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1 Kalman/Bucy Filter

* Invented by R. E. Kalman in 1960’'s or so. One year |
Kalman and Bucy jointly published the continuous ti
version.

» A purely mathematical algorithm for estimating the state
dynamic system based on recursive measurement of nois

» Useful for perception, position estimation, control - gener
any measurement task.

» Prerequisites for use are that corruptive errors must be:
» Unbiased (have zero mean for all time)
» Gaussian (have a Gaussian distribution for all time)
» White (contain all frequencies)

* Measurements may generally be:
* incomplete: related to some of the variables of interg
* indirect: related indirectly to the quantities of interest
e intermittent: available at irregular intervals of time
e inexact: corrupted by many forms of error

» The state space form has these additional abilities:

it can predict dynamic system state independer,
measurements.

St

t of

* it can easily use rate measurements that are derivéatives

of required state variables.

* it can explicitly account for modelling assumptions §nd

disturbances in a more precise way than just “noise”.

* it can identify a system (calibrate parameters) in r
time.

pal-
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2 State Space Model of a Random Process 3
2.1Continuous Model

2 State Space Model of a Random Bcess
» The basic pilosophy is to model the system of interest

sensors are also excited by noise.
 The system model is a matrix linear differential equat

white noise through a system with linear dynamics.

» Thestate vectorfor a dynamic system is any set of quanti
sufficient to completely describe the unforced motion of
system. Given the state at any point in time, the state
future time can be determined from the control inputs an
system state space model.

as a

linear dynamic system which is excited by noise and whose

on.

Such a model considers the process to be the result of passing

les

the
any
the

of initial conditions required to solve a differential equation

» Time may be considered continuous or discrete and mod
one form can converted to the other.

2.1 Continuous Model

* Linear systems model, state modelof a random process:
X = Fx+ Gw “state” or “process” model
Z = Hx+vV “measurement” or “observation” model
* This is a nice analogy but never used in practice.
2.2 Discrete Model

« If time is considered to be discrete, the process is descril
the following form:

the system up to one order less than the highest order deriyative

* Intuitively, a state vector contains values for all variabIT in
represented in the model. This is, of course, the exact number

b|s of

ed in
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2 State Space Model of a Random Process 4
2.2Discrete Model

Xe+v1 = CDka + rkV_Vk “state” or “process” model

Z, = HyX, + Vv “measurement” or “observation” model

» The names and sizes of the vectors and matrices are:
Xy is the (n X 1) systerstate vectorat timet;

®, is the (n X n)transition matrix which relatesX, toX, , ; in the
absence of a forcing function

rk Is the (n X n)process noise distribution matrixwhich transforms the
W, vector into the coordinates &

W, is a (n X 1) whitedisturbance sequenceor process noise sequencg
with known covariance structure.

Z, is a (m X 1)measurementat timet

H k is a (m X n)measurement matrixor observation matrix relating X
to Z, in the absence of measurement noise

V| is a (m X 1) whitaneasurement noise sequenegth known covariance
structure
» The covariance matrices for the white sequences are:

E(WkV_VT) = 0)Qy oTy
(VkVT) = Oy Ry =) = 0.0k

whered,, is the Kronecker delta.

» Hence, we assume that process and_ measurement|noise
sequences are uncorrelated in time (white) and uncorrejated
with each other.
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2 State Space Model of a Random Process 5
2.3Transition Matrix

2.3 Transition Matrix

* In order to implement the Kalman filter, a continuous time
system model must be converted to a discrete one. Gengrally,
this is far from easy. However, for our purposes, it sufficgs to
know that the time continuous matrix differential equation:

X = FX

can always be transformed into:

Xer1 = PpXy

The only question is how hard it is to do.

 When theF matrix is constant in time and the equatign is
linear (no elements of x occur inside F), then the transjtion
matrix is a function only of the time stédd  and it is given| by
the matrix exponential:

(FAY®,
2!

 In practice, the transition matrix can often be written| by
inspection. When this is not possible, writing a few terms of the
above series often generates recognizable series injeach
element of the matrix partial sum, and the general forny for
each term can be generated by inspection. Other times, higher
powers ofF conveniently vanish anyway.

* WhenAt is much smaller than the dominant time constar]ts in
the system, just the two-term approximation:

®, = eFit = | +FAt

®, = eFAt = | +FAt +

is sufficient.
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2 State Space Model of a Random Process
2.4Low Dynamics Assumption

2.4 Low Dynamics Assumption

* When F depends on time, so ddes

and it satisfies the n

natrix

version of the same differential equation as the state véctor

thus:

do

dt

 If F is assumed to be slowly varying relativefd , then
matrix exponential can still be used. This will be calledadlae

dynamics assumption It is a big assumption as the time s
gets larger.

F(t)®

the

ep

* Notice that the model presents how the measuremen{s are

derived from the state, that is, the operation of the sensor
Often, in other applications, the process which conve
measurement into a state estimate is considered. That
problem ofperception However, this model is the simpl
reverse process sensingitself.

