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2 The Extended Kalman Filter (EKF)

The Process to be Estimated

As described above in section, the Kaman filter addresses the genera problem of trying to estimate the Sate

rER” of 3 discrete-time controlled process that is governed by alinear stochastic difference equation. But what
happens if the process to be estimated and (or) the measurement relationship to the process is non-linear? Some
of the mogt interesting and successful gpplications of Kaman filtering have been such stuations. A Kaman filter
that linearizes about the current mean and covariance is referred to as an extended Kaman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current estimate using the partia
derivatives of the process and measurement functions to compute estimates even in the face of non-linear
relationships. To do so, we must begin by modifying some of the materia presented in section . Let us assume that

our process again has a state vector * = 2 , but that the process is now governed by the non-linear sochastic
difference equation

Y= Pl puewey) (2.1)

with ameasurement 29" that is

Z.= h{xl{_vl{_; ’ (2.2)

where the random variables "« and "'+ again represent the process and measurement noise asin (1.3) and (1.4).
In this case the non-linear function f in the difference equation relates the State at the previous time step ¥ -
to the state at the current time step ¥ . It includes as parameters any driving function uk and the zero-mean

process noise Wk. The non-linear function * in the measurement equation (2.2) relates the state *+ to the
measurement % .

In practice of course one does not know the individua vaues of the noise 4 and "'+ at each time step. However,
one can gpproximate the state and measurement vector without them as

A= Flg .00 (09

%= hG0) | (2.

7/7/01 7:10 PM



2 The Extended Kalman Filter (EKF) http://www.cs.unc.edu/~wel ch/kalman/kal man_filter/kalman-2.html

20f5

where '+ issome a posteriori estimate of the state (from a previous time step k).

It isimportant to note that a fundamentd flaw of the EKF isthat the digtributions (or densitiesin the continuous
case) of the various random varigbles are no longer normd after undergoing their respective nonlinear
transformations. The EKF is Smply an ad hoc Sate estimator that only approximates the optimality of Bayes rule
by linearization. Some interesting work has been done by Julier et d. in developing avariation to the EKF, usng
methods that preserve the normd digtributions throughout the non-linear transformations [Julier96].

The Computational Origins of the Filter

To esimate a process with non-linear difference and measurement relationships, we begin by writing new
governing equations that linearize an estimate about (2.3) and (2.4),

nE R A =X )+ W (05
3= 3t Hi-1)+ Vv, (o)
where
Y and “ arethe actuad State and measurement vectors,
% and % are the pproximate state and measurement vectors from (2.3) and (2.4),
% isana posteriori estimate of the state at step K,

the random variables ¥+ and "¢ represent the process and measurement noise asin (1.3) and (1.4).

A isthe Jacobian matrix of partia derivatives of I with respect to x, that is

af .
g = ﬁﬁ*{-’%uﬁﬂ)

W isthe Jacobian matrix of partia derivatives of f with respect tow,

H is the Jacobian matrix of partial derivatives of ® with respect to x,
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an
H, o= —Ex,0)
1A = 3y, d“b :

V isthe Jacobian matrix of partid derivatives of * with respect to v,

an o
V[J:;_.l’] = H[L?]-{I"m

Note that for smplicity in the notation we do not use the time step subscript * with the Jacobians 4 , W, # | and
V', even though they are in fact different at each time step.

Now we define a new notation for the prediction error,

and the measurement residudl,

Remember that in practice one does not have access to *+ in (2.7), it is the actud State vector, i.e. the quantity one
istrying to esimate. On the other hand, one does have accessto *+ in(2.8), it is the actud measurement that one
isusing to estimate *+ . Using (2.7) and (2.8) we can write governing equations for an error process as

E_mn ﬂ{.‘i."&__ 1_'%.&-— 1:' +e, , (29)

¢amHeu e (210)

where % and "+ represent new independent random variables having zero mean and covariance matrices WEW”
and VRV \ith @ and ® asin (1.3) and (1.4) respectively.

