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1 Kalman/Bucy Filter
• Invented by R. E. Kalman in 1960’s or so. One year later
Kalman and Bucy jointly published the continuous time
version.
• A purely mathematical algorithm for estimating the state of a
dynamic system based on recursive measurement of noisy data.
• Useful for perception, position estimation, control - generally,
any measurement task.
• Prerequisites for use are that corruptive errors must be:

• Unbiased (have zero mean for all time)
• Gaussian (have a Gaussian distribution for all time)
• White (contain all frequencies)

• Measurements may generally be:
• incomplete: related to some of the variables of interest
• indirect: related indirectly to the quantities of interest
• intermittent: available at irregular intervals of time
• inexact: corrupted by many forms of error

• The state space form has these additional abilities:
• it can predict dynamic system state independent of
measurements.
• it can easily use rate measurements that are derivatives
of required state variables.
• it can explicitly account for modelling assumptions and
disturbances in a more precise way than just “noise”.
• it can identify a system (calibrate parameters) in real-
time.
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2 State Space Model of a Random Process
• The basic pilosophy is to model the system of interest as a
linear dynamic system which is excited by noise and whose
sensors are also excited by noise.
• The system model is a matrix linear differential equation.
Such a model considers the process to be the result of passing
white noise through a system with linear dynamics.
• Thestate vector for a dynamic system is any set of quantities
sufficient to completely describe the unforced motion of the
system. Given the state at any point in time, the state at any
future time can be determined from the control inputs and the
system state space model.
• Intuitively, a state vector contains values for all variables in
the system up to one order less than the highest order derivative
represented in the model. This is, of course, the exact number
of initial conditions required to solve a differential equation.
• Time may be considered continuous or discrete and models of
one form can converted to the other.

2.1 Continuous Model

• Linear systems model, orstate model of a random process:

• This is a nice analogy but never used in practice.
2.2 Discrete Model

• If time is considered to be discrete, the process is described in
the following form:

ẋ Fx Gw+=
z Hx v+=

“state” or “process” model

“measurement” or “observation” model
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• The names and sizes of the vectors and matrices are:

• The covariance matrices for the white sequences are:

where  is the Kronecker delta.
• Hence, we assume that process and measurement noise
sequences are uncorrelated in time (white) and uncorrelated
with each other.

xk 1+ Φkxk Γkwk+=

zk Hkxk vk+=

“state” or “process” model

“measurement” or “observation” model

 is the (n X 1) systemstate vector at time

 is the (n X n)transition matrix  which relates  to in the
absence of a forcing function

 is the (n X n) process noise distribution matrix which transforms the
 vector into the coordinates of

 is a (n X 1) whitedisturbance sequence or process noise sequence
with known covariance structure.

 is a (m X 1)measurement at time

 is a (m X n)measurement matrix or observation matrix relating
to  in the absence of measurement noise

 is a (m X 1) whitemeasurement noise sequence with known covariance
structure

xk tk

Φk xk xk 1+

Γk
wk xk

wk

zk tk

Hk xk
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vk

E wkwi
T( ) δikQk=

E vkvi
T( ) δikRk=

E wkvi
T( ) 0 i k,( )∀,=
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2.3 Transition Matrix

• In order to implement the Kalman filter, a continuous time
system model must be converted to a discrete one. Generally,
this is far from easy. However, for our purposes, it suffices to
know that the time continuous matrix differential equation:

can always be transformed into:

The only question is how hard it is to do.
• When the  matrix is constant in time and the equation is
linear (no elements of x occur inside F), then the transition
matrix is a function only of the time step  and it is given by
the matrix exponential:

• In practice, the transition matrix can often be written by
inspection. When this is not possible, writing a few terms of the
above series often generates recognizable series in each
element of the matrix partial sum, and the general form for
each term can be generated by inspection. Other times, higher
powers of  conveniently vanish anyway.
• When  is much smaller than the dominant time constants in
the system, just the two-term approximation:

is sufficient.

ẋ Fx=

xk 1+ Φkxk=

F

∆t

Φk eF∆t I F∆t
F∆t( )2

2!
---------------- …+ + += =

F
∆t

Φk eF∆t I F∆t+= =
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2.4 Low Dynamics Assumption

• When F depends on time, so does  and it satisfies the matrix
version of the same differential equation as the state vector
thus:

• If  is assumed to be slowly varying relative to , then the
matrix exponential can still be used. This will be called thelow
dynamics assumption. It is a big assumption as the time step
gets larger.
• Notice that the model presents how the measurements are
derived from the state, that is, the operation of the sensor itself.
Often, in other applications, the process which converts a
measurement into a state estimate is considered. That is, the
problem ofperception. However, this model is the simpler
reverse process ofsensing itself.
• This is important to keep in mind because the filter is able to
use underdetermined measurements of state for this reason. For
example, if a single range measurement is available, the filter
can use it to attempt to estimate two position coordinates or
even more. This situation cannot persist for too long a period of
t ime but  s ing le  underdetermined measurements of
multidimensional state vectors are quite legal.