 This is important to keep in mind because the filter is ab
use underdetermined measurements of state for this reasc
example, if a single range measurement is available, the

tself.

ts a
. the
D r

e to
n. For
filter

can use it to attempt to estimate two position coordinat

S or
even more. This situation cannot persist for too long a peri%d of

time but single underdetermined measurement:
multidimensional state vectors are quite legal.

of
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3 Linear Discrete Time Kalman Filter
3.1Filter Equations

3 Linear Discrete Time Kalman Filter

» The state space Kalman filter propagéieth the state and i{s
covariance forward in ti given an initial estimate of t

state.
3.1 Filter Equations

* The Kalman filter equations for the linear system model are
as follows:

_ ] -1 .
Ky = PkHI[ HkPkHI + R/] compute Kalman gair
Kalman %, = X+ K[z, —Hi &l

filter
P, = [1 =K H,]Py

update state estimatg

update its covariance

D, X -
k”*k project ahead state

system - T T and covariance
model ( Pk+1 = PePu®y + T QI

Xy +1

1. The state estimate prior to incorporation of any new measurements will pe
denoted byX , where the hat denotes an estimate and the super minus derjotes
the estimate prior to incorporation of the measurements (running one iteratipn
of the filter equations).
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3 Linear Discrete Time Kalman Filter 8
3.1Filter Equations

* These can be visualized in block diagram form as followq:

Xe-1 4
—
* System
Model
®_1 <4 Delay
Vi
Z A | Measurement]
®+< Hy ——— Model
+ Xk(-i-)
- Kalman
Update
X-1(+) P
| @y <&— Delay

» The equations obviously reduce to the last set of Kalman ffilter
equations when the state vector is cons@nt= | and if has
no temporal uncertainty growth associated wit@Q,t= 0

Ky = PHi[HPHE + R
X = X+ K[z, —HX]

P, = [1 =K H,]Py

* The equations are not run all at onc&he last two run af
high frequency and the first three are run when measurerpents
are available.
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3 Linear Discrete Time Kalman Filter 9
3.2Time and Updates

« An advantage of this formulation is that it requires inverslons
of matrices of order m (number of measurements) whigh is
usually less than n (the number of states). Indeed, it is pogsible
to, under assumptions necessary for other reasons, setin to 1
andavoid matrix inversion completely

3.2 Time and Updates

|t is important to distinguish theme elementfrom the
arrival of measurements

 The projection of the system state forward in time
proceeds basesblely on a measurement of time

« Measurements are conceptualized as indifect
measurements of state, and they arrive intermitteptly.
When they arrive, they are incorporated into the sgate
estimate through the Kalman gain but they are not strjctly
necessary.

 The number of measurements m, may be greater or les$ than
n, and they may be redundant measurements of the pame
guantity.
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3 Linear Discrete Time Kalman Filter 10
3.3Uncertainty Transformation

* Whenever a measurement is available, the switch cidas
the state has been predicted for that cyde the systenj
model, and the filter proper is executed.

Kalman Filter

Ky = PeHR[HPHg + R
Xe = X+ K[z, —HX]
Py = [I =K H Py

System Model

Xev1 = DXy

Pir1 = OP@ + QT

3.3 Uncertainty Transformation

« If zis an arbitrary measurement of the vector through spme
nonlinear relationship:

z = 1(X)

« Then it can be easily shown using a Taylor sejies
approximation and the definition of the covariance matrix that:

Cov(Az) = ExpAzAZT] = HEXP[AXAXT]HT = HCoVAX)HT

» whereH is the Jacobian 6f . This relationship is respongible
for the terms involving the measurement mataix , the

Alonzo Kelly Fall 1996
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3 Linear Discrete Time Kalman Filter 11
3.4Sequential Measurement Processing

transition matrix® , and th€ matrix in the Kalman filﬂer
equations.

3.4 Sequential Measuement Processing

* It can be shown that processing uncorrelated measurefnents
one at a time gives the same result as processing them @s one
large block.

 This has extreme advantages in real-time systems |with
intermittent asynchronous sensor suites. It allows ﬁirly
I

modular software implementations which adapt in real time to
the presence or absence of measurements at any particulgr time
step.

» Thus, the software complication involved in restructuring|the
matrices to accommodate presence or absencle of
measurements can be completely avoided.

» This technique has computational advantages as well gince
inverting two matrices of order n/2 is much cheaper than
inverting one of order n.

3.5 The Uncertainty Matrices

e It is important to distinguish the different roles of the thyee
covariance matrices in the equations.

e The Q, matrix models the uncertainty which corrupts |the
system model.

 The R, matrix models the uncertainty associated with|the
measurement. For example, the element to be entereirjto
for a potentiometer is the number of counts of noise on thg pot
output.

 Finally, theP, matrix gives the total uncertainty of the sjate
estimate as a function of time and is managed by the filter
itself.
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4 Observability 12
3.5The Uncertainty Matrices

4 Obsewnability

o Situations may arise where there are not eno

Lgh

measurements in the entire sensor suite to predict the system

state over the long term. These are calddervability

problems and they can be detected when diagonal elements of

P, are diverging with time.

» Observability problems can be fixed by reducing the nun
of state variables (i.e by incorporating the assumption
some are not too relevant) or by adding additional sen
Observability is a property of the entire model including &
the system and the measurement model, so it changes
time the sensors change.

