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1. DYNAMIC (PROCESS) MODELS

 

We allow the dynamic model of the water level, also known as the 

 

process model

 

, to be modled as 
the sum of three possible components: a constant component, a steadily increasing or decreasing 
component, and a sinusoidal component. The simplest model would consist of the constant 
component alone; the most complicated would consist of the combination (sum) of all three.

In any case, the primary element of the 

 

state

 

 of the system is the water level  as shown in 
Figure 5. We represent the 

 

true

 

 state of the system as  and the estimated state as . The 
estimated process covariance is , and the process noise (covariance) matrix is . The state and 
the covariance matrices are all the same dimension, with the dimensionality depending on the 
specific combination of dynamic components.

 

1.1  Actual Dynamics (Truth)

 

Here we look at the three components of the 

 

actual 

 

water level dynamics in the most fundamental 
forms. The actual water level would be modeled as summed combinations of these components. 
The valid combinations are the same as those in Section 1.2, where I cover the modeled (Kalman 
filter) formulations.

 

1.1.1  Constant

 

In this case, the water level  does not change. In other words,
(1)

for some constant .

 

1.1.2  Filling (Steady Increase)

 

In this case the water level is increasing or decreasing at a constant rate . In other words,

(2)

for some .

 

1.1.3  Sloshing (Sinusoidal)

 

In this case the water level is changing as sinusoidal function of time. In other words,
(3)

and

.

 

1.2  The Models (Kalman Filter)

 

Here I describe the finite set of possible KF (and EKF) models that we will use. Each combination 
would have a corresponding 

 

truth

 

 signal that could be generated using the models in Section 1.1, 
however of course the user will be able to select combinations of 

 

actual

 

 and 

 

modeled

 

 dynamics 
that do not match.

 

1.2.1  Constant

 

In this case the estimated state would have only one element, i.e. it would be the scalar water 
level, simply . The continuous time process model is depicted in Figure 1.

Because the level is modeled as constant, the 

 

continuous time

 

 

 

state transition matrix

 

 would be 
simply  and the continuous time process noise matrix would be . The 
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corresponding 

 

discrete time

 

 state transition matrix is , and from (17) the discrete time 
process noise matrix

 

 

 

would be , where  for the full water level . The 

 

time update

 

 equations are simply

and

 

1.2.2  Filling

 

In this case the estimated state would have 

 

two

 

 elements, the current water level  and the 
water fill rate,

.

as in (2). The continuous time process model is depicted in Figure 2.

The overall state is then

. 

The 

 

continuous time

 

 state transition matrix is

and the 

 

continuous time

 

 process noise matrix is 

.

∫νc νc~N 0 qc,( )
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Figure 1: Constant level process model.
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Figure 2: Filling process model.
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The discrete time state transition matrix is

(4)

and from (17) the discrete time process noise matrix is 

 (5)

where , for the full water level . The filter update equations are the usual linear 
Kalman filter equations:

and

1.2.3  Sloshing
In this case the estimated state would have two elements, the current water level  and the 
magnitude of the sinusoidal component  for some constant . The continuous time 
process model is depicted in Figure 3.

In state form we have,

.

The present water level would be modeled as function of both the previous level and the changing 
sinusoidal components. For the sake of simplicity we will assume that  is known and .

We model the new state  at time  as

.
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Figure 3: Sloshing process model.

∫νs

νs~N 0 qs,( )

x̂s

∫ x̂L
ω ωt φ+( )cosks

x̂
x̂L

x̂s

=

ω φ 0=

x̂ t δt+
x̂L t δt+( ) x̂L t( ) x̂s t( )ω ωt( )cos+=

x̂s t δt+( ) x̂s t( )=



The continuous time state transition matrix is

and the continuous time process noise matrix is 

.

The discrete time state transition matrix is

(6)

and from (17) the discrete time process noise matrix is 

(7)

where , , and , for the full water level . The filter 
update equations are the usual linear Kalman filter equations:

and

1.2.4  Filling + Sloshing
In this case the estimated state would have three elements, the present water level , the 
magnitude of the sinusoidal component , and the water fill rate,

.

