arc are visible
to each other if there exists a point ¢ on the arc such that
p and ¢ are mutually visible and the segment pqg is tangent
to the arc; point ¢ of the arc constitutes a fictitious vertex;
ii) Two arcs are visible if they have at least one common
tangent segment pg such that p and ¢ are visible; points p
and q are fictitious vertices. The vertices of the GVG are then
the vertices of the generalized polygons (actual vertices) and
the fictitious vertices resulting from the existence of tangent
segments to the arc. The edges of the GVG are of two types:
straight-line segments and arcs. Two vertices are connected
by a straight line edge if and only if they are visible from
each other. Two vertices are connected by an arc if both
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Fig. 2. Geometrical structures. For navigation in terrain in (a), any of the navigation courses in (b)-(d) can be utilized.

are located on an arc boundary of the same obstacle and we
can traverse along the boundary from one vertex to the other
without encountering any other vertices during the traversal.
Fig. 2(b) shows an example of a GVG. A more general version
of the GVG has been employed by Hershberger and Guibas
[10] to plan paths for a convex translating body in polygonal
terrains. :

2) Voronoi Diagram: The Voronoi diagram corresponding
to a set of line segments and circular arc segments has
been studied by Yap [36]. The distance d(p, s) between a
point p in free-space and a boundary edge s is defined as
inf{d(p, ¢) | ¢ € s}. The clearance of a point p in free-
space with respect to O is the minimum of d(p, s) for some
obstacle edge (segment or an arc) s of O. For z € 2, we define
Near(z) as the set of points that belong to the boundaries
of obstacles O;, ¢ = 1, 2,---,n and are closest (among all
points on the obstacle boundaries) to x in terms of the metric
d. The Voronoi diagram, Vor(O), of the terrain populated
by O is the set {x € Q | Near(z) is a disconnected set},
(i.e., for each z € Vor(O) the set Near(z) contains more
than one topologically connected components or equivalently

z € Vor(O) is nearest two at least two distinct points on
the obstacle boundary).! This definition implies that for each
z € Vor(0O) there are at least two distinct points on the
obstacle boundary that are closest to z in the metric d. See
Fig. 2(c) for an example. In this case, Vor(O) is a union
of O(N) straight lines and algebraic arcs of degree at most
four [36].

3) Dual Graphs Based on Trapezoidal Decomposition:
First, we decompose the free-space into trapezoids by
sweeping a line (for example, moving a horizontal line from
top to bottom) such that whenever the line passes through
a vertex, extend a sweep-line segment from this vertex into
free-space until it touches an obstacle boundary or extends to
infinity as shown in Fig. 2(d). Now free-space is partitioned
into trapezoids. There are a number of ways of defining dual
graphs based on the decomposition, and we consider a version
that is suited for the present problem. For each sweep-line

11f terrain O consists of polygons only, then Near(x) is a finite set of
points, and the Voronoi diagram is then defined as set of points z in free-space
such that Near(x) contains at least two points. If O contains generalized
polygons, Near(z) can contain circular arcs. The current definition is more
appropriate in such cases. See Yap [36] for more details on this aspect.
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segment we have one of the two following cases: (a) if the
segment is finite, the dual graph node corresponds to the mid
point of the segment, or (b) if the segment is not finite, the
dual graph node corresponds to a point on the segment at
a distance § from the vertex. Two nodes belonging to the
boundary of the same trapizoid are connected by an edge of
the dual graph. See Fig. 2(d) for an example of a dual graph
based on the trapezoidal decomposition.

An algorithmic framework for solving the navigation and
terrain model acquisition problems using discrete vision sen-
sors has been proposed by Rao [27]. Here R uses a one-
skeleton (recall that a one-skeleton is a collection of one-
dimensional curves) £(0), called the navigation course, em-
bedded in ©; £(O) can be simply viewed as a combinatorial
graph such that each £-vertex specifies a position for R and
each &-edge (u, v) specifies a path from u to v. To navigate
from s to d, R performs a “graph search” on £(O). Initially
&(0) is not known to R, but it is incrementally constructed
from the sensor operations. From s, R initially checks to see
if d is reachable, and moves to it if it is. If not, R computes a
start £-vertex v, and moves to it, and from v,, R keeps visiting
new ¢-vertices until it reaches a &-vertex vy from which d is
found reachable. In the case d is not reachable from s, R
visits all {-vertices and concludes that the destination is not
reachable. In solving the terrain model acquisition problem, R
systematically visits all £-vertices.

The requirement on the graph search algorithm is that
it must be capable of visiting all vertices of a connected
component of the £(O) in which it is initiated. Examples
for graph search algorithms that can be used here include the
popular depth-first search [1] and A* algorithm [26].

We now consider four properties for £(O):

1) finiteness requires that the number of £-vertices and
edges be finite;

2) terrain-visibility requires that every point in 2 be visible
from some £-vertex; ’

3) connectivity requires that every pair of £-vertices be
connected by a graph path on £(0);

4) local-constructibility requires that the adjacency list of
an &-vertex be computable from the information obtained
by performing a finite number of sensor operations.

Then the following result can be easily shown [27].

Result 1: Given a navigation course £(O) for a terrain O,
that satisfies the properties of finiteness, connectivity, terrain-
visibility and local-constructibility, a graph search algorithm
can be employed to solve the navigation and the terrain model
acquisition problems using a discrete vision sensor.

For two-dimensional terrains with polygonal obstacles,
modified versions of the visibility graph [28] and Voronoi
diagram [31] can be used as £(0). we show in Section IV
that a dual graph based on the trapezoidal decomposition can
also be used as £(O); in general, dual graphs based on other
types of decompositions such as triangulations can also be
used for £(0). In Section IV, we show how modified versions
of these three basic structures can be used in terrains with
generalized polygonal obstacles.

obstacle

(o)

®) ©

Fig. 3. Proof of Theorem 1. An example of cusp region is shown in (a).
When viewed from P along PS the region to the right of RS cannot be seen
from any scan operation performed to the right of PR (b) region not visible
from A; (c) computation of Q.

III. NUMBER OF SCAN OPERATIONS

We now show that an infinite number of scan operations
are needed to ensure a complete solution to the navigation
problem in generalized polygonal terrains? irrespective of the
algorithm and/or solution framework employed. To solve the
navigation problem or the terrain model acquisition problem,
any algorithm must ensure that all points in the free-space are
scanned in a worst-case. Note that at no intermediate point in
the navigation, can an algorithm positively conclude that the
destination is not reachable unless all the connected portions of
the free-space containing the start position has been scanned.