Φ

td
dΦ

F t( )Φ=

F ∆t
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3 Linear Discrete Time Kalman Filter
• The state space Kalman filter propagatesboth the state and its
covariance forward in time1, given an initial estimate of the
state.

3.1 Filter Equations

• The Kalman filter equations for the linear system model are
as follows:

1. The state estimate prior to incorporation of any new measurements will be
denoted by , where the hat denotes an estimate and the super minus denotes
the estimate prior to incorporation of the measurements (running one iteration
of the filter equations).

x̂
-

x̂k x̂k
- Kk zk Hkx̂k

-–[ ]+=

Kk Pk
- Hk

T HkPk
- Hk

T Rk+[ ]
1–

= compute Kalman gain

update state estimate

Pk I K kHk–[ ]Pk
-=

update its covariance

x̂k 1+
- Φkx̂k=

Pk 1+
- ΦkPkΦk

T ΓkQkΓk
T+=

project ahead state
and covariancesystem

model

Kalman
filter
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• These can be visualized in block diagram form as follows:

• The equations obviously reduce to the last set of Kalman filter
equations when the state vector is constant  and it has
no temporal uncertainty growth associated with it .

• The equations are not run all at once. The last two run at
high frequency and the first three are run when measurements
are available.

Φk-1

xk-1

Delay

+

+

Hk
+

+

vk

zk

-

+
Kk

+

+

Hk Φk-1 Delay

xk(-)

xk(+)

xk-1(+)

System

Measurement
Model

Model

Kalman
Update

Φk I=
Qk 0=

x̂k x̂k
- Kk zk Hkx̂k

-–[ ]+=

Kk Pk
- Hk

T HkPk
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1–

=

Pk I K kHk–[ ]Pk
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• An advantage of this formulation is that it requires inversions
of matrices of order m (number of measurements) which is
usually less than n (the number of states). Indeed, it is possible
to, under assumptions necessary for other reasons, set m to 1
andavoid matrix inversion completely.

3.2 Time and Updates

• It is important to distinguish thetime element from the
arrival of measurements.

• The projection of the system state forward in time
proceeds basedsolely on a measurement of time.
•  Measurements are conceptual ized as indi rect
measurements of state, and they arrive intermittently.
When they arrive, they are incorporated into the state
estimate through the Kalman gain but they are not strictly
necessary.

• The number of measurements m, may be greater or less than
n, and they may be redundant measurements of the same
quantity.
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• Whenever a measurement is available, the switch closesafter
the state has been predicted for that cycle by the system
model, and the filter proper is executed.

3.3 Uncertainty Transformation

• If  is an arbitrary measurement of the vector  through some
nonlinear relationship:

•  Then i t  can be easi ly shown using a Taylor ser ies
approximation and the definition of the covariance matrix that:

• where  is the Jacobian of . This relationship is responsible
for the terms involving the measurement matrix , the

System Model

Kalman Filter

x̂k

x̂k
- x̂k

+

x̂k 1+

Pk 1+
- ΦkPkφk

T ΓkQkΓk
T+=

x̂k 1+
- Φkx̂k=

Pk I K kHk–[ ]Pk
-=

Kk Pk
- Hk

T HkPk
- Hk

T Rk+[ ]
1–

=

x̂k x̂k
- Kk zk Hkx̂k

-–[ ]+=

z x

z f x( )=

Cov ∆z( ) Exp ∆z∆zT[ ] HExp ∆x∆xT[ ]HT= HCov ∆x( )HT= =

H f
H
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transition matrix , and the  matrix in the Kalman filter
equations.

3.4 Sequential Measurement Processing

• It can be shown that processing uncorrelated measurements
one at a time gives the same result as processing them as one
large block.
• This has extreme advantages in real-time systems with
intermittent asynchronous sensor suites. It allows fairly
modular software implementations which adapt in real time to
the presence or absence of measurements at any particular time
step.
• Thus, the software complication involved in restructuring the
mat r i ces  to  accommodate  p resence  o r  absence  o f
measurements can be completely avoided.
• This technique has computational advantages as well since
inverting two matrices of order n/2 is much cheaper than
inverting one of order n.

3.5 The Uncertainty Matrices

• It is important to distinguish the different roles of the three
covariance matrices in the equations.
• The  matrix models the uncertainty which corrupts the
system model.
• The  matrix models the uncertainty associated with the
measurement. For example, the element to be entered into
for a potentiometer is the number of counts of noise on the pot
output.
• Finally, the  matrix gives the total uncertainty of the state
estimate as a function of time and is managed by the filter
itself.

