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1 Combining Uncertainties
• The basic theory behind everything to do with the Kalman
Filter can be obtained from two sources:

• 1) Uncertainty transformation with the Jacobian matrix
• 2) The Central Limit Theorem

1.1 Variance of a Sum of Random Variables

• We can use our uncertainty transformation rules to compute
the variance of a sum of random variables. Let there be
random variables - each of which are normally distributed with
the same distribution:

• Let us define the new random variable  as the sum of all of
these.

• By our transformation rules:

• where the Jacobian is simply  ones:

• Hence:
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• Thus the variance of a sum of identical random variables
grows linearly with the number of elements in the sum.

1.2 Variance of A Continuous Sum

• Consider a problem where an integral is being computed from
noisy measurements. This will be important later in dead
reckoning models.
• In such a case where a new random variable is added at a
regular frequency, the expression gives the development of the
standard deviation versus time because:

in a discrete time system.
• In this simple model, uncertainty expressed as standard
deviationgrows with the square root of time.

• Uncertainty grows rapidly and then levels off as time evolves.
This arises from the fact that truly random errors tend to cancel
each other if enough of them are added.
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1.3 Central Limit Theorem

• This important theorem has several important interpretations.
One was mentioned already. The sum of a large number of
independent random variables is Gaussian - regardless of the
distribution of each.
• The CLT also describes the so-called “sampling distribution
of the mean” which is discussed below.
• Let ( , , , ) be a random sample of size n from a
normal distribution having mean  and variance .
• Then if  is the sample mean, as  the distribution of
is the standard normal distribution with mean  and variance

.

• Intuitively, this means that the most likely sample mean is the
population mean and that the approximation islikely (not
guaranteed) to get better as the sample size increases1.
• We have a different use for this.

1.4 Combined Observations of a Constant

• Consider the results of the CLT when the sample size  is
taken as a variable. The CLT directly tells us that the
uncertainty of the sample mean decreases with more
measurements. That is, to get a better answer, measure the
same thing over and over again and take the average.
• Suppose several redundant measurements of a constant are
obtained and that they all have identical statistics. Then the true

1. Hence the opinion poll which predicts the behavior of 300 million people
based on interviewing a few thousand.
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value can be approximated as the mean of the observations.
Under these circumstances, the uncertainty in this mean is:

• Thus, the variance in the mean decreases with increasing
numbers of measurements.

1.5 Variance of A Continuous Measurement of a Constant

• Consider a problem where a constant value must be estimated
from a sequence of noisy measurements.
• In such a case where a new measurement is taken at a regular
frequency, the expression gives the development of the
standard deviation versus time because:

in a discrete time system.
• In this simple model, uncertainty expressed as standard
deviationdecreases with the square root of time. This idea that
taking and merging multiple observationsreduces the
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uncertainty of the combined result is the basic idea of the
Kalman filter.

• Uncertainty decreases rapidly and then levels off as time
evolves.
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2 Compounding Uncertainty in Measurement
Sequences

• Our transformation rules give all the tools necessary to
compute the uncertainty in a continuously changing quantity
that is computed in an arbitrary way from a continuous
sequence of measurements.
• This is a more general combination of measurements than a
continuous sum. The measurements may be added or combined
in more complicated ways.
• We can determine the uncertainty in a general combination of
sequential measurements by considering the result at any point
to be a function of:

• The last answer and its uncertainty
• The current measurement and its uncertainty.

2.1 General Formulation

• Generally, let a function depend on a parameter vector  that
we have decided to partition into two smaller parameter vectors
of possibly different length:

• Let us also partition the covariance  and Jacobian  of
the inputs:
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• where:

• Then, the covariance of  is:

• This can be written out in gory detail, but to save work, let us
make the assumption that  and  areuncorrelated:

• Note that the size of the input correlation matrix is the length
of the parameters , but the output is determined by the size of

.
• Intuitively, two variables are uncorrelated when knowing the
value of one tells you nothing at all about the value of the
second, on average. That is, they are not co - related.
• This assumption then allows us to simply write the result as
the sum of the individual transformed uncertainties.
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2.2 Example: Dead Reckoning with Odometer Error Only

• Consider a case where vehicle position is generated from
dead reckoning and a Gaussian error exists on the odometer.
The heading is assumed determined from a perfect compass.
• This case can be formulated in terms of two vectors, the
current position  and the current measurements , which
when combined generate the new position :

• The Jacobians are:

• Let the uncertainties in the current position and the
measurements (for a perfect compass) be:
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• So, for uncorrelated error (i.e. if the error in the new
measurements has nothing to do with the current position), the
error in the new position can be written as:

• This gives the uncertainty of the new position estimate. Note
in particular that:

• The cross terms will remain zero for motion along the
axes.
• The diaginal terms are always positive so the uncertainty
increases monotonically.