Theorem 1: In a generalized polygonal terrain, scan opera-
tions performed from a finite set of sensing points & may not
suffice to guarantee that every point in free-space is visible
from some point in ©.

Proof: We show that in a particular part of a terrain,
a finite set of sensing points does not suffice to ensure that
every point in free-space has been scanned. Consider a part
of the terrain consisting of a corner formed by a convex and
concave arcs as shown in Fig. 3(a). Let the vertex at which
these two arcs meet be the origin O and recall that the free-
space around this vertex is called the cusp region. We will
show that for every point P = (z,, yp) on the boundary of
outer circle (concave arc), there exists Q@ = (x4, y,) Which
is the intersection of the line joining the origin O to P. The
existence of () implies that there are going to be points inside
the cusp region that are not visible in any scan operation
performed from points to the right of the segment PQ when
viewed from Q. This argument can be formalized as follows.
The line segment OP can be rotated around P such that

2Similar result can be shown when the obstacles are fractals {5] using
essentially the same approach as the proof of Theorem 1.
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obstacle

Fig. 4. A generalized visibility graph that does not satisfy the ter-
rain-visibility property.

PR is the tangent from P to the convex (inner) arc at R
as shown in Fig. 3(a). This tangent PR meets the concave arc
at S (Fig. 3(a)). Then the points to the right of the segment

RS, when viewed along the direction of RS , are not visible
from P.

Given the above result, the theorem can be shown by
contradiction. Consider that a finite set of sensing points ©
exists in contradiction to the statement of the theorem. Then
choose a point A closest to the origin O. Let the distance
between O and A be r. Then consider a circle C' with radius
r centered at O and circle D obtained by extending the outer
concave arc of the corner. Let B be the intersection of C
with the outer circle D obtained by moving along C' in the
clockwise direction from A. Note that in the cusp region every
point visible to A is visible to B and every point not visible
to B is not visible to A (Fig. 3(b)).

Now we shall show that there exists Q for every point P
such that (zq, yq) = (tzp, typ) for some ¢, 0 < ¢ < 1. For
ease of presentation consider that the arcs are located as in
Fig. 3(c). Let the inner arc correspond to circle of radius ;
centered at (0, 71). Let the outer arc correspond to the circle
D of radius 72(> 71) centered at (0, r2). Since P is on outer
circle, we have

wz + yf, = 2r2yp. €))]

The equation of the line through O and P is givenby z = :—"y
. . . . . . P

By simultaneously solving this equation with that of the inner

circle C' we obtain y, = E{Q-%Ey%' Using y, = ty,, We obtain

27‘1
= ———5Yp-
vy

By using (1), we obtain ¢ = 71 /r,. Hence we have 0 < ¢ < 1.
O

Fig. 5. A generalized Voronoi diagram that does not satisfy the lo-
cal-constructibility.

The above theorem shows that it is not always possible to
solve the terrain model acquisition and navigation problems
by using only a finite number of scan operations. But note
that the difficulty is caused by the cusp regions (as described
in the proof of Theorem 1) formed by a pair of convex and
concave arcs. We will show that if we exclude the narrow parts
of the cusp regions, the two problems can be solved using
only a finite number of scan operations. In the cusp regions,
we ignore the portions that correspond to narrow and curved
corridors by suitably defining the precision parameter e. We
ensure that the only parts that are not scanned are those that are
at most within a distance of ¢ from two obstacle boundaries,
in a region formed by a pair of convex and concave obstacle
edges. Note that it is not necessary that the convex and concave
arcs of a cusp region meet at a vertex; at the narrow end of
the corridor formed by the arcs, there could be other obstacle
edges, and they could be left undetected if they are contained
in the fictitious obstacles defined due to precision e.

IV. NAVIGATIONAL COURSES

We now present three types of graph structures that satisfy
the four properties of the navigation course presented in
Section II. These graph structures are based on visibility
graph, Voronoi diagram and trapezoidal decompositions. The
structures described in Section II do not satisfy all the required
properties. It can be seen that a generalized visibility graph
does not always satisfy the terrain-visibility property as shown
in Fig. 4, because the part of the region formed by the two
circular arcs is not visible from any of the vertices of the
generalized visibility graph. In general, the Voronoi diagram
may not satisfy the local-constructibility property as in Fig. 5
since  the robot located at a Voronoi vertex v does not know
where the other vertex w lies; this is because the edge on
the “hind” side of the obstacle vertex determines the location
of w, and in general this edge might not have been sensed
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Fig. 6. (a)-(b). Definition of boundary chains.

yet. We augment these structures so that each satisfies all four
properties of Section II. We also discuss a navigation course
based on the trapezoidal decomposition.

A. Augmented GVG

The Augmented Generalized Visibility Graph (AGVG) is a
graph (V, E) defined as follows:

1) V is the union of the following sets of vertices:

a) the set of actual vertices, which are obstacle vertices;

b)the set of fictitious vertices resulting from the exis-
tence of tangent segments to the arcs (as described in
Section II);

c) the set of boundary vertices, which are obtained as
follows. Consider the convex hull of O whose bound-
ary consists of portions of circular arcs, and straight
line obstacle edges. Now for each circular arc on the
boundary of convex hull of O, we define two chains,
clockwise and anticlockwise, which are obtained by
navigating from one end of the circular arc to the other
end in clockwise and anticlockwise, anticlockwise di-
rections, respectively. Each chain is obtained by the
repeated application of two steps (except for the last
iteration): a) moving a distance of 6 in the direction of
tangent to a point X; b) computing a new tangent to
the arc from X and moving along the tangent to touch
the arc, (as shown in Fig. 6). For the last iteration, we
may travel a distance less than §. We can use either
of the chains in the AGVG. The boundary vertices are
the vertices that belong to one of the chains including
the end vertices;

d)the set of internal vertices which are obtained as
follows. Consider the regions of 2 that are not visible
from any of the vertices belonging the sets defined in
a) and b). These regions can be obtained by imagining
a “sweep” operation from each of the vertices in a)
and b). A sweep operation from a vertex consists of
starting a line segment extended into free-space from
the vertex until it meets an obstacle boundary; then
the line segment is rotated clockwise direction until
it becomes a tangent to the obstacle boundary at the
vertex, and repeating the same in the anti-clockwise
direction. The tip positions of this line segment as it is
rotated together with the end tangents from the vertex
form generalized polygon. The regions of the free-
space that lie outside the union of generalized polygons
obtained from the vertices of a) and b) are of interest
now. The boundary of each such region must consist
of obstacle boundaries which are portions of circular
arcs. Further, it is not possible to form such region
with two convex or two concave vertices as shown

