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III. KALMAN FILTERING 

A. INTRODUCTION 

Kalman filtering is a method of recursively updating an estimate of a system state by processing a succession of
measurements. The Kalman filter is model-based; each cycle of measured input data is compared with prior
(model-based) estimates and are weighted by Kalman gains to obtain updated (output) state estimates. Kalman
gains are computed during each cycle and are function's of the filter's covariances and models of the measurement
process [GELB88]. In this chapter Kalman filtering will be discussed as implemented in the Phoenix AUV for
navigation calculations. 

B. PHOENIX IMPLEMENTATION 

A discrete asynchronous Kalman Filter was used by the Phoenix navigation module. The use of DiveTracker range
data required the addition of an Extended Kalman Filter mode of operation due to the non-linearity of range
measurements. The Kalman filter used a non-zero mean movement model, where the input vehicle speed is
assumed truth, and results in the filter solving for both an updated position data and estimates of ocean current.
This filter also computes a Dimensionless shock quantity based on the received measurements to determine if the
filter has possibly lost track or received bad measurements. The state vector ,U, was defined to be [Xpos Ypos
Xdrift Ydrift]. The state was processed through the movement and measurement steps based on the previous
position, measurements, Kalman gains, and system covariance. 

1. Statistical Background 

The Kalman computations are manipulations of (multi-variate) normal probability distributions [WASH94]. The
computations are conducted in two separate stages consisting of motion and measurement step calculations. The
symbol X represents a system state component and is a multi-variate normal with a mean of Mu and a covariance
of Sigma , abbreviated as X~N(Mu,Sigma). V is the measurement noise, and is also a multi-variate normal with a
mean of Uv and a variance of R abbreviated V~N(Uv,R). W is the movement noise. It too is a multi-variate
normal with a mean of Uw and a variance of Q, abbreviated W~N(Uw,Q). 

2. Movement Model 

The movement model's X and Y position is based on standard dead-reckoning; i.e., 

That is, Distance becomes the new X or Y position. Rates are computed using a rotational transform [CRAI86] of
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Phoenix u (longitudinal), v (sway) and w (heave) speeds to arrive with X (north/south), Y (east/west) and Z
(up/down) speeds. The earth coordinates were set according to a right hand rule with north, east and down
directions being positive. The movement model dead reckons in X and Y positions over a time Del based on the
following equations. 

That is, The new X and Y positions are the sum of the old position, the distance covered by drift speeds, and an
approximately normal non-zero mean random variable W, where W has a mean of Speed*Del and a variance Q.
The use of a non-zero mean random variable for the calculations of the X and Y positions is the primary driver for
the solution of X and Y drift speeds. The X and Y drift calculations use a zero mean random variable W, with
variance Q. 

C. KALMAN FILTER FORMULAS 

The Kalman filter uses Equations (3.6) and (3.7) for the motion modeling described by Equations (3.2-3.5).
Equations (3.8-3.11) are used in the calculation of the measurement step. All operations are matrix operations.
With the addition of Phi and H as movement and measurement matrices, Equations 3.2 and 3.5 are transformed to
the Kalman filter formulas. For example if Xi+1= Phi*Xi + Wx (simplification of Eq. 3.2) and X~N(Mu,Sigma),

then, Mui+1 =Phi*Mu i+Uw as demonstrated in Equation (3.6). 

1. Motion and Measurement Models 

The motion formulas are: 

The measurement and update formulas are: 

where: 
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U,Sigma= The mean and covariance of the System State. 

Phi= The movement Matrix, which describes how the state changes. 

Uw,Q = The mean and covariance of the movement noise. 

H = The measurement matrix (how the measurement depends on the state). 

Uv,R = The mean and covariance of the measurement noise. 

Z = The measurements (GPS/DGPS or DiveTracker). 

K = Kalman Gains (a ratio of the filter Covariances) 

I = Identity Matrix 

and '+' indicates a measurement step while '-' indicates a movement step calculation. 

2. Movement Step 

The new movement step position given by Equation (3.6) is the sum of the product of the movement matrix Phi
and state vector U(+), as shown in Equation (3.12). 

The addition of Uw results in Equation (3.6). The new value of given by Equation (3.7) also depends on the
movement matrix and the addition of the covariance of the movement noise, and results in a new covariance matrix
for the system state U. 

3. Measurement Step 

The measurement step computes a new state vector U based upon measurements and Kalman gains. Kalman
gains given by Equation (3.8) are computed as a ratio of the state covariance, as it depends upon the measurement
vector and the sum of the state covariance and the measurement Equation (3.11). The gains indicate how much the
state vector U values depend upon the measurements Z1 and Z2. Specifically, 
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The computed gains are used as weights on the amount of change in the system based on the measurements. The
difference between the estimated position based on the movement model and the measured position Z is denoted
as "Shock" [WASH94], or as equivalently to as "innovation" and is given by Equation (3.9). Where a measured
position is from GPS/DGPS or is a position derived from DiveTracker ranges. The new system state U is a sum of
the previous state and a gain weighted shock given by Equation (3.10). The new covariance, Equation (3.11), is
the product of the "complement" of the state dependent gain (a measure of truth) and the old covariance. The
complement is derived by subtracting the state dependent gain from an Identity matrix. 

