
2 The Extended Kalman Filter (EKF)

The Process to be Estimated

As described above in section , the Kalman filter addresses the general problem of trying to estimate the state 

 of a discrete-time controlled process that is governed by a linear stochastic difference equation. But what
happens if the process to be estimated and (or) the measurement relationship to the process is non-linear? Some
of the most interesting and successful applications of Kalman filtering have been such situations. A Kalman filter
that linearizes about the current mean and covariance is referred to as an extended Kalman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current estimate using the partial
derivatives of the process and measurement functions to compute estimates even in the face of non-linear
relationships. To do so, we must begin by modifying some of the material presented in section . Let us assume that

our process again has a state vector  , but that the process is now governed by the non-linear stochastic
difference equation

 , (2.1)

with a measurement  that is

 , (2.2)

where the random variables  and  again represent the process and measurement noise as in (1.3) and (1.4).
In this case the non-linear function  in the difference equation (2.1) relates the state at the previous time step 
to the state at the current time step  . It includes as parameters any driving function uk and the zero-mean
process noise wk. The non-linear function  in the measurement equation (2.2) relates the state  to the

measurement  .

In practice of course one does not know the individual values of the noise  and  at each time step. However,
one can approximate the state and measurement vector without them as

 (2.3)

and

 , (2.4)
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where  is some a posteriori estimate of the state (from a previous time step k).

It is important to note that a fundamental flaw of the EKF is that the distributions (or densities in the continuous
case) of the various random variables are no longer normal after undergoing their respective nonlinear
transformations. The EKF is simply an ad hoc state estimator that only approximates the optimality of Bayes' rule
by linearization. Some interesting work has been done by Julier et al. in developing a variation to the EKF, using
methods that preserve the normal distributions throughout the non-linear transformations [Julier96].

The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relationships, we begin by writing new
governing equations that linearize an estimate about (2.3) and (2.4),

 , (2.5)

 . (2.6)

where

 and  are the actual state and measurement vectors,

 and  are the approximate state and measurement vectors from (2.3) and (2.4),

 is an a posteriori estimate of the state at step k,

the random variables  and  represent the process and measurement noise as in (1.3) and (1.4). 

A is the Jacobian matrix of partial derivatives of  with respect to x, that is

 ,

W is the Jacobian matrix of partial derivatives of  with respect to w,

 ,

H is the Jacobian matrix of partial derivatives of  with respect to x,
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 ,

V is the Jacobian matrix of partial derivatives of  with respect to v,

 .

Note that for simplicity in the notation we do not use the time step subscript  with the Jacobians  ,  ,  , and 
 , even though they are in fact different at each time step.

Now we define a new notation for the prediction error,

 , (2.7)

and the measurement residual,

 . (2.8)

Remember that in practice one does not have access to  in (2.7), it is the actual state vector, i.e. the quantity one
is trying to estimate. On the other hand, one does have access to  in (2.8), it is the actual measurement that one

is using to estimate  . Using (2.7) and (2.8) we can write governing equations for an error process as

 , (2.9)

 , (2.10)

where  and  represent new independent random variables having zero mean and covariance matrices 
and  , with  and  as in (1.3) and (1.4) respectively.

Notice that the equations (2.9) and (2.10) are linear, and that they closely resemble the difference and
measurement equations (1.1) and (1.2) from the discrete Kalman filter. This motivates us to use the actual

measurement residual  in (2.8) and a second (hypothetical) Kalman filter to estimate the prediction error 
given by (2.9). This estimate, call it  , could then be used along with (2.7) to obtain the a posteriori state
estimates for the original non-linear process as

 . (2.11)
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The random variables of (2.9) and (2.10) have approximately the following probability distributions (see the
previous footnote):

  

Given these approximations and letting the predicted value of  be zero, the Kalman filter equation used to

estimate  is

 . (2.12)

By substituting (2.12) back into (2.11) and making use of (2.8) we see that we do not actually need the second
(hypothetical) Kalman filter:

 (2.13)

Equation (2.13) can now be used for the measurement update in the extended Kalman filter, with  and 

coming from (2.3) and (2.4), and the Kalman gain  coming from (1.11) with the appropriate substitution for the
measurement error covariance.

The complete set of EKF equations is shown below in Table 2-1 and Table 2-2. Note that we have substituted 
for  to remain consistent with the earlier "super minus" a priori notation, and that we now attach the subscript 
to the Jacobians  ,  ,  , and  , to reinforce the notion that they are different at (and therefore must be
recomputed at) each time step. 

Table 2-1: EKF time
update equations.

 (2.14)

 (2.15)

As with the basic discrete Kalman filter, the time update equations in Table 2-1 project the state and covariance

estimates from the previous time step  to the current time step  . Again  in (2.14) comes from (2.3),  and
 are the process Jacobians at step k, and  is the process noise covariance (1.3) at step k.
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Table 2-2: EKF
measurement update

equations.

 (2.16)

 (2.17)

 (2.18)

As with the basic discrete Kalman filter, the measurement update equations in Table 2-2 correct the state and
covariance estimates with the measurement  . Again  in (2.17) comes from (2.4),  and V are the

measurement Jacobians at step k, and  is the measurement noise covariance (1.4) at step k. (Note we now
subscript  allowing it to change with each measurement.)

The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in Figure 1-1. Figure 2-1
below offers a complete picture of the operation of the EKF, combining the high-level diagram of Figure 1-1 with
the equations from Table 2-1 and Table 2-2.
 

 

Figure 2-1. A complete picture of the operation of the extended Kalman filter, combining the high-level diagram of 

An important feature of the EKF is that the Jacobian  in the equation for the Kalman gain  serves to correctly
propagate or "magnify" only the relevant component of the measurement information. For example, if there is not a

one-to-one mapping between the measurement  and the state via  , the Jacobian  affects the Kalman gain so

that it only magnifies the portion of the residual  that does affect the state. Of course if over all

measurements there is not a one-to-one mapping between the measurement  and the state via  , then as you
might expect the filter will quickly diverge. In this case the process is unobservable.
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