00
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width 2¢
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Fig. 7. Regions formed by “sweeping” operation. In the case of a pair of
convex (or concave) arcs shown in (a) (or in (b)) the region in between the
arcs can be seen from the end points of mutual tangents. In a cusp region (as
in (c)), the interior points are not visible to the points at which tangents are
drawn. A sequence of scan points are needed to explore the cusp region until
a prescribed clearance is observed as shown in (d).

in Fig. 7(a) and (b), because the free-space contained
in between the obstacle edges is seen by performing
scan operations from the nodes indicated. The only
possibility is as in Fig. 7(c). In this case, we define
a suitable internal chain corresponding to the convex
arc similar to the boundary chain, except that § is a
variable chosen such that the chain lies in the free-
space. We curtail the internal chains when the “width”
of the cusp region is smaller than 2¢ as in Fig. 7(d).
2) A line or a convex curve joining the vertices v; and v;
is an edge (v;, v;) € F if and only if it is one of the
following:

a)a part of an obstacle edge (line segment or arc) and
does not contain any other vertices (except at the end
points),

b)a tangent edge between two arcs or between an arc
and an obstacle vertex, which is not intersected by any
obstacle,

c) edges corresponding to a polygonal chain (either clock-
wise or anti-clockwise) of arcs on the convex hull of
o,

d) edges corresponding to the internal chains discussed in
1-d).

We now establish that AGVG satisfies the required four
properties.

1) Finiteness: Assume that the number of convex arcs is
m. By the definition of GVG, the number of actual vertices
is the number of obstacle vertices, N. We now compute the
number of fictitious vertices, f,, boundary vertices, b,, and
internal vertices i,. To compute f, we consider two cases
concerning an arc.
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Case 1: An Arc and an Actual Vertex: Since for each ac-
tual vertex there are at most two tangents to an arc, the number
of fictitious vertices for an arc to an actual vertex is at most 2.
So for this case, the number of fictitious vertices is less than
or equal to 2mN.

Case 2: Two Arcs: For every pair of arcs, there are at most
4 common tangents. Since each tangent edge contributes at
most 2 fictitious vertices, there are at most 8 fictitious vertices
for every pair of arcs. Thus these m arcs generate at most
8("y) fictitious vertices for this case.

Now to compute b,, consider an arc that lies on the
boundary of convex hull of O. Let tan§ = £, where r; is the
radius of the arc. Now for the arc in a worst-case, the number
of boundary vertices corresponding to the arc is [E—nszﬂ‘

For m arcs in a worst-case b, is m[t—a—zf—£1. Similarly we

can show that ¢, is finite. Thus the total number of vertices
of the AGVG is finite.

2) Connectivity: We claim that a shortest path between any
two points in free space consists of i) straight-line segments,
which are either tangent edges between obstacles or straight-
line boundaries of obstacles; ii) convex arcs, which are parts
of obstacle boundaries. Moreover, a shortest path runs through
actual vertices, fictitious vertices and boundary vertices, in
between two consecutive vertices, the subpath belongs to one
of the categories of i) or ii).

We first prove the above claim. The following proof is based
on Hershberger and Guibas [10]. Any shortest path is com-
posed of subpaths that alternately follow obstacle boundaries
and move along tangent edges between obstacles. The subpaths
following obstacle boundaries are made up of obstacle edges.
Thus the above claim is reduced to that of showing every
nonboundary segment on the shortest path is a tangent edge
of the AGVG. Suppose that ;7; lies on a shortest path from
s to g and is not an edge of the AGVG. At least one of the
end points of T;7;, say v;, lies on an obstacle boundary and
v; is not a tangent point of 7;7;. And since v; is not a tangent
point, we can find a point v, which is beyond v; and is visible
from a point v; on T;v;. This means that the supposed shortest
path could be shortened by replacing the subpath from v; to
vi via v; by U;Tk, which contradicts our assumption that v;7;
lies on a shortest path. Now a shortest path between any two
vertices runs through the edges of the AGVG, and hence it
is connected.

3) Local-Constructibility: To show the property of local-
constructibility, consider two cases.

1) A vertex of the AGVG lies inside convex hull of O
(minimal convex region that contains all obstacles of O),
denoted by CH(O), but lies outside the cusp regions.
The neighbors of an actual or a fictitious vertex inside
CH(O) can be obtained from the sensor operation. For
the special case that the edges next to the vertex v are
circular arcs, we use a suitable chain to navigate along
those circular arcs.

2) A vertex v of the AGVG that corresponds to a convex
arc of the boundary of CH(O) or a cusp region. The
adjacency list of v can be computed by suitably adding
boundary vertices.

@ (e)

@ @

Fig. 8. (a)~(j) Terrain-visibility property of augmented GVG. The dotted
circles represent the presence of one or more obstacle polygons.

Hence the AGVG satisfies
property.

4) Terrain-Visibility: Finally we show the property of
terrain-visibility. A point = outside CH(O) will be visible
from either a boundary vertex or an obstacle vertex that lies
on the boundary of CH(O). Also every point in a cusp region
can be seen within precision ¢ due to the corresponding
chains. Now consider a point = located in the free-space
inside CH(O) and not in a cusp region. Pick a point y
outside CH(O). Now consider a shortest path P from z to y.
If P does not touch the boundary of any obstacle, then rotate
the point y around the center z with a radius of the distance
between « to 3. Such rotation must result in some path P that
touches an obstacle boundary; otherwise there is no obstacle
in the terrain. Now move from z towards the first point u of
P that touches the boundary of the obstacle, say O;. Here u
may be an actual vertex or a point on an arc.

1) If u is an actual vertex, z is visible from actual vertex w.