D. DIMENSIONLESS SHOCK 

In a perfect system, the value of the shock would be zero. As the shock increases and becomes large, then the
probability that the system has lost track also increases. A problem develops in determining what value of shock
should be considered "large". Dimensionless shock (Eq. 3.14) is used to determine what value of shock relates to
"large". 

A large value of DimensionlessShock indicates a possible measurement problem or that the filter has lost track.
DimensionlessShock can be gauged against the degrees of freedom of the shock [WASH94]. However, it has
been found in the research of this thesis that an order of magnitude increase over the degrees of freedom provides
better results. 

An order of magnitude increase was determined to be required due to the shift in measurement methods. When
using a consistent measurement method, a large shift in the DimensionlessShock value as gauged against the
degrees of freedom of the shock does indicated a possible loss of track. However, when shifting measurement
methods it is possible to get a change in position that results in a higher value than expected of
DimensionlessShock. To ensure that the new measurement is not ignored, an order of magnitude increase in the
DimensionlessShock threshold level is used. This enables the filter to use the new measurement and maintain track.

E. EXTENDED KALMAN FILTERING 

In the previous discussion of the Kalman Filter, the measurement was always a linear function of the system state.
In the non-linear case, the relationship between the system state and the measurements must be linearized. In the
Phoenix Kalman filter, the DiveTracker ranges are a non-linear function of the state. The DiveTracker ranges are
two independent ranges from base station transducers to the Phoenix. In this case a non-linear filter (Extended
Kalman Filter) must be used [WASH94]. This linearization is performed by taking the derivative of a calculated
range, f(U), given by Equation (3.15). Where f(U) is a function of the X and Y components of the system state
vector U. If Dx and Dy are distances between the Phoenix state position U and the DiveTracker base transponder
positions, then 

Since the values of the measurements are non-linear with respect to the state, the development of a new H (how
the measurement depends upon the state) matrix is required. This new H (Equation 3.16) is now composed of the
first partial derivatives of calculated measurements f(U), based upon the current values of the state, to form a
Jacobian. 
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This H matrix represents a linearized relationship between the state and the measured ranges. The new H is used
by Equations (3.8) and (3.9) to calculate Kalman gains and covariances as they relate to the measurements. The
shock calculations must also change to reflect the amount of state change required. The new shock (Equation
3.17) is the difference between the actual measurements Z and the calculated measurements f(U) as based on the
system state. Where Z holds the received ranges from the DiveTracker system. 

F. SPEED/CURRENT ERROR MODEL 

If a measured Phoenix position does not agree with the motion model's position, then as the filter updates the
system state the X and Y ocean current speed components will be increased to explain the difference. The ocean
current speed components of the system state are actually a combination of ocean current and navigation errors
caused by inaccurate vehicle speed and heading inputs. In the absence of measurements, the speed variances will
slowly increase. In the long run, according to the movement model, vehicle speeds in excess of 1000 knots are not
only possible but likely [WASH94]. Modeling these speeds as a discrete Ornstein-Uhlenbeck process (O-U) will
correct this problem by exponentially decreasing the value of the ocean current speeds over time. This is useful for
long term modeling of ocean or tidal currents. With this approach a value of C, where (0 C 1), is used to decrease
the value of the drift speed exponentially (Eq 3.18). That is, 

In this equation, Del is the time step between cycles and is the drift relaxation time. As an example for the case of
Xdrift, the state component update equation changes to; 

Consequently, the Xdrift variance changes to; 

The limit of Var(Xdrift) as time approaches infinity is the average of Xdrift2, so Q reduces to, 

The final modification in the O-U process involves the Del used in the Phi matrix. Now, the drift speeds not only
fluctuate about zero, but they also decay toward zero at the rate specified by C. This results in a new term Delta =
*(1-C), where Delta always smaller than , although there is very little difference when Del is small compared to
Tau. The final result is a modified Phi matrix given by, 
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G. SUMMARY 

Discrete Kalman filtering is a statistical method of calculating a new system state based on a series of
measurements. The Phoenix navigation module uses a system state of [Xpos Ypos Xdrift Ydrift]T, and
measurements of GPS position and DiveTracker ranges. The use of DiveTracker ranges requires an Extended
Kalman filter due to non-lineararity of the measured ranges. Drift speeds are modeled as a Ornstein-Uhlenbeck
process to keep the calculated speeds in bounds. 
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