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1. DYNAMIC (PROCESS) MODELS

We allow the dynamic model of the water level, also known as the process model, to be modled as
the sum of three possible components. a constant component, a steadily increasing or decreasing
component, and a sinusoidal component. The simplest model would consist of the constant
component alone; the most complicated would consist of the combination (sum) of all three.

In any case, the primary element of the state of the system isthe water level L as shown in
Figure 5. We represent the true state of the system as X and the estimated state as X. The
estimated process covarianceis P, and the process noise (covariance) matrix is Q . The state and
the covariance matrices are al the same dimension, with the dimensionality depending on the
specific combination of dynamic components.

1.1 Actual Dynamics (Truth)

Herewelook at the three components of the actual water level dynamicsin the most fundamental
forms. The actual water level would be modeled as summed combinations of these components.
The valid combinations are the same as those in Section 1.2, where | cover the modeled (Kalman
filter) formulations.

1.1.1 Constant
In this case, the water level L does not change. In other words,

L(t) = ¢ D)
for some constant c.

1.1.2 Filling (Steady I ncrease)
In this case the water level isincreasing or decreasing at a constant rate r . In other words,

d _
al—(t) =T (2
for somer > 0.

1.1.3 Sloshing (Sinusoidal)
In this case the water level is changing as sinusoidal function of time. In other words,

L(t) = ksSin(ot +¢) €)
and

%L(t) = kswcos(ot +0).

1.2 TheModels (Kalman Filter)

Here| describe the finite set of possible KF (and EKF) models that we will use. Each combination
would have a corresponding truth signal that could be generated using the modelsin Section 1.1,
however of course the user will be able to select combinations of actual and modeled dynamics
that do not match.

1.2.1 Constant
In this case the estimated state would have only one element, i.e. it would be the scalar water
level, smply X, = L. The continuous time process model is depicted in Figure 1.

Because the level is modeled as constant, the continuous time state transition matrix would be
smply A, = 0 and the continuous time process noise matrix would be Q. = q.. The
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Figure 1. Constant level process model.

corresponding discrete time state transition matrix is A(dt) = 1, and from (17) the discrete time
process noise matrix would be Q(dt) = q.6t, where 0 < Jq_c « F for thefull water level F. The
time update equations are simply

XH(t+0ot) = X(t)
and

PH(t+dt) = A(St)P(t)AT(8t) + Q(8t)

P(t) + gdt

1.2.2 Filling
In this case the estimated state would have two elements, the current water level X, =L and the

water fill rate,
L dx
% =g -
asin (2). The continuous time process model is depicted in Figure 2.
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Figure 2: Filling process model.

The overdl stateisthen

The continuous time state transition matrix is

and the continuous time process noise matrix is

_loo
= loa)



The discrete time state transition matrix is

A(dt) = {1 51 (4)
00

and from (17) the discrete time process noise matrix is
q;6t3 q;6t?

Qe =| 3 2 (5)
q;ot?
—o— a8t

where 0 < Jq_f «F, for the full water level F. Thefilter update equations are the usual linear
Kaman filter equations:
XH(t+8t) = A(St)X(1)
and
P*(t+8t) = A(St)P(t)AT(8t) + Q(dt)

1.2.3 Sloshing

In this case the estimated state would have two elements, the current water level X, =L and the
magnitude of the sinusoidal component X, = k for some constant k. The continuous time
process model is depicted in Figure 3.
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Figure 3: Sloshing process model.
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The present water level would be modeled as function of both the previous level and the changing
sinusoidal components. For the sake of ssmplicity we will assume that ® isknownand ¢ = 0.

In state form we have,

We model the new state X at timet + 6t as
X (t+3t) = & (1) + X(t)wcos(wt)

X (t+8t) = X(t)



The continuous time state transition matrix is

A = [0 (ocos((ot)}
0 0

and the continuous time process noise matrix is
00
Q= .
0 g

The discrete time state transition matrix is

ASt) = [1 (ocos(o)t)} (6)
0 1

and from (17) the discrete time process noise matrix is

q<y25t(3t2 + 3tdt + 8t2) qyStP

Q(t, 8t) = 35 2 (7)
qsvz tp .5t

wherey = wcos(wt), B = 2t+0t,and 0< JES«F,for the full water level F. Thefilter
update equations are the usual linear Kalman filter equations:
X*H(t+8t) = A(St)X(t)
and
PH(t+dt) = A(St)P(t)AT(8t) + Q(8t)

1.2.4 Filling + Sloshing
In this case the estimated state would have three elements, the present water level X, =L, the

magnitude of the sinusoidal component X, =k, and the water fill rate,
dx
X =— L
dt
The continuous time process model is depicted in Figure 4.
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Figure 4: Filling + sloshing process model.