* Formally,a system is observable if the initial state can
determined by observing the output for some finite periog

ber
that
50rS.
oth
every

be
of

time. Generalizing from Gelb, consider the discrete, nth ofder,

constant coefficient linear system:

Xes1 = PX

for which there are m noise free measurements:
Zy = HXk = 0,m-1

where eaclH is an m X n matrix. The sequence of the fi
measurements can be written as:

Zy = HXg
z, = Hxy = HDX,
z, = Hx, = H(®P)2x,

Z,_1 = HX,_; = H(®)"-1x,

rstn
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13

 This can be rewritten as the augmented set of equations;

—T —
Z - = XO or ZT = Xg:

measurements then, the matrix:

o If the initial statex, is to be determined from this sequenc

= = [HT OPTHT . (q)T)n—lHT]

must have rankn.

the matrices forming the product.

1. Recall that the rank of a matrix is the size of the largest nonzero determin
that can be formed from it. The rank of an m X n matrix can be no larger thgn
the smaller of m and n. A square n X n matrix of rank n is catbedingular.
The rank of the product of matrices is never larger than the smallest rank ¢f

e of

ANt
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5 Linearization 14
5.1Linearized Models

5 Linearization

as follows:

= f(x t) +g(t)w(t)
= h(x 9 +v(t)
Wheref andh are vector nonlinear functions and \and

1%

'N

trajectoryx”(t) and an error trajectofpx(t)  as follows:
X(t) = X' (t) + Ax(t)
5.1 Linearized Models

andh by their Jacobians evaluated at the reference trajec

Ax = %(x*, DAX + gl HW(1)

7 (X, 1) = %{(x*, DA + V(1)

forms of filter is based on the measurement functifx)
that is, whether it is updated based ondbeected(extended
filter) or thenominal (linearized filter) trajectory.

Alonzo Kelly Fall 1996

» The filter formulation presented earlier is based on a lipear
systems model and it is therefore not applicable in situations
when either the system model or the measurement relatior|ships
are nonlinear. Consider an exact nonlinear model of a syjstem

are

white noise processes with zero crosscorrelation. Let the gctual
trajectory of the system be written in terms of an approxirhate

By substituting this back into the model and approximatipg

ry.

» Two different forms of Kalman filter can be generated fijom
this linear assumption. The precise distinction between thg two
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5 Linearization 15
5.2Linearized Kalman Filter

5.2 Linearized Kalman Filter

» Thislinearized system modekan be used to implementla
linearized Kalman filter because the error dynamics and efror
measurement relationships are linear. In this model:

* The deviation from the reference trajectory is the Jtate
vector.

e The measurements are the true measurements legs that
predicted by the nominal trajectory.

» The linearized filter is used infeedforward configuration as
shown below where the nominal trajectoryn® updated tg
reflect the error estimates computed by the filter:

system X
model
h(x")
Z, AX
measuremen’rs_> m?ellrrnan
z,—h(x)

« An advantage of the feedforward approach is that|the
unfiltered system model output provides high-fidelity respgnse
in the presence of high dynamics.

* However, such a filter is difficult to use for extended missjons

because, the reference trajectory eventually diverges tp the
point where the linear assumption is no longer valid acrosp the
variation in the state vector.

» The feedforward model can be used to integrate an INS|with
other navigation aids by considering its output to be|the
reference trajectory.

Alonzo Kelly Fall 1996
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6 Extended Discrete Time Kalman Filter
5.2Linearized Kalman Filter

16

6 Extended Discete Time Kalman Filter

missions.

configuration as shown below:

* In theextended Kalman filter, the trajectory error estimatgs
are used to update the reference trajectory as time evolves
has the advantage that it is more applicable to extepded

» The extended filter can be visualized ifeeedback

system

*

— model

h(x)

X »@_»

*

AX

2y
measuremen Fil?elrrnan
z,—h(x")

rather than the error states.

* In the case of the extended Kalman filter, it is possibl
formulate the filter in terms of the state variables themse

. This

e to
lves

Alonzo Kelly
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6 Extended Discrete Time Kalman Filter 17
5.2Linearized Kalman Filter

» The discrete time extended Kalman filter equations foi the
system model are now as follows:

x = f(x t)+g(t)w(t) system model
z = h(x ?+v(t) measurement model
Qk = E(Wkwl process noise
R, = E(Vk\'ll measurement noise
oh, .. compute measuremenl
Hy = % X) Jacobian
_of .- compute system
Kalma Fe = % X) Jacobian
filter ] - -1 :
K = PkHI[ HkPkHI + Rk] compute Kalman gain
X, = X+ K, [z,—h(%)] update state estimate
P. = [I =K H,]P, update its covariance
syste 5‘([(+ 1= (pk()‘(k) project state ahead
model Pii1 = PP O+, Q] update its covariance

where the usual conversion to the discrete time model hagq been
performed.