The continuous time process model is depicted in Figure 4.
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Figure 4: Filling + sloshing process model.
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In state form we have,

.

The present water level would be modeled as function of the previous level, the fill rate, and the 
changing sinusoidal components. Again for the sake of simplicity we will assume that  is 
known and . We model the new state  at time  as

.

The continuous time state transition matrix is

and the continuous time process noise matrix is 

.

So the discrete time state transition matrix is

(8)

and from (17) the discrete time process noise matrix is 

 (9)
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where , , and , for the full water level . The filter 
update equations are the usual linear Kalman filter equations:

and

γ ω ωt( )cos= β 2t δt+= 0 q f qs, F«< F

x̂+ t δt+( ) A δt( ) x̂ t( )=

P+ t δt+( ) A δt( )P t( )AT δt( ) Q δt( )+=



2. MEASUREMENT MODELS
To determine the measurement models we need to determine (specify in this case) the mechanical 
and electrical characteristics of the actual system. The following schematic diagram will be used 
to identify variables in the measurement equations.

2.1  Level (Linear)
In the simplest case, the system returns a noisy voltage  representing the height of the float, 
which is proportional to (i.e. a linear function of) the water level . In other words,

where  is some a priori known constant scale factor. By solving this linear expression for  we 
obtain a linear model of the measurement:

.

In more general notation, we model the measurement  as a linear function of the system state ,

where the “hats” on  and  reflect the notion that they are estimates of the actual measurement 
and state.
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Figure 5: The two possible measurement methods. Left: the system returns a noisy voltage  
representing the height of the float. Right: system returns a noisy voltage  representing the 

angle  between the fixed base segment  and the pivoting float segment .
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If we use a one-dimensional state  to estimate the water level , the measurement matrix is 
simply 

. (10)

If we use a two-dimensional state  to estimate the water level , and the estimate of the water 
level is in the first position/element of the state, the measurement matrix is

. (11)

Finally if we use a three-dimensional state to estimate the water level , and the estimate of the 
water level is in the first position/element of the state, the measurement matrix is

. (12)

In the actual filter, either (10), (11), or (12) would be used to both for measurement prediction and 
in the Kalman gain equation. Which of (10), (11), and (12) is used depends on the number of state 
elements.

2.2  Angle (Non-Linear)
In this case the system returns a noisy voltage  representing the angle  between the fixed base 
segment  and the pivoting float segment . The water level  is a non-linear function of this 
angle as follows.

where  is some a priori known constant scale factor. Bysolving this non-linear expression for  
we obtain a non-linear model of the measurement:

.

Again in more general notation, we model the measurement  as a non-linear function of the 
system state ,

where

, (13)

 is the element of the state vector that represents the water level, and again the “hats” on  and 
 reflect the notion that they are estimates of the actual measurement and state.

Because we have a non-linear measurement model, we will have to use an extended Kalman filter. 
For the EKF we need the Jacobian of the measurement function—the derivative of the 
measurement function (13) with respect to the state:

.

In our situation, the measurement model (13) is only a function of —the element of the state 
representing the water level, so the Jacobian elements corresponding to any other state elements 
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will always be zero. Specifically if we use a one-dimensional state  to estimate the water level  
(Section 1.2.1), the measurement matrix is simply 

(14)

where

.

If we use a two-dimensional state  to estimate the water level  (Section 1.2.2 or Section 1.2.3), 
and the estimate of the water level is in the first position/element of the state, the measurement 
matrix is

. (15)

Finally if we use a three-dimensional state to estimate the water level  (Section 1.2.4), and the 
estimate of the water level is in the first position/element of the state, the measurement matrix is

. (16)

In the actual filter, (13) would be used to predict the measurement, and the Jacobian (14), (15), or 
(16) would be used in the Kalman gain equation.
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APPENDIX A: DISCRETE TIME PROCESS NOISE

Given continuous time state transition and process noise matrices  and , one can compute the 
discrete time (sampled) process noise matrix as follows:

. (17)

For example, given

and

,

where  is is the autocorrelation of the continuous process noise, the discrete time time process 
noise matrix would be

.
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