2) Now consider that « is a point on an arc. Move u along

the boundary of obstacles such that line segment T% lies
in the free-space. If we visit an obstacle vertex in this
process then we are done. Otherwise we have the case
shown in Fig. 8(a): there exists an arc b such that both

the local-constructibility
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Fig. 9. Basic cases of generalized Voronoi diagram.

the tangents from z to this arc do not intersect any
obstacle and no obstacles are encountered by the line
segment from z to the boundary of the obstacle as we
move the end point of the segment along the boundary
of the obstacle from one tangent point to the other. To
see that such arc b exists, start rotating the ray from
z through u in the clockwise direction going through
the obstacles. For concreteness assume that the obstacle
containing w is to the right of the line from z through
u. We will not be able to draw a second tangent to this
arc o (containing u) only if the ray becomes tangent to
another obstacle before reaching the second tangent to
arc a. But as we continue the rotation, this event (of not
being able to draw two tangents to a single arc) cannot
indefinitely be continued because we have only finite
number of obstacle. Let b be the arc that supports two
tangents from z at points v, and v, (see Fig. 8(b)); note
here that b could be same as a. Now we have two cases:
a) There is a fictitious vertex on the portion of b between
v; and v, denoted by [v1, v] (Fig. 8(c)); in this case
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we are done because z can be seen from this fictitious
vertex.
b) There are no fictitious vertices in between v, and vs.
It is easily seen that there must be fictitious vertices
on at least one side of [v1, v2]; otherwise the portion
[v1, v2] will be on the convex hull boundary and
hence z will be outside the convex hull (which is a
contradiction). Now we have the following two cases:
» There fictitious vertices only to.one side of
[v1, vp]: without loss of generality assume that
the side having fictitious vertices is obtained by
going clockwise from v; to va. Let v* be the first
fictitious vertex while moving clockwise from v,.
Let arc d be the other arc of the tangent from v*.
The arc d-can be to the left (Fig. 8(e)) or to the
right (Fig. 8(d)) of the tangent as we move away
from v* towards d. Now for Fig. 8(d), x must
be visible from the point at which the tangent
touches d. The case of Fig. 8(e) will not occur
because if we sweep the tangent from v; through
such that the starting point of the tangent moves
in anticlockwise direction, we will generate a
tangent such that there will be a fictitious vertex
in: the anticlockwise direction from v;.
o There are fictitious vertices one both sides of
[v1, vo]. Now sweep (move along the boundary
of the arc containing v; and vy) two tangents as
follows. Start with tangent from v; through = and
sweep it in anticlockwise direction until the first
tangent is obtained. Similarly sweep in the oppo-
site direction from vy. Now there are four regions
formed out of these two tangents as shown in
Fig. 8(f). Out of these four cases, the case shown
in Fig. 8(g) is not possible, because otherwise we
would not be able to draw to tangents to the arc
b during the rotation process. In the other three
cases, £ will be seen from one of the tangent
points as shown in Fig. 8(h) through (j).
In summary we have shown the following theorem.
Theorem 2: The augmented generalized visibility graph
satisfies the properties of finiteness, connectivity, local-
constructibility and terrain-visibility with precision e, i.e.,
the points that are not visible from any vertex are within
a distance of € from two boundary edges in a cusp region
formed by a pair of convex and concave obstacle edges. [

B. Augmented Voronoi Diagram

We consider the general Voronoi diagram as a 1-skeleton
embedded in the free-space 2 (refer to the definition in Section
H). The Voronoi diagram is a collection of 1-dimensional
curves called the Voronoi edges (or V-edges) that end at
the Voronoi vertices (or V-vertices); each Voronoi edge is
formed by the interaction of two basic objects of the obstacle
boundaries. The basic objects are points, line segments, convex
circular arcs and concave circular arcs. Thus the Voronoi edges
are formed by the interaction of pairs of these objects as
summarized in Fig. 9. We have the following cases:
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Fig. 10. Local-constructibility of the augmented Voronoi diagram. (a) tan-
gent from a vertex v to the arc at p; (b) end vertices of the edges.

1) (point, point): Let the two points be p; and pz. In
this case the Voronoi edge is a straight-line which is the
perpendicular bisector of the line segment P1ps.

2) (point, line segment): Let the point be p and let the
line segment be §rgz. The Voronoi diagram consists of three
segments: two line segments resulting from the (point, point)
interaction of the pairs (p, ¢1) and (p, ¢2), and a parabolic arc
with p as focus and §igz as the directrix.

3) (point, convex arc): The Voronoi diagram consists of
a line segment, followed by a fourth-degree curve, followed
by a line segment.

4) (point, concave arc): The Voronoi diagram consists of
a line segment, followed by a fourth-degree curve, followed
by a line segment.

5) (line segment, line segment): The Voronoi diagram is
a sequence consisting of a line segment, a parabolic arc, a line
segment, a parabolic and a line segment.

6) (line segment, convex arc): The Voronoi diagram is a
sequence consisting of a line segment, followed by at most
three parabolic arcs, followed by a line segment.

The overall profile in each of the following four cases is the
same as in (6), although the exact nature of the parabolic drc
depends on the individual case:

7) (line segment, concave arc),

8) (convex arc, convex arc),

9) (convex arc, concave arc), and
10) (concave arc, concave arc).

Consider the convex hull C H(O) of the union of all obstacles.
Let E(O) denote the region obtained by pushing the edges of
CH(O) outwards by a distance of s. We define Vor,(0) =
(Vor(0) N E(0)) U 8E(O), where dE(O) is the boundary
of E(O), ie., Vori(O) consists of the Voronoi diagram
contained inside E(O) and the boundary of OE(O). The
set of vertices of Vor;(O) is the union of Voronoi vertices,
vertices of the erivelop E(O) and intersection points of edges
of AE(O) with Voronoi edges.

Let us obtain the cellular decomposition of the closure of
QN E(O) as follows. From each of V-vertex v, draw extension
lines joining v to all its nearest obstacle edges and vertices.
Furthermore, join each vertex of E(O) to its corresponding
obstacle vertex. These lines are also called extension lines. The
extension lines, Voronoi edges, and obstacle edges partition
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the closure of © N E(O) into cells. Each cell has an edge of
Vor1(0) and two extension lines and at most one obstacle
edge. For each cell consisting of a convex arc, we define two
chains, clockwise and anti-clockwise. The clockwise chain is
obtained as follows: Consider a tangent from a vertex v to the
arc at p (Fig. 10(a)). Let x be a point on Vor1(O) such that
p € Near(z). If there is more than one candidate for z, the
one closest to v is chosen. This process is repeated from z.
is called an internal vertex.