Alonzo Kelly Fall 1996
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6.1State Transition for Nonlinear Problems

18

6.1 State Tansition for Nonlinear Problems

» When the system differential equation is nonlinear:

x = f(x(1), 1)

the state propagation equation will be written as:

5\([<+ 1 = (pk(s\(k)

linearization:

Xer1 = Xt X AL
Xer1 = Xt T(Xe )AL

f (X, t,) added and multiplied bixt
6.2 System acobian or Nonlinear Problems

linearization:

 The transition matrix can be written by inspection ag
iIdentity matrix with linear and angular velocity cross tefms

0 .,
F = ﬁf(x,t)

6.3 Uncertainty Propagation or Nonlinear Problems

Pesr = ®eP@L+T,Q, I

Alonzo Kelly Fall 1996

e the “transition matrix” can be generated from tifne

an

 The system Jacobian for the EKF comes from state gpace

* In the nonlinear case, the uncertainty propagation equatipn is:
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6 Extended Discrete Time Kalman Filter
6.4The Measurement Conceptualization in the EKF

19

 The matrix®, is the transition matrix associated with
system Jacobian. The following eexpression for it is correft to
first order and may be used in implementation:

® = (I +F)At

6.4 The Measuement Conceptualization in the EKF

the state update equation is:

* It is important to recognize that thheeasurement process
itself is used in theextended Kalman filter, and the
computation of the deviation from predicted to act
measurement is automatic in the formalism. More specificglly,

X, = X+ K, [z, —h(X)] update state estimate

the filter itself.

* This contains the computation of the predicted measure
h(X,) already. The predicted measurement is computed ifside

lthe

lal

ment

Alonzo Kelly
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7.1Principle

/ State \éctor Augmentation

* One of the secrets to high performance navigation systems is
the mechanism by which they utilize the Kalman filteq to
identify themselves in real time.

* In the language of estimation theory, the mechanism is kipown
asstate vector augmentation

» Both unknown system parameters and nonwhite noise sgurces
can be modelled as the result of passing a white noise prpcess
through a system with linear dynamics.

7.1 Principle

« Suppose the measurement novse in the continuous|time
model below is correlated:

X = Fx+ Gw
z = Hx+yv

» Oftentimes it is possible to consider that the correlated
measurement noise arises through passing uncorrelatedwhite
noisew; through a system with linear dynamics (i.e| by
filtering it) thus:

v=Ev+w

» Using this model, the correlated component of noise cgn be
considered to constitute a random element in the state vgctor.
This element is added to the existing states to form| the
augmented state vectar

-l B
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7.2Parameter Identification

* Then the measurement equation becomes:

i

7.2 Parameter Identification

« Unknown system parameters can be modelleq as
deterministic new state variables with this technique.

* The (scalar) state differential equation for one new congtant
state is:

% =0

« The measurement matrit  is updated to reflect the phew
state.

» The basic operation of the filter is to project the measurement
residual onto the states, so it will determine a value for|this
constant and even allow it to vary slowly with time.

Alonzo Kelly Fall 1996
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8.1Design Decisions and Assumptions

8 Example - AHRS Dead Rec#ning

» The filter equations are basically always the same becauge the
last set of EKF formulas for nonlinear dynamic systems is
extremely general. They can used for tracking an objectin a
viewfinder or estimating the position of a robot or for gny
problem we've seen so far in these notes.

* The hard issue for building a filter is thrdelling decisions
- the filling in of the matrices - just like in a controller desjgn
problem.

» This example is a very general dead reckoning 3D Kalman
filter formulated for a redundant asynchronous sensorrauite.

This permits many measurement models to be expresded in
closed form as scalar equations, which reduces the mjatrix

computations to a minimum.,
8.1 Design Decisions and Assumptions

A few key assumptions permit the filter to perform|as
required:

* Low Dynamics Assumption Linear and angular velocity afe
mostly constant between measurements. Makes it possible to
reduce the state vector dimensionality to a minimum.

» Taylor Remainder Theorem Under this basic theorem pf
calculus, provided the low dynamics assumption hojds,

uncertainty models for sensors and states can be gengrated
from the last neglected term in the relevant Taylor series.

* Principle Motion Assumption. The vehicle moves primarily
along the body y direction and rotates primarily about boqy z.
This permits the filter to be formulated in observable f¢grm

without the need for any landmark damping. It also eliminptes
two linear and two angular velocities from the state vector.

Alonzo Kelly Fall 1996
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8.2Why use a Kalman Filter

8.2 Why use a Kalman Filter

or a

transmission encoder, and/or a Doppler groundspeed

sensor, and a steering wheel encoder.

» Such a simple example coud be done without a Kalman
but here are some advantages of using a Kalman filter:

 Redundant measurementsEncoders and radar a
redundant measurements of groundspeed. The filter
maximize the advantage of this redundancy - emphas

« AHRS is an acronym for Attitude and Heading Referepce
System. It measures roll, pitch, and yaw.

» Our dead reckoning system will also include wheel encodlers,

radar

ffilter

re
will
zing

one senor when the other is likely to be poor. For example,

radar has a deadband..
* Integration of Dead Reckoning and Triangulation If

any fix information is available, the formulation provides

a simple mechanism for improving a dead recko

ned

estimate considerably.

have long settling times. State vector augmentation c

» Modelling Frequency ResponseAHRS sensors tend{
n be

used to model the frequency response of such senso

« Computational Inertial Force Compensation
Measurements of path curvature and linear velocity ce

n be

used to compensate for centrifugal acceleration$ by

removing them computationally from the clinome
outputs.

er

Alonzo Kelly
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9.1State Vector

9 Example - System Model
« Most of the measurement and system model is g

details of the following equations:

X = f(x1) system dynamics modell
Xes1 = (pk(>“<k) state transition

F, = 2.(x) system jacobian

9.1 State \éctor

* The choice of state vector in this case will depend on
observability issue and it often does.

attitude in the naV|gat|on frame. If we use the state vector:

X = [Xyzecptu]

measurements of forward velocity only.