Notice that the equations (2.9) and (2.10) are linear, and that they closdy resemble the difference and
messurement equation_s (1.1) and (1.2) from the discrete Kaman filter. This motivates us to use the actua i

messurement residud = in (2.8) and a second (hypothetical) Kalman filter to estimate the prediction error “

givenby (2.9). Thisedtimate, cdl it € , could then be used dong with (2.7) to obtain the a posteriori state
estimates for the original non-linear process as

te= %etée (210)
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Therandom variables of (2.9) and (2.10) have gpproximately the following probability distributions (see the
previous footnote):

pie,)- N0, E[¢ %)
Pleg)- N(D, WgQ,WT)
ping-N@. VRV

Given these gpproximations and letting the predicted vaue of £¢ be zero, the Kalman filter equation used to
estimate “# is

te=Kén (212)

By subdtituting (2.12) back into (2.11) and making use of (2.8) we see that we do not actudly need the second
(hypotheticd) Kdman filter:

.1-}[_= |1£_+K£fﬂ_

i.&-+ Hﬁ_{ﬂ_&._ 'E.d-:l (2. 13)

Equation (2.13) can now be used for the measurement update in the extended Kaman filter, with T and %

coming from (2.3) and (2.4), and the Kman gain K¢ coming from (1.11) with the gppropriate substitution for the
measurement error covariance.

The complete set of EKF equations is shown below in Table 2-1 and Table 2-2. Note that we have substituted T

for *+ to remain consistent with the earlier "super minus' a priori notation, and that we now attach the subscript *
tothe Jacobians 4 , W | H and V | to reinforce the notion that they are different at (and therefore must be
recomputed at) each time step.
Table 2-1: EKF time
update equations.

i;_ = f{i.ﬁ"‘ l.uﬁ_ﬂj (2.14)

Po= AP (Al+WQO W] (2.15)

Aswith the basic discrete Kaman filter, the time update equationsin Table 2-1 project the state and covariance
estimates from the previoustime step ¥ - | to the current time step ¥ . Again " in(2.14) comesfrom (2.3), % and

Wi arethe process Jacobians at step k, and 9 isthe process noise covariance (1.3) at step k.
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Table 2-2: EKF
measurement update
equations.

) B i -1
Ky = FHLHEFHEFVEVDT (5 16)

5= S5t Kz hE00 (5 19)

P_‘lj- = |:I_ KEH.E':IP;' (218)

Aswith the badic discrete Kaman filter, the measurement update equationsin Table 2-2 correct the state and
covariance estimates with the measurement % . Again * in (2.17) comes from (2.4), Hy and V arethe

measurement Jacobians a step k, and R isthe measurement noise covariance (1.4) at step k. (Note we now
subscript £ dlowing it to change with each measurement.)

The basic operation of the EKF isthe same asthe linear discrete Kaman filter as shownin Figure 1-1. Figure 2-1

below offers acomplete picture of the operation of the EKF, combining the high-level diagram of Figure 1-1 with
the equations from Table 2-1 and Table 2-2.

n,m Tpdate [T orrect™)

[1) Compute the Kalman gam
o = -1
K.&' = P.&ﬂfj{HﬂP.&HE-l_ V.&‘R.&'VE'

Timae Wpelate [“Frediet™)
[1)] Projectthe sate ahead

X .= flx,_,.u.0)

[2] Update estimate withmeasurement g
[2] Projesttle ervor covarivnes ahead i.{_ = "i_';+ K.{_{z.{__ i "i'_;d o
P;. = ﬂ.{Pﬂ'— 1A_£'+ WJ;QJ;,_ 1W_£' [F) Update the ervor cowariines

T u — K'&H-{JP;-

Inibal estimates Eor f'li_ a:nﬂ..u"l

Figure 2-1. A complete picture of the operation of the extended Kaman filter, combining the hig

An important feature of the EKF is that the Jacobian Heinthe equation for the Kaman gain E: srvesto correctly
propagete or "magnify" only the rdevant component of the measurement information. For example, if thereisnot a

one-to-one mapping between the measurement % and the state via® , the Jacobian Hy dfectsthe Kaman gan so

that it only magnifiesthe portion of the residud %~ %9 that does affect the state. Of courseiif over ll

measurements there is not a one-to-one mapping between the measurement * and the state via™ , then asyou
might expect the filter will quickly diverge. In this case the process is unobservable.
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