The Vori(O) is augmented with

1) internal vertices of either a clockwise or anti-clockwise

chain, and

2) boundary chains corresponding to circular arcs of E(O)

obtained as in the case of AGVG (Fig. 6).
The resultant structure is called the augmented generalized
Voronoi diagram (AGVD).

1) Finiteness: First consider the part of the AGVD without
the internal vertices. It can be easily seen that the number of
vertices is O(N). Consider an obstacle O; and the subset of
Vor1(O) such that each point on this subset has a nearest
neighbor on the boundary of O;. This subset consists of one
cycle and a finite set of trees. We now define the dual D(O)
of Vor(O) as follows: Draw perpendiculars to each obstacle
edge at the convex end-points (obstacle vertices) and extend
them outwards. Now € is partitioned into regions such that the
points belonging to each region are closer to either an obstacle
edge or an obstacle vertex than any other obstacle edge or
vertex. We represent each region by a D-node. Two D-nodes
are connected by a D-edge if and only if the corresponding
regions meet at either a V-edge or a perpendicular. Using the
dual, we can establish the following bounds using a derivation
similar to that in [31].

1) (n+5)/2 < #V;-vertices < 4N —n — 2,

2) 3(n+1)/2 < #V;-edges < 6N —3n — 3.

Now considering that each convex arc introduces only a finite
number of internal vertices (as shown in Section IV.A, we
have shown the finiteness property of the AGVD.

2) Corinectivity: A map Im: Q — Vor(O) is defined by
O’Dunlaing and Yap [11] as follows. Consider z € 2. If ©
is on Vor(0O) then Im(z) = z; otherwise, Near(z) = {p}
for some point p on 012, the boundary of €. Let L be the
semi-finite straight line from p through z, and define I'm(z)
to be the first point y (if it exists), where L intersects V or(£2).
Intuitively, Im(z) is obtained by “pushing” = away from the
closest wall (or comer) until it lies on the Voronoi diagram.
We state a Theorem from O’Dunlaing and Yap [11].

Fact 1: If Q is bounded, then i) the map I'm is a continuous
retraction of Q onto Vor(0O) (so Vor(O) is a retract of ),
and ii) if I'm(z) # =, then the clearance is strictly increasing
along the line-segment joininig = to I'm(z). O

The obstacle-free region 2 is homeomorphic to the (real)
plane with n closed discs removed from it, each disc corre-
sponding to a single obstacle. Hence, 2 is (polygonally) path
connected. Im is shown to be a continuous retraction of a
bounded € onto Vor(0) (Fact 1). Thus Vor(0O) N E(O) is
a continuous image of a connected set €2 (bounded appropri-
ately), and hence is connected. Now E(O) is topologicaily
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connected. (Vor(O) N E(O)) N 8E(O) # ¢, and hence
Vori(0) = (Vor(0) N E(O)) U 8E(O) is connected by
the Clover-leaf Theorem. Then it is direct to see that within
precision ¢ the AGVD preserves the connectivity of Vor;(0).

3) Local-Constructibility: If R is located at a V;-vertex v,
the sensor gives the clockwise listing of the obstacle vertices
and intervals of obstacle edges that are visible from v. We
compute the vertices and edge segments that are closest to
v. There will be an edge of the AGVD emanating from v
corresponding to each consecutive pair of objects found above.
We can compute the equation for each of these edges, and
we may not be able to compute the end vertices of these
edges as in Fig. 10(b). This happens when one of the edges
incident on a convex vertex is not detected by the sensor. In
this case, we extend the known obstacle edge to intersect the
Voronoi edge, at a sensing vertex. R first moves to the sensing
vertex and then performs a scan operation and obtains the
hidden obstacle edge. By scanning from at most two sensing
vertices, the other end of the Voronoi edge can be computed.
The sensing vertices correspond to the internal vertices of
the AGVD. After including the sensing vertices, the AGVD
satisfies the local-constructibility property, since every sensing
vertex is an internal vertex.

4) Terrain-Visibility: Consider the cellular decomposition
of the closure of 2N E(O). Every point outside of CH(O) is
visible from some vertex of E(O). Consider z € QNCH(O).
First, if I'm(z) € CH(O) then move along the corresponding
Voronoi edge e in some direction until either a Voronoi vertex
is encountered or we move out of C H(O). If the former occurs
then z lies in the cell associated with e and hence is visible
from its end vertices. If the latter occurs then reverse the
direction of motion along e and traverse in the other direction
until a V-vertex v is encountered. Second, if Im(z) does not
belong to CH(O) then move along the corresponding V' edge
towards C H(O) until 9E(O) is encountered at the intersection
point y. As we traverse along Vor(O) always choose the
V-edge that is closest to = at V-vertices (if V-vertices are
encountered). It is clear that the line joining z to y will be
free of obstacles and hence z is visible from .

In summary we have the following theorem.

Theorem 3: The augmented Voronoi diagram for a gener-
alized polygonal terrain satisfies the properties of finiteness,
connectivity, local-constructibility and terrain-visibility within
precision ¢, i.e., the points that are not visible from any vertex
are within a distance of ¢ from two boundary edges in a cusp
region formed by a pair of convex and concave obstacle edges.

. . (]

C. Trapezoidal Decomposition

We first consider the special case of polygonal terrains
to illustrate the properties of finiteness, connectivity, local-
constructibility, and terrain-visibility since the explicit proofs
of these properties are not readily available, and the proofs for
the general case easily follow from these proofs.

1) Polygonal Terrains: We first obtain a trapezoidal de-
composition by sweeping a line L, of arbitrarily chosen
orientation, in the direction normal to L, and forming a
trapezoid when a vertex is encountered. Each trapezoid is

bounded by (continuous segments of) two obstacle edges
and at most two (but at least one) sweep-line segments
corresponding to L; each such line segment contains at least
one obstacle vertex. Let the dual graph based on the trapezoidal
decomposition be denoted by Dr(0) = (Vr, Er).3 Recall
that for each sweep-line segment of a trapezoid we associate
v € Vr which is a point on the segment such that a) if the
segment is not finite, then v is at a distance § from the vertex
of the segment, b) if the segment is finite, then v is the mid
point of the segment. Two vertices v;, v € V are connected
by an edge if and only if they belong to the boundary of
the same trapezoid. For this case of polygonal obstacles each
trapezoid is convex, and the line segment joining two vertices
of a trapezoid does not intersect the interior of any obstacle
(note that the sweep-line segment is allowed to intersect the
boundary of an obstacle).

a) Finiteness: An upperbound to the number of nodes of
D1(O) is estimated in the following Lemma.