Φ Γ

Qk

Rk
Rk

Pk
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4 Observability
•  S i tuat ions may ar ise where there are not  enough
measurements in the entire sensor suite to predict the system
state over the long term. These are calledobservability
problems and they can be detected when diagonal elements of

 are diverging with time.
• Observability problems can be fixed by reducing the number
of state variables (i.e by incorporating the assumption that
some are not too relevant) or by adding additional sensors.
Observability is a property of the entire model including both
the system and the measurement model, so it changes every
time the sensors change.
• Formally,a system is observable if the initial state can be
determined by  observing the output for some finite period of
time. Generalizing from Gelb, consider the discrete, nth order,
constant coefficient linear system:

for which there are m noise free measurements:

where each  is an m X n matrix. The sequence of the first n
measurements can be written as:

Pk

xk 1+ Φxk=

zk Hxk= k 0 m 1–,=

H

z0 Hx0=
z1 Hx1 HΦx0= =
z2 Hx2 H Φ( )2x0= =…
zn 1– Hxn 1– H Φ( )n 1– x0= =
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• This can be rewritten as the augmented set of equations:

• If the initial state  is to be determined from this sequence of
measurements then, the matrix:

must have rank1 n.

1. Recall that the rank of a matrix is the size of the largest nonzero determinant
that can be formed from it. The rank of an m X n matrix can be no larger than
the smaller of m and n. A square n X n matrix of rank n is callednonsingular.
The rank of the product of matrices is never larger than the smallest rank of
the matrices forming the product.

Z ΞTx0= ZT x0
TΞ=or

x0

Ξ HT ΦTHT … ΦT( )n 1– HT=
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5 Linearization
• The filter formulation presented earlier is based on a linear
systems model and it is therefore not applicable in situations
when either the system model or the measurement relationships
are nonlinear. Consider an exact nonlinear model of a system
as follows:

Where and  are vector nonlinear functions and  and  are
white noise processes with zero crosscorrelation. Let the actual
trajectory of the system be written in terms of an approximate
trajectory  and an error trajectory  as follows:

5.1 Linearized Models

• By substituting this back into the model and approximating
and  by their Jacobians evaluated at the reference trajectory:

• Two different forms of Kalman filter can be generated from
this linear assumption. The precise distinction between the two
forms of filter is based on the measurement function ,
that is, whether it is updated based on thecorrected (extended
filter) or thenominal (linearized filter) trajectory.

ẋ f x t,( ) g t( )w t( )+=

z h x t,( ) v t( )+=

f h w v

x* t( ) ∆x t( )
x t( ) x* t( ) ∆x t( )+=

f
h

∆ ẋ
x∂

∂ f
x* t,( )∆x g t( )w t( )+=

z h x* t,( )–
x∂

∂h
x* t,( )∆x v t( )+=

h x*( )
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5.2 Linearized Kalman Filter

• This linearized system model can be used to implement a
linearized Kalman filter  because the error dynamics and error
measurement relationships are linear. In this model:

• The deviation from the reference trajectory is the state
vector.
• The measurements are the true measurements less that
predicted by the nominal trajectory.

• The linearized filter is used in a feedforward configuration as
shown below where the nominal trajectory isnot updated to
reflect the error estimates computed by the filter:

• An advantage of the feedforward approach is that the
unfiltered system model output provides high-fidelity response
in the presence of high dynamics.
• However, such a filter is difficult to use for extended missions
because, the reference trajectory eventually diverges to the
point where the linear assumption is no longer valid across the
variation in the state vector.
• The feedforward model can be used to integrate an INS with
other navigation aids by considering its output to be the
reference trajectory.

system
model

measurements Kalman
filter

h x*( )
zk

x*

zk h x*( )–

∆x*
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6 Extended Discrete Time Kalman Filter
• In theextended Kalman filter, the trajectory error estimates
are used to update the reference trajectory as time evolves. This
has the advantage that it is more applicable to extended
missions.
• The extended filter can be visualized in afeedback
configuration as shown below:

• In the case of the extended Kalman filter, it is possible to
formulate the filter in terms of the state variables themselves
rather than the error states.

system
model

measurements Kalman
filter

h x*( )
zk

x*

zk h x*( )–

∆x*



Introduction to Mobile Robots
Uncertainty 3:

6 Extended Discrete Time Kalman Filter 17
5.2Linearized Kalman Filter

Alonzo Kelly Fall 1996

• The discrete time extended Kalman filter equations for the
system model are now as follows:

where the usual conversion to the discrete time model has been
performed.