* the vehicle translates only along the body y axis
* the vehicle rotates only around the body z axis

kinematic model. All you need is kinematics - no dynamicq.
* More generally, you have a system model when you havg the

» The solution is to reformulate thingsdrplicitly assume thaf

Alonzo Kelly Fall 1996

3D

the

*lLetx,y, z 0,9, andp denote the vehicle position and

it turns out that the filter is not observable because vertical and
side velocity - among other things - cannot be observed from
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9.2System Dynamics Model

* In this model, the state variables are:

X = [XyzvecpwiﬂT

whereV is therojection of the ghicle \elocity onto the bod
y axis, andB is th@rojection of the ghicle angular elocity
onto the body z axis.

9.2 System Dynamics Model
 Basically, the system model will be of the form:

V=B=0

=

but we also need to account for the state varigble
interrelationships.

» Using earlier results for the transformation of angylar
velocity, the continuous time system differential equationd are
as follows:

-VsicO
VcycO
Vso
0
Bse
—Bteccp
Bccp/ cO
0

e This system model isonlinear, therefore it must be
linearized according to the rules for an EKF.

=
€ 6 < N < X

Alonzo Kelly Fall 1996
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9.3System Jacobian

9.3 System acobian
* The linearized continuous-time differential equation is:

AX 00O0-sycb Vsyso 0 —Vecycb 0 ||ax
Ay 000 cycd —Vcyso 0 -VsgcO O Ay
Ayl [000 s 0 0 Ve 0 ||y
d|Aav] 000 O 0 0 0 0 ||IaAV
dtjagl (000 O 0 Bco 0 sp ||AB
Ag 000 0 —Bce/c20 Ptosy 0 —tbcop| |A®
Ay : 2,4 ¢ Ay

) 000 O PBsBcy/c™6 —Psy/cO 0 ce/co||

ABl Jlooo O 0 0 0 0 |LAB

which gives th&= matrix of the EKF.
9.4 Transition Matrix

* The transition matrixp does not exist for nonlinear pla

linearizing in time as follows:

X 100-sPcBdt 000 O X
y 010 cycbdt 000 0 y
z 001 sbdt 00O 0 z
\ _ (000 1 000 0 \
0 000 0 100 sedt | |9
¢ 000 0 01 0—tbcpdt| |
P 000 O 00 lcedt/co| |Y
Ble,, 000 0 000 1 |¢pl

nts,

but the system differential equation can be approximated by

e This transition matrix is just the equations of 3D d

linear.

ad

reckoning. It has been generated by re-expressing the norflinear
plant as a matrix function of the states, so it only appears fo be

Alonzo Kelly Fall 1996
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9.4Transition Matrix

10 Example - Measuement Models

» This section provides the 3D measurement models for sfich a
filter incorporating many of the sensors commonly used on
autonomous vehicles.

» One of the advantages of the body frame system model i that
almost all of the measurement models are trivial. The trageoff
is that the system model has rotation transforms in it.

* More generally, you have a measurement model whenj you
have the details of the following equations:

z=hx1 measurement model
H = oh %) measurement Jacobian

* In the filter implementation, it will be necessary to genefate
the value of thepredictive measurementh(x, t) the
measurement that is predicted from the current state estimate.
From it, we can then generate the measurement resiqual -
which is the quantity multiplied by the Kalman gain:

z,—h(%)

Alonzo Kelly Fall 1996
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10.1Transmission Encoder

10.1 Transmission Encoder

* A transmission encoder measures differential distance,
can be considered to be a device which measures velocity]

7,
Zene=V  Hene= 52"= 100010000

10.2 Doppler Groundspeed Radar

encoder.

= a_ZdOp =
0X

Zsop =V Hyop 00010000

10.3 AHRS

assumed to measure the vehicle attitude directly so
measurement matrices are the identity matrix.

9 , |oooo1o00

— — ~=ahrs _
Zahrs_[l]([) Hp__x —10000010
I ) 0000001

so it

* The Doppler sensor has a model similar to the transmigsion

* The clinometers, compass, and gyros in an AHRS cgn be

heir
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10.4Steering Wheel Encoder

Uncertainty 3:

10.4 Steering Wheel Encoder

A steering wheel encoder provides a measurement of th
of rotation of the vehicle about the body z axis. Using
bicycle model approximation, the path curvature , radiu
curvatureR , and steer angle are related by the whedlba

R L ds
' :d_BiS: KV:Vtana / ]
dsdt L a i

- -l
R

* The steer angla is the quantity indicated by the encogﬁr. It

IS an indirect measurement of the ratid3of to velocity thr
the nonlinear measurement function:

o = ata VBE: atan(kL)

 The measurement Jacobian contains partial derivative
will apparently approach infinity. If we are careful to rem
apparent singularities we get:

da _ —LB
_ dal da| OV 1ap)
H, = el v
o [OOOGVOOOGB] %:DLV_ZB
B+ Lp)

* Physically, the steer angle is irrelevant when the vehicle |
moving, so the measurement must be discarded.

b rate
the

k of
5e

gh

that
ve

5 NOt
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10.5Wheel Encoders

10.5 Wheel Encoders

o It is important to distinguish several kinds of measuremgnts
that may be available from instrumented wheels.