Lemma 1: Consider a terrain such that no two obstacles
are co-linear with respect to the sweep-line. The number of
vertices in the dual graph Dz(O), based on the trapezoidal
decomposition, is upperbounded by N + 2n for a terrain of n
polygonal obstacles consisting of a total of N vertices.

Proof: First consider the bound on the vertices of Dr.
The obstacle vertices can be classified into two main cat-
egories, those which form an inflection point (a point that
supports a local tangent) in the chosen sweep-line direction and
those that do not; vertices of the first kind are called inflection
vertices and those of the second kind are called noninflection
vertices (see Fig. 11). Without loss of generality we assume
that the sweep-line is horizontal. An inflection vertex v is
pointing up (pointing down) depending on if the obstacle in
the vicinity of v is below (above) the sweep-line through v.
From each noninflection vertex there will be a segment of
the sweep-line (through it) that contains precisely one node of
Dz. In general each inflection vertex generates two vertices
of Dr, and thus one can obtain a crude upper bound of 2N
on the number of nodes of Dr. We now tighten this bound
to N + 2n nodes.*

Consider the terrain with convex polygonal obstacles such
that no two vetices have the same X-coordinate. Here each
obstacle contains precisely two inflection vertices, each of
which generates two nodes of Dr, and every noninflection
vertex generates a single D node. Thus the total number of
nodes of Dy is exactly N + 2n for this case. We now show
that N +2n is an upper bound for the case containing possibly
nonconvex polygonal obstacles. As each obstacle is swept, we
have two extreme inflection points corresponding to the first
and the last times the obstacle is encountered; each of these
inflection points account for two nodes of Dr.

We show that for each nonextreme inflection vertex v there
corresponds a concave vertex w that does not generate a node
of Dr; w accounts for one of the nodes on the segment through
v. We show this result for pointing up nonextreme inflection

3We often omitt the operand O, since O is fixed for a given problem
instance.

#If each polygon has three vertices, we have the largest value of n = N/3
which yields N + 2n = 5/3N which is tighter than 2N.




958 [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 6, JUNE 1995

extreme inflection vertex

non-inflection
vertex

non-extreme
inflection
vertex

extreme inflection vertex

Fig. 11. Examples of extreme inflection vertex, non-extreme inflection ver-
tex and non-inflection vertex.

points and that for pointing down nonextreme inflection points
is similar. To make the discussion concrete, we assume that of
the two graph nodes generated by v, the one to the left of v
is accounted for by v and the one to the right is accounted by
the yet to be described w. Visualize that we move the sweep-
line from top to bottom. As we sweep, extend the sweep from
nonextreme inflection point v to the right until it meets the
obstacle that v belongs to at point = (pretend that the rest
of the obstacles are transparent for this construction). Then
consider the polygonal region P; enclosed by the line segment
and the boundary of the obstacle from v to z. As the sweep-
line moves down from v, we follow the intersection point of
the boundary of P; with the sweep-line until we encounter a
concave vertex w of the original obstacle. Note that no nodes
of Dr are generated when the sweep-line meets w, since the
sweep-line lies inside the obstacle around w. It is possible
that before w is found another nonextreme infléction point
u on the boundary of P; is met by the sweep-line; if that
happens the graph node to the left of u is accounted by u. The
proof is complete by noting that w always exists since P; is
a polygonal region. O

b) Connectivity: Consider two points = and y in free-
space and a shortest path P between them. Then P can be
decomposed into line segments such that each segment is
entirely contained in a trapezoid; let the resultant segments
be denoted by Zpi, PiP3, - -, Pm—1Pm, Pmy listed in the
sequence as we navigate from z to y. We now navigate
along this sequence and generate a path on the dual graph
as follows. In the trapezoid that contains z, note that p; lies
on a sweep-line segment; now we slide the p;-end of the
segment Tp; along the sweep-line until we reach a graph
node at point_p{. Then in the next trapezoid, we consider
the segment pip,, and we slide the pp-end of this segment
along the sweep-line until we meet the node p}. This process
is continued in the sequence until the last trapezoid is reached.
Note that each slide operation is possible since each trapezoid
in which the sliding operation takes place is convex. The
resultant path x, pi, p3,---,pl,, ¥ is a path on the graph Dr.
By restricting z and y to the nodes of Dy, the connectivity
property follows.

¢) Local-constructibility: 'When a scan operation is per-
formed from a node v € Dy, the trapezoidal region that
contains v will be contained in the visibility polygon returned
by the scan operation. Given the sweep-line direction, the
required trapezoid region can be obtained by computing the
closest vertex to the sweep-line containing v in the required
part of the visibility polygon. Thus local-constructibility prop-
erty is satisfied.

d) Terrain-visibility: In the trapezoidal decomposition,
the free-space is decomposed into trapezoidal regions and
there is at least one node of Vr associated with each of the
trapezoids. Since each trapezoid is convex every point in a
trapezoid is visible from the corresponding node of Dr, and
thus every point in the free-space is visible from some node
of DT.

In summary we have the following theorem.

Theorem 4: Dr(O) satisfies the properties of finiteness,
connectivity, terrain-visibility, and local-constructibility. [

In practical cases, a scan operation could be very time-
consuming. In such cases precise bounds on the nodes of
the navigation course are very useful in judging the relative
performance of the methods. For terrains with polygonal
obstacles, the bounds on the number of vertices of a navigation
course is given by N — ¢, where c is the number of concave
obstacle vertices, and 5N — 2n — 3 for the case of visibility
graph and Voronoi diagram. The present navigation course Dr
provides an intermediary in terms of the number of vertices
of the navigation course.

Also, in practical implementations, it is difficult to navigate
a robot along an obstacle boundary. The visibility graph
methods require that the robot be capable of moving along
the obstacle boundaries. The methods based on the Voronoi
diagram deep the robot as far away from the obstacles as
possible; these methods, however, have the disadvantage of
generating long paths. Note that the present method again is as
intermediary in that it does not require that the robot navigate
along obstacle edges and also does not generate quite as long
paths as the Voronoi diagram method (in cases where obstacles
are well separated).