x̂k x̂k
- Kk zk h x̂k

-( )–[ ]+=

Kk Pk
- Hk

T HkPk
- Hk

T Rk+[ ]
1–

= compute Kalman gain

update state estimate

Pk I K kHk–[ ]Pk
-= update its covariance

x̂k 1+
- φk x̂k( )=

Pk 1+
- ΦFPkΦF

T ΓkQkΓk
T+=

project state ahead

ẋ f x t,( ) g t( )w t( )+=

z h x t,( ) v t( )+=

system model

measurement model

Hk x∂
∂h

x̂k
-( )= compute measurement

Jacobian

Qk E wkwk
T( )=

Rk E vkvk
T( )=

Fk x∂
∂ f

x̂k
-( )= compute system

Jacobian

process noise

measurement noise

system
model

Kalman
filter

update its covariance
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6.1 State Transition for Nonlinear Problems

• When the system differential equation is nonlinear:

the state propagation equation will be written as:

• the “transit ion matrix” can be generated from time
linearization:

• The transition matrix can be written by inspection as an
identity matrix with linear and angular velocity cross terms

 added and multiplied by .
6.2 System Jacobian for Nonlinear Problems

• The system Jacobian for the EKF comes from state space
linearization:

6.3 Uncertainty Propagation for Nonlinear Problems

• In the nonlinear case, the uncertainty propagation equation is:

ẋ f x t( ) t,( )=

x̂k 1+
- φk x̂k( )=

xk 1+ xk f xk tk,( )∆t+=

xk 1+ xk ẋk∆t+=

f xk tk,( ) ∆t

F
x∂

∂
f x t,( )=

Pk 1+
- ΦFPkΦF

T ΓkQkΓk
T+=
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• The matrix  is the transition matrix associated with the
system Jacobian. The following eexpression for it is correct to
first order and may be used in implementation:

6.4 The Measurement Conceptualization in the EKF

• It is important to recognize that themeasurement process
itself is used in theextended Kalman fi l ter, and the
computation of the deviation from predicted to actual
measurement is automatic in the formalism. More specifically,
the state update equation is:

• This contains the computation of the predicted measurement
 already. The predicted measurement is computed inside

the filter itself.

ΦF

ΦF I F+( )∆t=

x̂k x̂k
- Kk zk h x̂k

-( )–[ ]+= update state estimate

h x̂k
-( )
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7 State Vector Augmentation
• One of the secrets to high performance navigation systems is
the mechanism by which they utilize the Kalman filter to
identify  themselves in real time.
• In the language of estimation theory, the mechanism is known
asstate vector augmentation.
• Both unknown system parameters and nonwhite noise sources
can be modelled as the result of passing a white noise process
through a system with linear dynamics.

7.1 Principle

• Suppose the measurement noise  in the continuous time
model below is correlated:

• Oftentimes it is possible to consider that the correlated
measurement noise arises through passing uncorrelated white
noise  through a system with linear dynamics (i.e by
filtering it) thus:

• Using this model, the correlated component of noise can be
considered to constitute a random element in the state vector.
This element is added to the existing states to form the
augmented state vector:

v

ẋ Fx Gw+=
z Hx v+=

w1

v̇ Ev w1+=

td
d x

v

F 0

0 E

x

v

G 0

0 I

w

w1

+=
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• Then the measurement equation becomes:

7.2 Parameter Identification

•  Unknown system parameters  can be model led as
deterministic new state variables with this technique.
• The (scalar) state differential equation for one new constant
state is:

• The measurement matrix  is updated to reflect the new
state.
• The basic operation of the filter is to project the measurement
residual onto the states, so it will determine a value for this
constant and even allow it to vary slowly with time.

z H I
x

v
=

ẋi 0=

H
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8 Example - AHRS Dead Reckoning
• The filter equations are basically always the same because the
last set of EKF formulas for nonlinear dynamic systems is
extremely general. They can used for tracking an object in a
viewfinder or estimating the position of a robot or for any
problem we’ve seen so far in these notes.
• The hard issue for building a filter is themodelling decisions
- the filling in of the matrices - just like in a controller design
problem.
• This example is a very general dead reckoning 3D Kalman
filter formulated for a redundant asynchronous sensor suite.
This permits many measurement models to be expressed in
closed form as scalar equations, which reduces the matrix
computations to a minimum.