* A fixed wheelis permitted to rotate about a single ax|s -
the one associated with forward motion.

» A free wheelmay rotate about a vertical axis as well as
the axis associated with forward motion.

 Either of these two degrees of freedom may be powered
or not and either may be instrumented or not.

» Consider a single wheel on a vehicle that has two degrges of
rotational freedom as shown below. Lget  be the posifion
vector of the wheel relative to the vehicle control point. Lefjthe

wheel radius be
Qﬁ v ;h a
p

y
Heosdll ™

* It is simplest tdormulate the measurements in the bodly
frame. The velocity of the end of the wheel axle relative to[the
world is available from vector algebra as:

V= V+Bxp = Vi+Bkx(pd +p,])
v, = Pp,i v, = (V+PBp]
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10.5.1Steer Angle
* Now the available measurements actually invert th

gradient are:

a = atano) = atar(v /V,)

da _ dado _ 1 Dl _nlm1l o

oV  o0odV D_L+0 %p DD_L+025

aq :aaaq 01 Dgpyy PxV XD_(V )D 1
o 99 MU+ 2 PO T 20

* This is a measurement of the ratio of angular to lir
velocity and hence is a measure of curvature just as i
Ackerman steer angle.

10.5.2Free Wheel \élocity

by the necessary steer angle due to friction. Its measure
relationship in radians is:

0= TNV = TL/(Bey) + (v +Bp)
d

V. 0' 12VPy + 2V, 1
_ 1o, sin(a) —BG = rg_ = y2v Y XE ~(v,cosa +vysina)

oy O™

angular velocity of the vehicle but they cannot be distingui
from a single measurement.The filter will automatice
distinguish linear and angular velocity when two or m
wheel velocities are measured.

ese

relationships. First the steer angie of the wheel andl its

ear

5 the

» A free wheel will rotate automatically about the body z axis

ment

» This is a measurement that responds to both the Iineal r and

hed

[y
re
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10.5.3Fixed Whe

el \elocity

0 =ve]=v/r = %(V+Bpx)
oV r op r

« Again, this is a measurement that responds to both the
and angular velocity of the vehicle but they cannot] be
distinguished from a single measurement. The filter
automatically distinguish linear and angular velocity when fwo
or more wheel velocities are measured.

Alonzo Kelly

Fall 1996

A fixed wheel will not rotate automatically about the body z
axis. Its measurement relationship in radians is:
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11.1State Uncertainty

11 Example - Uncertainty Model

» Often, there is no knowledge of correlation of error souices,
and both the process noise covariance ma@yix and the
measurement covariance matRx are assumed to be diagonal.

Q = diag[og 0% 07 05 0§ 05 0§ Giﬂ

= 2 2 2 2 2
R= dlag[ Oénc O-dop O¢om O-pitch Ofoll O-yaw O-steej

» The state covariance matrfix  will automatically evolve]off
diagonal terms as the filter runs.

11.1 State Uncertainty
 The state uncertainty model represents the disturches
)

which excite the linear system. It estimates how bad thing$ can
get when the system is run open loop (i.e with no sensors)jfor a
given period of time.

* In the absence of any other information, a plausible apprpach
IS to estimate error as the Taylor remainder in the dead
reckoning equations, because, after all, dead reckoning is a
truncated Taylor series in time. TE@ matrix can be assmed
diagonal, and its elements set to the predicted magnitude pf the
truncated terms in the constant velocity model.

11.1.1Process Noise Distribtion Matrix

« Thel" matrix allows us to represent the uncertainties of the
variables in the body frame where they can be determingd by
intuition. it automatically converts coordinates to the
navigation frame of the state vector. Let the  matrix be gjven

by:
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11.1State Uncertainty

Q= diag[o)% 07 02 0§ 0§ 03 05 Giﬂ

o 0[qf0
0 0 0 1
11.1.2Linear Position States

maximum acceleration times the square of the time step.
s the error expected when constant velocity is assumed.
gives:

ama%(At)z

=0, = >

11.1.3Angular Position States
» For the angular position states, there are no measuremse

Is a velocity term. A very rough error estimate for these is:

Og = 0y, = 0y = Qp At

WhereQ, ., is the estimated highest angular velocity of
vehicle body.

11.1.4Linear Velocity States

* In the case of linear velocity, there are no acceleration g
which propagate it forward in time via the transition matrix

Alonzo Kelly Fall 1996
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11.2Measurement Uncertainty

this state will not move if its uncertainty is set to zero. Ag
using the remainder theorem:

O-V = ama>At

11.1.5Angular Velocity States

* The angular velocity state also has no acceleration sta
propagate it forward in time. Using the remainder theorem

O-B = a ma>At

11.2 Measuement Uncertainty

« The measurement uncertainties are far more critical tq
filter operation, because, after all, the whole syste
considered to fail if sensors are lost for only a few second
filter optimality is not an issue.