Finally, we wish to remark that other decompositions such
as triangulation, convex polygonal decomposition, etc., can be
used to generate suitable navigation courses. Also, even in the
case of trapezoidal decomposition, there could be other ways
of defining a dual graph. For example, each dual node could
correspond to the centroid of a trapezoid, and a dual edge
joins two nodes whose trapezoids share a sweep-line segment.
Results similar to those of Dr(O) can be shown by using
these decompositions and dual graphs.

2) General Polygonal Terrains: Consider the trapezoidal
decomposition of a terrain populated by generalized polygons
such that we create sweep-line segments whenever a) the
line meets an obstacle vertex or b) becomes a tangent to an
obstacle boundary, by extending the line into free-space until
an obstacle boundary is met or to infinity (is no obstacle is
encountered). Here each trapezoid is formed by two obstacle
edges and at most two sweep-line segments. Recall that if
the segment is finite then the graph node is the midpoint of
the segment, else it is point on the segment at a distance §
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Fig. 12. Generation of edges for the augmented dual graph.(a) polygonal
chain from one node to the other; (b) augmented generalized visibility graph.

from the corresponding obstacle vertex or the tangent point.
There are two types of trapezoids depending on whether there
are two sweep-line segments or one sweep-line segment. The
edges of the navigation courses are generated as follows:

1) For each trapezoid with two sweep-line segments, two
graph nodes are connected by a straight line edge if the
line segment connecting them is entirely contained in
a trapezoid. If this segment is intersected by a convex
obstacle edge, then we place a polygonal chain from one
node to the other as shown in Fig. 12(a). In general, if
the location of the second graph is not known, then the
initial direction of the chain towards the convex arc is
not known. In such case any direction that meets the
convex arc is chosen, and the rest of the chain is just
as before.

2) For each trapezoid with one sweep-line segment and a
pair of convex and concave arcs, we generate a polyg-
onal chain from the node to the point of intersection of
the two obstacle edges of the terrain as in the case of the
augmented generalized visibility graph. See Fig. 12(b).

Thus the Augmented Dual Graph (ADG), AD7(0O), is now
formed by adding the nodes and edges of the required polyg-
onal chains to the graph obtained above.

a) Finiteness: The total number of nodes of ADr ex-
cluding the ones due to the above mentioned chains is no more
than 4N. To see this note that if no circular arcs supports a
tangent in the sweep direction, then there can be no more than
2N graph nodes; each circular arc that supports a tangent in the
sweep direction contributes to 4 graph nodes and there are no
more than N such arcs. There are at most 2N polygonal chains
and as described in the case of the generalized visibility graph
(Fig. 6), and each chain consists of only a finite number of
vertices. Thus in all there are only a finite number of vertices
and edge of ADy.

b) Connectivity: Now to show the connectivity property,
we consider a shortest path between two points = and y of
free-space. This path passes through a sequence of generalized
trapezoids, and can be suitably distorted to generate a path on
the dual graph ADr as described in the case of polygonal
obstacles.

¢) Local-constructibility: Consider the generalized visi-
bility polygon obtained by performing a scan operation from
a node of ADt located on a sweep-line such that a trapezoid
on one side of the sweep-line is to be determined (the one on

the other is already known). First we note that if the visibility
polygon contains only straight-line and concave edges, then the
required trapezoid can be computed. If the visibility polygons
contains convex obstacle edges, we are not guaranteed to find
the other sweep-line of the trapezoid, in this case we explore
the convex edges by using the polygonal chains. The interior
of the trapezoid will be entirely seen after the scan operations
are performed as per the nodes of the polygonal chains (see
Fig. 12). Thus local-constructibility is satisfied.

d) Terrain-visibility: Consider the addition of the polyg-
onal chains as in the proof of local-constructibility. The terrain-
visibility is satisfied because the interior of each trapezoid is
visible within precision ¢ from a set of nodes contained in it
and the union of all trapezoids is equal to the free-space.

In summary we have the following theorem.

Theorem 5: The augmented dual graph ADz(O) based on
the trapezoidal decomposition of a terrain O of generalized
polygonal obstacles satisfies the properties of finiteness, con-
nectivity, terrain-visibility, and local-constructibility within a
precision € > 0, i.e., the points that are not visible from any
vertex are within a distance of ¢ from two boundary edges in a
cusp region formed by a pair of convex and concave obstacle
edges. O

We use the navigation courses developed in this section to
solve the navigation and terrain model acquisition problem.

V. NAVIGATIONAL ALGORITHMS

In the navigation problem, the task is to reach a destination
position d, while avoiding obstacles on the way, or to conclude
that d is not reachable. When we solve the problem with a
precision ¢, the destination d is required to be reached only
if there is a path from s to g in the free-space outside the
fictitious obstacles. Initially, R starts at s and performs a scan,
and R moves to d, if it is reachable. If not, R computes a
start vertex of the navigation course, and moves to it. Then R
keeps visiting newly computed vertices until d is reachable.
For example, R can employ the depth-first search to visit
the vertices: R located at vertex s computes the adjacency
list of s, marks s visited, and pushes s onto a stack. If any
vertices adjacent to s has not been visited, R chooses one such
vertex v* and moves to it, and invokes the same algorithm
recursively. Here some heuristics can be used in the selection
of v*; for example, if all obstacles are convex, it would be
a good strategy to choose v* to be of shortest straight-line
distance to d among all neighbors of s. Also a more general
heuristic search algorithm such as the A* algorithm can be
applied. Although any of these algorithms yields a solution
to the navigation problem, the exact parameters such as the
distance traversed, and number of scan opeations performed
depend on the exact nature of the underlying graph search
algorithm.

The solution to the terrain model acquisition problem in-
volves visiting all vertices of the navigation course. The
properties of finiteness, connectedness, terrain-visibility, and
local-constructibility ensure that the navigation and the terrain
model acquisition problems are solved with the specified
precision.
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In the case of polygonal terrains, the sufficient number of
scan operations is determined by N and n. In the present
case, the number of scan operations is also a function of the
precision €. As ¢ — 0, larger and larger number of scan
operations will be required.