8.1 Design Decisions and Assumptions

• A few key assumptions permit the filter to perform as
required:
• Low Dynamics Assumption. Linear and angular velocity are
mostly constant between measurements. Makes it possible to
reduce the state vector dimensionality to a minimum.
• Taylor Remainder Theorem. Under this basic theorem of
calculus, provided the low dynamics assumption holds,
uncertainty models for sensors and states can be generated
from the last neglected term in the relevant Taylor series.
• Principle Motion Assumption. The vehicle moves primarily
along the body y direction and rotates primarily about body z.
This permits the filter to be formulated in observable form
without the need for any landmark damping. It also eliminates
two linear and two angular velocities from the state vector.
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8.2 Why use a Kalman Filter

• AHRS is an acronym for Attitude and Heading Reference
System. It measures roll, pitch, and yaw.
• Our dead reckoning system will also include wheel encoders,
or a transmission encoder, and/or a Doppler groundspeed radar
sensor, and a steering wheel encoder.
• Such a simple example coud be done without a Kalman filter
but here are some advantages of using a Kalman filter:

• Redundant measurements. Encoders and radar are
redundant measurements of groundspeed. The filter will
maximize the advantage of this redundancy - emphasizing
one senor when the other is likely to be poor. For example,
radar has a deadband..
• Integration of Dead Reckoning and Triangulation. If
any fix information is available, the formulation provides
a simple mechanism for improving a dead reckoned
estimate considerably.
• Modelling Frequency Response. AHRS sensors tend to
have long settling times. State vector augmentation can be
used to model the frequency response of such sensors.
• Computational Inertial Force Compensation.
Measurements of path curvature and linear velocity can be
used to compensate for centrifugal accelerations by
removing them computationally from the clinometer
outputs.
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9 Example - System Model
• Most of the measurement and system model is a 3D
kinematic model. All you need is kinematics - no dynamics.
• More generally, you have a system model when you have the
details of the following equations:

9.1 State Vector

• The choice of state vector in this case will depend on the
observability issue and it often does.
• Let , , , , , and  denote the vehicle position and
attitude in the navigation frame. If we use the state vector:

it turns out that the filter is not observable because vertical and
side velocity - among other things - cannot be observed from
measurements of forward velocity only.
• The solution is to reformulate things toexplicitly assume that:

• the vehicle translates only along the body y axis
• the vehicle rotates only around the body z axis

ẋ f x t,( )=

Fk x∂
∂ f

x̂k
-( )=

x̂k 1+
- φk x̂k( )=

system dynamics model

state transition

system jacobian

x y z θ φ ψ

x x y z θ φ ψ
T

=
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• In this model, the state variables are:

where  is theprojection of the vehicle velocity onto the body
y axis, and  is theprojection of the vehicle angular velocity
onto the body z axis.

9.2 System Dynamics Model

• Basically, the system model will be of the form:

but  we a lso need to  account  for  the s ta te  var iab le
interrelationships.
• Using earlier results for the transformation of angular
velocity, the continuous time system differential equations are
as follows:

• This system model isnonlinear, therefore it must be
linearized according to the rules for an EKF.

x x y z V θ φ ψ β̇
T

=

V
β̇

V β̇ 0= =

td
d

x

y

z

V

θ
φ
ψ

β̇

Vsψcθ–

Vcψcθ
Vsθ

0

β̇sφ

β̇t– θcφ

β̇cφ cθ⁄
0

=
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9.3 System Jacobian

• The linearized continuous-time differential equation is:

which gives the  matrix of the EKF.
9.4 Transition Matrix

• The transition matrix  does not exist for nonlinear plants,
but the system differential equation can be approximated by
linearizing in time as follows:

• This transition matrix is just the equations of 3D dead
reckoning. It has been generated by re-expressing the nonlinear
plant as a matrix function of the states, so it only appears to be
linear.
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10 Example - Measurement Models
• This section provides the 3D measurement models for such a
filter incorporating many of the sensors commonly used on
autonomous vehicles.
• One of the advantages of the body frame system model is that
almost all of the measurement models are trivial. The tradeoff
is that the system model has rotation transforms in it.
• More generally, you have a measurement model when you
have the details of the following equations:

• In the filter implementation, it will be necessary to generate
the value of the predict ive measurement  the
measurement that is predicted from the current state estimate.
From it, we can then generate the measurement residual -
which is the quantity multiplied by the Kalman gain:

measurement model

measurement Jacobian

z h x t,( )=

Hk x∂
∂h

x̂k
-( )=

h x t,( )

zk h x̂k
-( )–
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10.1 Transmission Encoder

• A transmission encoder measures differential distance, so it
can be considered to be a device which measures velocity.

10.2 Doppler Groundspeed Radar

• The Doppler sensor has a model similar to the transmission
encoder.