11.2.1Encoder & Doppler

 The random error in the encoder can be extimated to h

AN,

es to

) the
IS
and

AvVe a

magnitude proportional to the distance travelled. Simf{liar

statements apply to the Doppler radar. The uncertainty n
IS:

Oenc = SI:Eencvenc
0-dop = SI:Edopvdop

11.2.2Attitude

* In the absence of information, the best that can be done
assume some constant uncertainty.

odel

IS to
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11.2Measurement Uncertainty

* However, it is common to find that yaw uncertainty is wdrse

than that of the other two angles, because the former is pften
based on the gravity vector, and the latter on the weal and
unreliable local magnetic field so we can set:

O-e = OCP - O-ATT O-l.|J - 20ATT

11.2.3Steering

» Steering wheel position can be measured with any numier of
simple transducers. It is typically a very low-fidelity
measurement that does not benefit from overly precise grror
characterization. Let:

Ogeer = CONStant
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12.1Fixes in the Navigation Frame

12 Example - Simple €rrain Aiding

unlikely to achieve an accuracy which exceeds a few percgnt of

 The pure dead reckoning filter of the previous sectic:[:: IS

the distance travelled. This is because of the esse
integration of errors in the process of dead reckoning.

» Whatever the fidelity of the measurements used in prag
dead reckoning, a fix is needed at regular intervals to dam
DR and the mechanism for doing this is the subject of
section.

 The Kalman filter is an ideal formalism for integration
dead reckoning and position fixes because fixes are si
additional measurements which can be folded into
equations in like manner to the DR measurements.

12.1 Fixes in the Ngigation Frame

* The simplest form of position fix is a direct measuremer
the vehicle position in the navigation frame. Buevey point
Is the only such fix available because position indica
devices cannot usually be mounted at the center of the
frame.

« The vehicle is positioned at a point which has b
presurveyed in the nav frame. Once the filter is told that th
the case, it can use its stored knowledge of the true coord
of the survey point to generate the fix.

» The measurement matrix for survey points is trivial:

] 1000000
Z= X Yep Zep H=10100000
0010000

tial

tical
p the
this

of

mply
the

t of

ing
body
ben
IS IS
nates
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12.2Fixes in a Positioner Frame

12.2 Fixes in a Bsitioner Frame

» Sensors which can provide fixes on their own position inc
the GPS receiver and the inertial navigation system.
measurement matrix for such a sensor is relatively trivial:

) 1000000
— p - p

Z= T Xgps Vaps Zgps H = T5/0100000
0010000

12.3 Fixes in the Brception Sensor Frame

» Let the position of a landmark in the navigation frame
known to be:

n T

3D image of which most real sensors are special cases
measurment model involves the transformation from
navigation to the sensor frame:

XE b X b
n
re = ye| = T5Th(X) Y| ~ TtS)Tn()_()[L
Z 24

WhereTE(x) Is the nav frame to body frame homogensg

homogeneous transform.

ude
The

be

» Consider a generalized perception sensor which genergites a

. The
the

ous

transform, andl§ is the body frame to sensor frgme
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12.3Fixes in the Perception Sensor Frame

* The measurement matrix for the transform is evaluated gs the
product of the constant body to sensor transform, the Jacpbian
tensor of the nav to body transform, and the landmark pogition
vector.

Hy = 5.(18) = Tag (T200)]

* Now to express the generated image, let a generalized
nonlinear imaging function map a point in the sensor frame
into image coordinates:

= f(rs) = F(TST(I})

« wherer| is the triple (range, azimuth, elevation) fgr a
rangefinder or the pair (row, column) for a video camera.|The
complete measurement Jacobian is then given by the ¢ghain
rule:

mrl_ b n
= (@D‘HW—HT (mmm
[rDrL

This is the general case for any sensor

 Recall that the measurement Jacobian provided the
information necessary to project the residual onto the gtate
vector. The measurement uncertainty itself arises i

matrix. So the analysis thus far has nothing to do with|the
sensor itself. Rather, it answers the question of how an erfor in
vehicle position relates to an error in the position of a landipark
in the image for a perfect sensor.
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12.3Fixes in the Perception Sensor Frame

* In order to use this formula for any particular sensor,|the
Imaging Jacobian must be substituted for the particular sgnsor
used.