VI. CONTINUOUS VISION SENSORS

In this section, we illustrate that a continuous vision sensor
is more powerful than a discrete vision sensor: the navigation
(or terrain model acquisition) problem can be solved with
precision ¢ = 0 in the terrains populated by generalized
polygonal obstacles by using a continuous vision sensor. In
terms of the general paradigm, we only require that the
navigation course used by a continuous vision sensor is a
1-skeleton that satisfies the two following properties:

1) connectivity, which requires that there is a path on
the navigation course between any two points of the
navigation course, and

2) terrain-visibility, which requires that every point in the
free-space is visible from some point on the navigation
course.

We also require that the navigation course be a 1-skeleton in
the plane such that the total length of the 1-skeleton is finite.
given such a navigation course, if the robot has navigated along
the entire navigation course, then the entire free-space will be
visible. Thus a robot can navigate along the navigation course
until the destination is reachable, or the entire navigation
course has been traversed. Any such algorithm can be seen to
solve the navigation and terrain model acquisition problems.

We now consider navigational courses for a continuous scan
sensor based on simpler versions of the navigational courses
of Section IV.

1. Generalized Visibility Graph: We use the generalized
visibility graph as a navigation course for the continuous
- vision sensors. The generalized visibility graph satisfies the
connectivity property as shown in Section IV. The terrain-
visibility property can be shown along the lines of that for
generalized visibility graph; consider a shortest path P from
any point inside CH(O) to a suitable point y outside CH(O).
As we move from z to y on P, consider the first line segment
of P, given by Tp; here p is an obstacle vertex or Ip is
a tangent to a convex circular obstacle edge. In either case
z will be visible from some point on the navigation course
(more precisely a point on the corresponding convex obstacle
boundary). Notice that no polygonal chains (of discrete scan
case) are needed for ensuring the terrain-visibility for this case.

2. Generalized Voronoi Diagram: Consider the navigation
course given by the structure Vor1(0) = (Vor(O)NE(O))U
OE(O) which is a 1-skeleton in 2 (refer to Section IV.B for the
definition of the terms). Since the terrain is bounded, the total
lengths of the edges of Vor1(0O) is bounded. The connectivity
property of Vori(O) is shown in Section IV.B. The terrain-
visibility property of Vor(O) is very easily shown by using
the property of the retraction Im: Q — Vor(O); every point
z in free-space is visible from I'm(z) since z is connected to
Im(z) € Vor(0) along a straight line from Near(z) through
z. To show the terrain-visibility of Vori(O) we observe that
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every point outside CH(O) will be seen from a point on
AE(O). For any point z of free-space inside CH (0), either
a) Im(z) € E(O), or b) Im(z) ¢ E(O); in the first case =
is visiblefrom a point Vor(0O) N E(O), and in the latter z is
visible from the intersection point of E(O) and the segment
joining z and I'm(z). Note that in the case of discrete scan
sensor we have to augment the structure of Vori(O) with
additional vertices to ensure the local-constructibility.

3. Trapezoidal Decomposition: We obtain a navigation
course by taking a dual graph based on the trapezoidal
decomposition with the following modification.

1) If a trapezoid contains only one sweep-line segment and

a pair of convex and concave obstacle edges, then we
join the dual node of the trapezoid to the vertex at which
the two obstacle edges meet using a smooth curve, say
a Voronoi edge.

2) If the trapezoid contains two sweep-line segments and
the line segment joining the two dual vertices intersects
the obstacle then replace the line segment by a curve
that follows the segment until it intersects the obstacle
edge and then follows the obstacle edge until the other
intersection point and the follows the line segment rest
of the way (note that the intersection occurs only when
the intersecting obstacle edge is convex). As in the case
of discrete vision sensor, if the initial direction of the
segment is not known, a direction that intersects the
convex arc is chosen.

Connectivity of this structure is shown in Section IV.C. To
show the terrain-visibility, consider a point z in free-space and
the line segment through z along the sweep-line direction. If
this segment coincides with a boundary of a trapezoid, then z
is seen from a dual graph node. If not, z lies in a trapezoid of
type i) or ii) above, or in a trapezoid containing one sweep-
line segment and two obstacle edges that are line-segments
or concave arcs. In the other two cases, the interior of the
trapezoid is seen from the nodes of the trapezoid. In the other
case the sweep-line through z must intersect the edge joining
the dual node to the obstacle vertex in case i), or the dual edge
that joins the dual vertices in the case ii). In either case is
visible from the corresponding intersection point.

VII. CONCLUSIONS

We considered two path planning problems in unknown two-
dimensional terrains populated by disjoint obstacles whose
boundaries are connected sequences of circular arcs and
straight-line segments. The navigation problem deals with
moving a point robot R through an unknown terrain from a
source position s to a destination position d. The terrain model
is not known a priori to R, but R is equipped with a vision
sensor capable of detecting all visible edges of the obstacle
polygons. The terrain model acquisition problem deals with
autonomously building a model of the entire terrain. We first
showed a general result that a solution for the navigation
problem (or terrain model acquisition problem) requires an
infinite number of scan operations in a cusp region consisting
of a pair of convex and concave edges. Thus in practical
scenarios consisting of curved objects, we either have to
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use additional sensors such as touch sensors, etc., or solve
the problem approximately. Following the latter approach,
we consider that either problem is solved with a precision
e if a point p in a cusp region within a distance of ¢ from
two obstacle boundaries may be considered to constitute
fictitious obstacles. We proposed three navigational structures
for generalized polygonal terrains that yield solutions to both
the problems with a precision e. The first one is obtained
by suitably extending the generalized visibility graph so
that it satisfies the properties of terrain-visibility and local-
constructibility. The second structure is obtained by extending
the generalized Voronoi diagram. The third structure is based
on a dual graph defined on the trapezoidal decomposition of
the free-space. An algorithm based on the augmented GVG
has been implemented in C on Sun workstations using the
graphic package CGI for display purposes [16]. Navigational
algorithms for simulated unknown polygonal terrains have
been implemented under an X-window/motif environment
using visibility graph methods by Fu [9] and Sun [33] and
using trapezoidal decomposition methods by Ye [37].

We barely scratched the surface of a potentially enormous
area of sensor-based robot navigation algorithms. We have
only shown the basic existence results for the required algo-
rithms, and a more detailed analysis of the performance of
these algorithms will be useful for practical implementations.
An investigation of the impact of various graph search algo-
rithms on the performance of the navigational algorithms is of
future interest. Also algorithms that minimize, among a class
of algorithms, bounds on the distance traversed or the number
of scan operations will be of future interest.
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