10.3 AHRS

• The clinometers, compass, and gyros in an AHRS can be
assumed to measure the vehicle attitude directly so their
measurement matrices are the identity matrix.

zenc V= Henc x∂
∂zenc

0 0 0 1 0 0 0 0= =

zdop V= Hdop x∂
∂zdop

0 0 0 1 0 0 0 0= =

zahrs I[ ]
θ
φ
ψ

= Hρ x∂
∂zahrs

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

= =
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10.4 Steering Wheel Encoder

• A steering wheel encoder provides a measurement of the rate
of rotation of the vehicle about the body z axis. Using the
bicycle model approximation, the path curvature , radius of
curvature , and steer angle  are related by the wheelbase .

• The steer angle  is the quantity indicated by the encoder. It
is an indirect measurement of the ratio of  to velocity through
the nonlinear measurement function:

• The measurement Jacobian contains partial derivatives that
will apparently approach infinity. If we are careful to remove
apparent singularities we get:

• Physically, the steer angle is irrelevant when the vehicle is not
moving, so the measurement must be discarded.

κ
R α L

κ 1
R
--- αtan
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------------

sd
dβ= = =

α

α

R

L
β̇

sd
dβ

td
ds κV

V αtan
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----------------= = =

α
β̇
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------- 

 atan κL( )atan= =
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10.5 Wheel Encoders

• It is important to distinguish several kinds of measurements
that may be available from instrumented wheels.

• A fixed wheel is permitted to rotate about a single axis -
the one associated with forward motion.
• A free wheel may rotate about a vertical axis as well as
the axis associated with forward motion.
• Either of these two degrees of freedom may be powered
or not and either may be instrumented or not.

• Consider a single wheel on a vehicle that has two degrees of
rotational freedom as shown below. Let  be the position
vector of the wheel relative to the vehicle control point. Let the
wheel radius be .

• It is simplest toformulate the measurements in the body
frame. The velocity of the end of the wheel axle relative to the
world is available from vector algebra as:

ρ

r

α

x

y

V

β
˙

vvy

vx

ρ
θ̇

v V β
˙

ρ×+ V ĵ β̇k̂ ρxî ρy ĵ+( )×+= =

vx β̇ρyî–= vy V β̇+ ρx( ) ĵ=
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10.5.1Steer Angle

• Now the available measurements actually invert these
relationships. First the steer angle  of the wheel and its
gradient are:

• This is a measurement of the ratio of angular to linear
velocity and hence is a measure of curvature just as is the
Ackerman steer angle.

10.5.2Free Wheel Velocity

• A free wheel will rotate automatically about the body z axis
by the necessary steer angle due to friction. Its measurement
relationship in radians is:

• This is a measurement that responds to both the linear and
angular velocity of the vehicle but they cannot be distinguished
from a single measurement.The filter will automatically
distinguish linear and angular velocity when two or more
wheel velocities are measured.

α

α σ( )atan vy vx⁄( )atan= =

V∂
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--------------- 
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10.5.3Fixed Wheel Velocity

• A fixed wheel will not rotate automatically about the body z
axis. Its measurement relationship in radians is:

• Again, this is a measurement that responds to both the linear
and angular velocity of the vehicle but they cannot be
distinguished from a single measurement. The filter will
automatically distinguish linear and angular velocity when two
or more wheel velocities are measured.

θ̇ v ĵ• vy r⁄ 1
r
--- V β̇+ ρx( )= = =

V∂
∂ θ̇ 1

r
---=

β̇∂
∂ θ̇

ρx

r
-----=
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11 Example - Uncertainty Model
• Often, there is no knowledge of correlation of error sources,
and both the process noise covariance matrix  and the
measurement covariance matrix  are assumed to be diagonal.

• The state covariance matrix  will automatically evolve off
diagonal terms as the filter runs.

11.1 State Uncertainty

• The state uncertainty model represents the disturbances
which excite the linear system. It estimates how bad things can
get when the system is run open loop (i.e with no sensors) for a
given period of time.
• In the absence of any other information, a plausible approach
is to estimate error as the Taylor remainder in the dead
reckoning equations, because, after all, dead reckoning is a
truncated Taylor series in time. The  matrix can be assumed
diagonal, and its elements set to the predicted magnitude of the
truncated terms in the constant velocity model.

11.1.1Process Noise Distribution Matrix

• The  matrix allows us to represent the uncertainties of the
variables in the body frame where they can be determined by
intuition. it automatically converts coordinates to the
navigation frame of the state vector. Let the  matrix be given
by:

Q
R

Q diag σx
2 σy

2 σz
2 σV

2 σθ
2 σφ

2 σψ
2 σβ̇

2=

R diag σenc
2 σdop

2 σcom
2 σpitch

2 σroll
2 σyaw

2 σsteer
2=

P

Qk

Γ

Γ



Introduction to Mobile Robots
Uncertainty 3:

11 Example - Uncertainty Model 34
11.1State Uncertainty

Alonzo Kelly Fall 1996

11.1.2Linear Position States

• The translational uncertainty can be set to one-half the
maximum acceleration times the square of the time step. This
is the error expected when constant velocity is assumed. This
gives:

11.1.3Angular Position States

• For the angular position states, there are no measurements of
velocity in the DR equations for all axes, so the truncation error
is a velocity term. A very rough error estimate for these is:

Where  is the estimated highest angular velocity of the
vehicle body.