 The matrix partial is a tensor. Let it be 4 X 4 X n. Its sedond
index is matched with the row index of the landmark position
vector to generate the 4 X n matrix:

oT .
H. = | ___ . !:1'4
LK [le,j,ktj L_:11,’4n

* Notice that the fact that the filter is using the differepce
between the projected position of the landmark and the gctual
position of the landmark in the image is not explicit. The
operation of the filter is such that it automatically compytes
what the differential change in the state vector has to e in
order for the observed measurement to be made.
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13 Bandwidth and Efficiency

this.
13.1 Asynchonous Implementation

State_Update() /* entered every cycle */

{

update state estimate for a time step of dt

via the transition matrix(dt);

if( Doppler measurement available)
run Kalman() on Doppler;

if( Encoder measurement available)
run Kalman() on encoder;

ifl AHRS measurement available)
run Kalman() on AHRS;
if( Steering measurement available)
run Kalman() on steering;

}

* Typically, measurements cannot reasonably be packa
arrive synchronously. For example, Doppler readings may not

be available as frequently as encoder readings because ttley are
already filtered. GPS measurements cannot be generated| faster
than 2 Hz whereas inertial systems can be 100 times fast

« The state equations can be run at about 100 Hz
measurements are incorporated at whatever rate thely are
generated by the sensors. The basic algorithm is given be

d to

than

hile

OwW.
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13.2Efficiency

13.2 Efficiency

and multiplying matrices. The following two steps mak
possible to run the filter at 100 Hz on a SPARC 1.

13.2.1Kalman Gain
« The matrix Kalman gain equation for an EKF is:

- T - T -1
Ky = PeH[HPH + R

estimate. Then, thR matrix is a scalar:
R=[r]

IS s with a coefficient of unity. Then tHeé matrixisar
vector with a single unit element in the s’th position:

H=10000010000

expressiorH, P, H, isthe (s,s) elementRyf . Define:
p = PSS

constant times the s’'th column Bf

1 :
K= g0

 The expressiO{P[(_HL Is the s’th column Bf and the

o It is typical to find that most of the time is spent compufing
the uncertainty matrices, and the Kalman gain, and in inveLting

b it

 Let a single measurement arrive for integration with the gtate

» Let the measurement project onto a single state whose jndex

DW

e Finally, the Kalman gain is a column vector equal fo a
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13.2.2Uncertainty Propagation

* The matrix uncertainty propagation equation for an EKF s:
P=[I-(KH)]P

» This can be computed many times faster as:
P=P-K(HP)

and this rewrite is valid regardless of the form of fhe
measurement matrik

» Further simplification is possible in the case of a single sgalar
measurement. Let a single measurement arrive for integrgation
with the state estimate. Again, let the measurement projec{ onto
a single state whose index is s with a coefficient of unity. Then
the H matrix is a row vector with a single unit element infthe
s'th position:

H=10000010000

» The expressioiP is then the s'th rowRf . Reusing|the
last result, the expressiddHP  is simply a constant time$ the
outer product of the s’th column and the s’th rowPpf

(KHP); = Eb%rajislﬂi iy
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14 Results

 This filter has been implemented and tested in the field.| The
sensors used were a steering wheel potentiometef for
“vawrate” measurement, transmission encoder and redupdant
Doppler radar for measurement of velocity, and an AHRY for

three-axis attitude.

* One of many test runs will be used to illustrate performance.
In this run, winding mountainous city streets were driven. [The
total excursion was about 4 Km in the horizontal plane and 200
meters vertically.

* The qualitatively correct growth of uncertainty is illustrajed
because the uncertainty ellipses touch the path when i was
driven in the other direction. Point repeatability less than 1$6 of
the travelled distance was normally achieved.

Uncertainty Growth
1 5
N OP
5 oo P T [O4 em o TPY
S = NV S22
o )
o -1 5
O
E _2 gq
e N
3 O
= ¥
c -4 S
S ®
o S
o .5 @)
> - @)
-6

0 1 2 3 4 5 6 7
x coordinate in meters (/100)

Alonzo Kelly Fall 1996



Uncertainty 3:
14 Results
13.2Efficiency

Tntroguction to MoDITE Robots

45

z coordinate in meters (/10)

Vertical Position

y A )
, / f
0 4 /
; INEK
. [ /
RSN |
i Zups
/ |

0O 1 2 3 4 5 6 7 8 9 10 11 12

cycle number (/ 100)

« One of the advantages of the 3D formulation is

availability of the z coordinate. A zup (zero velocity upda
mode was included in order to check undesirable growth G
state uncertainty when the vehicle was stopped. Zups app
flat regions because the abscissa is time.

kthe

te)
f the
Par as
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angle at the turn point and the graphs would overlap al
perfectly. A residual systematic error in heading is respon
for this.

Plane Position

1
/
|
= o~ S
o \
2 N \\
n -1 End
% é Point
2+ Start
g Point /\li
o -3—
§ Turn
S -4 Point
g |
o
> 5 =
-6

0 1 2 3 4 5 6 7
x coordinate in meters (/100)

» The position output in the plane is illustrated. Notice thaf the
return path from the turn point could be rotated through a gmall

ost
Sible
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15 Summary

* The state space Kalman filter is the most generally ugeful
form. It is really two sets of equations. The system model i$ run
as fast as possible and the Kalman filter runs when
measurements are available.

* When the system model or the measurement modelg are
nonlinear, the Extended Kalman Filter is generated throygh a
process of linearization.

» Observability is a concern that is intuitively obvious in sinjple
cases.

» This form of filter intrinsically integrates odometric defad

reckoning and landmark observations. The growth of
compounded DR uncertainty, the GDOP of triangulation jand
the transformation of uncertainty are all handled automati(lally.

« A practical implementation deals with mattersjof

asynchronous measurements and processing efficiency. the
latter can be achieved by special case solutions for scalar direct
measurements.
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