In state form we have,

The present water level would be modeled as function of the previous level, thefill rate, and the
changing sinusoidal components. Again for the sake of simplicity we will assumethat o is
knownand ¢ = 0.Wemodel the new state X at timet + ot as

S (t+8t) = X (1) + StX (1) + X(t)wcos(wt)
X (t+8t) = X.(1)
X (t+8t) = X(t)

The continuous time state transition matrix is

0 1 wcos(mt)
A=100 0
00 0

and the continuous time process noise matrix is

000
Q= (0qg; Of.
00 g

So the discrete time state transition matrix is

1 ot wcos(mt)
Adt) = |0 1 0 (8)
00 1

and from (17) the discrete time process noise matrix is

5t(3t2+ 35t + 5t2)(q, + y2) G StP aStyPl
3 7 "2
Q(t, 3) = ot a5t 0 ©
5t
ol ZYB 0 gt




where y = wcos(ot), B = 2t+35t, and 0< /g, /o, «F, for the full water level F. Thefilter
update equations are the usual linear Kalman filter equations:
XH(t+8t) = A(B)X(1)
and
P*(t+8t) = A(St)P(1)AT(8t) + Q(8t)



2. MEASUREMENT MODELS

To determine the measurement models we need to determine (specify in this case) the mechanical
and electrical characteristics of the actual system. The following schematic diagram will be used
to identify variables in the measurement equations.
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Figure 5: The two possible measurement methods. Left: the system returns a noisy voltage z
representing the height of the float. Right: system returns a noisy voltage z representing the
angle 6 between the fixed base segment d,, and the pivoting float segment d; .

2.1 Leve (Linear)
In the simplest case, the system returns a noisy voltage z representing the height of the float,
which is proportional to (i.e. alinear function of) the water level L. In other words,

z
L==
Ki
where k; issome a priori known constant scale factor. By solving this linear expression for z we
obtain alinear model of the measurement:

z = kL.
In more general notation, we model the measurement z as alinear function of the system state X,
Z = HX

where the “hats’ on z and X reflect the notion that they are estimates of the actual measurement
and state.



If we use aone-dimensional state X to estimate the water level L, the measurement matrix is
simply

H =K. (10)
If we use atwo-dimensional state X to estimate the water level L, and the estimate of the water
level isin thefirst position/element of the state, the measurement matrix is

H = [kl o] (11)

Finally if we use athree-dimensional state to estimate the water level L, and the estimate of the
water level isin the first position/element of the state, the measurement matrix is

H= ko0 (12)

In the actual filter, either (10), (11), or (12) would be used to both for measurement prediction and
in the Kalman gain equation. Which of (10), (11), and (12) is used depends on the number of state
elements.

2.2 Angle (Non-Linear)
In this case the system returns a noisy voltage z representing the angle 6 between the fixed base
segment d,, and the pivoting float segment d; . The water level L isanon-linear function of this
angle asfollows.
. (z

where k, issomea priori known constant scale factor. Bysolving this non-linear expression for z
we obtain anon-linear model of the measurement:
d,—L

di
Again in more general notation, we model the measurement z as a non-linear function of the
system state X,

z = kyasin

5 = h(X)

where

. _dy—%
h(X) = k,asin . (13)

%, isthe element of the state vector that represents the water level, and again the “ hats” on z and
X reflect the notion that they are estimates of the actual measurement and state.

Because we have a non-linear measurement model, we will have to use an extended Kalman filter.
For the EKF we need the Jacobian of the measurement function—the derivative of the
measurement function (13) with respect to the state:

_ 0d, 0
H —a—f(h(x).

In our situation, the measurement model (13) is only afunction of X, —the element of the state
representing the water level, so the Jacobian elements corresponding to any other state elements



will always be zero. Specifically if we use aone-dimensional state X to estimate the water level L
(Section 1.2.1), the measurement matrix is simply

_od . (14)
where
—k
d h(x) = a .
dx. o (SR
f "( d; )

If we use atwo-dimensional state X to estimate the water level L (Section 1.2.2 or Section 1.2.3),
and the estimate of the water level isin thefirst position/element of the state, the measurement
matrix is
H=|9n 0. (15)
dx,

Finally if we use athree-dimensional state to estimate the water level L (Section 1.2.4), and the
estimate of the water level isin thefirst position/element of the state, the measurement matrix is

| d .
H = {d—f(l_h(x) 0 o}. (16)

In the actua filter, (13) would be used to predict the measurement, and the Jacobian (14), (15), or
(16) would be used in the Kalman gain equation.



APPENDIX A: DISCRETE TIME PROCESS NOISE

Given continuous time state transition and process noise matrices A and Q, one can compute the
discrete time (sampled) process noise matrix as follows:

Q(st) = jz ' eATQeA g | (17)
Ao o1
00

_100
o= el

where g, isisthe autocorrelation of the continuous process noise, the discrete time time process
noise matrix would be

For example, given

and

Q(dt) =