11.1.4Linear Velocity States

• In the case of linear velocity, there are no acceleration states
which propagate it forward in time via the transition matrix, so

Γ

Rb
n 0 0 0

0 1 0 0

0 0 Ω 0

0 0 0 1

=
Q diag σx

2 σy
2 σz

2 σV
2 σθ

2 σφ
2 σψ

2 σ
β̇
2=

σx σy σz

amax ∆t( )2

2
-----------------------= = =

σθ σφ σψ Ωmax∆t= = =

Ωmax
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this state will not move if its uncertainty is set to zero. Again,
using the remainder theorem:

11.1.5Angular Velocity States

• The angular velocity state also has no acceleration states to
propagate it forward in time. Using the remainder theorem:

11.2 Measurement Uncertainty

• The measurement uncertainties are far more critical to the
filter operation, because, after all, the whole system is
considered to fail if sensors are lost for only a few seconds and
filter optimality is not an issue.

11.2.1Encoder & Doppler

• The random error in the encoder can be extimated to have a
magnitude proportional to the distance travelled. Similiar
statements apply to the Doppler radar. The uncertainty model
is:

11.2.2Attitude

• In the absence of information, the best that can be done is to
assume some constant uncertainty.

σV amax∆t=

σβ̇ αmax∆t=

σenc SFEencVenc=

σdop SFEdopVdop=
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• However, it is common to find that yaw uncertainty is worse
than that of the other two angles, because the former is often
based on the gravity vector, and the latter on the weak and
unreliable local magnetic field so we can set:

11.2.3Steering

• Steering wheel position can be measured with any number of
simple transducers. It is typically a very low-fidelity
measurement that does not benefit from overly precise error
characterization. Let:

σθ σφ σATT= = σψ 2σATT=

σsteer constant=
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12 Example - Simple Terrain Aiding
• The pure dead reckoning filter of the previous section is
unlikely to achieve an accuracy which exceeds a few percent of
the distance travelled. This is because of the essential
integration of errors in the process of dead reckoning.
• Whatever the fidelity of the measurements used in practical
dead reckoning, a fix is needed at regular intervals to damp the
DR and the mechanism for doing this is the subject of this
section.
• The Kalman filter is an ideal formalism for integration of
dead reckoning and position fixes because fixes are simply
additional measurements which can be folded into the
equations in like manner to the DR measurements.

12.1 Fixes in the Navigation Frame

• The simplest form of position fix is a direct measurement of
the vehicle position in the navigation frame. Thesurvey point
is the only such fix available because position indicating
devices cannot usually be mounted at the center of the body
frame.
• The vehicle is positioned at a point which has been
presurveyed in the nav frame. Once the filter is told that this is
the case, it can use its stored knowledge of the true coordinates
of the survey point to generate the fix.
• The measurement matrix for survey points is trivial:

H
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

=z xsp ysp zsp

T
=
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12.2 Fixes in a Positioner Frame

• Sensors which can provide fixes on their own position include
the GPS receiver and the inertial navigation system. The
measurement matrix for such a sensor is relatively trivial:

12.3 Fixes in the Perception Sensor Frame

• Let the position of a landmark in the navigation frame be
known to be:

• Consider a generalized perception sensor which generates a
3D image of which most real sensors are special cases. The
measurment model involves the transformation from the
navigation to the sensor frame:

Where  is the nav frame to body frame homogeneous
transform, and  is the body frame to sensor frame
homogeneous transform.

H Tb
p
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0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
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• The measurement matrix for the transform is evaluated as the
product of the constant body to sensor transform, the Jacobian
tensor of the nav to body transform, and the landmark position
vector.

• Now to express the generated image, let a generalized
nonlinear imaging function map a point in the sensor frame
into image coordinates:

• where  is the triple (range, azimuth, elevation) for a
rangefinder or the pair (row, column) for a video camera. The
complete measurement Jacobian is then given by the chain
rule:

This is the general case for any sensor.
• Recall that the measurement Jacobian provides the
information necessary to project the residual onto the state
vector. The measurement uncertainty itself arises in the
matrix. So the analysis thus far has nothing to do with the
sensor itself. Rather, it answers the question of how an error in
vehicle position relates to an error in the position of a landmark
in the image for a perfect sensor.
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• In order to use this formula for any particular sensor, the
imaging Jacobian must be substituted for the particular sensor
used.
• The matrix partial is a tensor. Let it be 4 X 4 X n. Its second
index is matched with the row index of the landmark position
vector to generate the 4 X n matrix:

• Notice that the fact that the filter is using the difference
between the projected position of the landmark and the actual
position of the landmark in the image is not explicit. The
operation of the filter is such that it automatically computes
what the differential change in the state vector has to be in
order for the observed measurement to be made.

Hi k, x∂
∂T

i j k, ,
r j= i=1,4

j=1,4
k=1,n
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13 Bandwidth and Efficiency
• Typically, measurements cannot reasonably be packaged to
arrive synchronously. For example, Doppler readings may not
be available as frequently as encoder readings because they are
already filtered. GPS measurements cannot be generated faster
than 2 Hz whereas inertial systems can be 100 times faster than
this.

13.1 Asynchronous Implementation

• The state equations can be run at about 100 Hz while
measurements are incorporated at whatever rate they are
generated by the sensors. The basic algorithm is given below:

State_Update() /* entered every cycle */
{
update state estimate for a time step of dt
via the transition matrix(dt);
if( Doppler measurement available)

run Kalman() on Doppler;
if( Encoder measurement available)

run Kalman() on encoder;
if( AHRS measurement available)

run Kalman() on AHRS;
if( Steering measurement available)
run Kalman() on steering;

}
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13.2 Efficiency

• It is typical to find that most of the time is spent computing
the uncertainty matrices, and the Kalman gain, and in inverting
and multiplying matrices. The following two steps make it
possible to run the filter at 100 Hz on a SPARC 1.

13.2.1Kalman Gain

• The matrix Kalman gain equation for an EKF is:

• Let a single measurement arrive for integration with the state
estimate. Then, the  matrix is a scalar:

• Let the measurement project onto a single state whose index
is s with a coefficient of unity. Then the  matrix is a row
vector with a single unit element in the s’th position:

• The expression  is the s’th column of  and the
expression  is the (s,s) element of . Define:

• Finally, the Kalman gain is a column vector equal to a
constant times the s’th column of :

Kk Pk
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13.2.2Uncertainty Propagation

• The matrix uncertainty propagation equation for an EKF is:

• This can be computed many times faster as:

and this rewrite is valid regardless of the form of the
measurement matrix .
• Further simplification is possible in the case of a single scalar
measurement. Let a single measurement arrive for integration
with the state estimate. Again, let the measurement project onto
a single state whose index is s with a coefficient of unity. Then
the  matrix is a row vector with a single unit element in the
s’th position:

• The expression  is then the s’th row of . Reusing the
last result, the expression  is simply a constant times the
outer product of the s’th column and the s’th row of :

P I KH( )–[ ]P=

P P K HP( )–=
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H

H 0 0 0 0 0 1 0 0 0 0=

HP Pk
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KHP
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14 Results
• This filter has been implemented and tested in the field. The
sensors used were a steering wheel potentiometer for
“yawrate” measurement, transmission encoder and redundant
Doppler radar for measurement of velocity, and an AHRS for
three-axis attitude.
• One of many test runs will be used to illustrate performance.
In this run, winding mountainous city streets were driven. The
total excursion was about 4 Km in the horizontal plane and 200
meters vertically.
• The qualitatively correct growth of uncertainty is illustrated
because the uncertainty ellipses touch the path when it was
driven in the other direction. Point repeatability less than 1% of
the travelled distance was normally achieved.
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• One of the advantages of the 3D formulation is the
availability of the z coordinate. A zup (zero velocity update)
mode was included in order to check undesirable growth of the
state uncertainty when the vehicle was stopped. Zups appear as
flat regions because the abscissa is time.
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• The position output in the plane is illustrated. Notice that the
return path from the turn point could be rotated through a small
angle at the turn point and the graphs would overlap almost
perfectly. A residual systematic error in heading is responsible
for this.
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15 Summary
• The state space Kalman filter is the most generally useful
form. It is really two sets of equations. The system model is run
as fast as possible and the Kalman fi l ter runs when
measurements are available.
• When the system model or the measurement models are
nonlinear, the Extended Kalman Filter is generated through a
process of linearization.
• Observability is a concern that is intuitively obvious in simple
cases.
• This form of filter intrinsically integrates odometric dead
reckoning and landmark observations. The growth of
compounded DR uncertainty, the GDOP of triangulation and
the transformation of uncertainty are all handled automatically.
•  A pract ical  implementat ion deals wi th matters of
asynchronous measurements and processing efficiency. the
latter can be achieved by special case solutions for scalar direct
measurements.
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