• For example, in the following run of such a system, along a
slowly turning path, the uncertainty grows without bound.
Also, the ellipses slowly turn to the right but because they
remember the contributions of all past measurments, they
remain pointing mostly upward.
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3 Merging Redundant Measurements
• Sometimes, we have several measurements that are directly
related to the same thing. These can be used to get the best
overall estimate. This process of getting the best overall
estimate is calledestimation and the tools used are called
estimators.
• Most of robotics currently employs the Kalman filter to
estimatestatic quantities - though it was originally developed
to estimate dynamically changing quantities. This section deals
with the static case and the more general dynamic case is
covered later.
• Unfortunately there are at least a half dozen forms of Kalman
Filter equations out there. This section will walk through some
in order from simple to complex. All Kalman Filters have these
characteristics:

• They estimate recursively
• They combine multiple measurements

• Other options in the formulation include:
• Weighted estimation or not (R or I matrix?)
• Direct and indirect measurement (H or I matrix?)
• Linear and Nonlinear versions (Hx or h(x))
• System Dynamics Model (F matrix?)

3.1 Batch Estimation

3.1.1Sample Mean

• The most straightforward example of merging data is
computing the mean of a set of measurements. Let a set of
measurements  exist of the (unknown) constant  called the

n
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state vector. The sample mean can be computed from all
measurements in one shot as follows:

3.1.2Weighted Batch Estimator

• By computing an average for the best estimate we have
implicitly assumed that the measurements all have the same
uncertainty. If they do not, aweighted average is the best
estimate. One technique for computing the best estimate of
measurements of varying uncertainty isweighted least squares.
• The problem is now generalized as follows:

• Thestate  andmeasurements  are now vectors.
• The measurements are indirectly related to the state
vector through a measurement matrix .
• The measurements are assumed to be corrupted by a
random noise vector  of known covariance :

• Here, we attempt to minimize the total weighted squared
residual of all of the measurements1:

1. Note that this is a matrix quadratic form - which results in a scalar. It is not
like the outer product used to form a covariance matrix.
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where we have weighted the elements of the residual by their
reciprocal variances (i.e. those measurements which are very
uncertain do not contribute much to the estimate).
• Setting the derivative1 of this with respect to the state
estimate to zero, there results:

• Note that setting  to the identity matrix results in the usual
normal equations of (unweighted) linear least squares.

3.2 Recursive Estimation

3.2.1Simple Merging - Recursive Sample Mean

• More generally, the measurements may not all be available at
once. In this case, a recursive formulation for the estimate is
possible by rewriting the above scalar mean as:

• or as:

• When k is large  has less and less effect on the answer.

1. Note that the derivative of  wrt x is . Don’t forget the 2.x
T

Ax 2Ax

x̂ HTR 1– H( )
1–
HTR 1– z=

HTR 1– H( ) x̂ HTR 1– z=

2HR 1– z H x̂–( ) 0=

R

x̂k 1+
k

k 1+( )
----------------- x̂k

1
k 1+( )

-----------------zk+=

x̂k 1+ x̂k
1

k 1+( )
----------------- zk x̂k–[ ]+=

zk



Introduction to Mobile Robots
Uncertainty 2:

3 Merging Redundant Measurements 14
3.2Recursive Estimation

Alonzo Kelly Fall 1996

• Where the difference between the current estimate and the
current measurement  is known commonly as the
measurement residual.
• Let  be the variance of a single measurement and  be the
total variance of the current estimate at step k.
• The equation for updating the uncertainty is, from the Central
Limit Theorem:

• One straightforward way to interpret this formulation is that
the old estimate votes ‘k’ times for its value and the new
measurement votes once for its value. It is instructive to rewrite
this result as:

where  is called theKalman gain. Note that, in this simple
case, it is simply the reciprocal of the time step and it could be
precomputed.
• The uncertainty propagation can be rewritten as:

• These last two eqiuations are the “Maybeck form” of the
Kalman Filter.
• This form of estimator is called a recursive filter. The major
advantages of recursive filters are:
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• They require virtually no memory because there is no
longer a need to store all k previous measurements.
• They spread the computation out over time so that each
new estimate requires only a few operations.

3.2.2Inter pretation as Weighted Average

• An as alternate view of what is happening here (see
Maybeck), suppose that the measurement has an variance
and the state estimate has a variance .
• We might further suppose that it would be reasonable to
combine the current estimate and measurement in amounts
inversely proportional to their own uncertainties thus (each has
a weight proportional to the other element’s uncertainty):

• Putting this in recursive form:

• This is equivalent to our earlier form where if the current
estimate has one unit of uncertainty, , then the new
measurement has proportionally more . Also, the
Kalman gain is:

• When the measurement uncertainty is large, the gain is small
and the state is changed very little.
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• The central limit theorem suggests that we can compute the
new uncertainty from adding reciprocals:

• This can easily be rewritten as:

3.2.3Matrix F orm with Dir ect Measurements

• The matrix form of these equations is the “Smith and
Cheeseman version” of the Kalman Filter:

• Smith and Cheeseman use a direct measurement of the state
so that the interpretation is  is the result of all merging so far
and  is the latest “approximate transform” to be merged in.

3.2.4Matrix F orm with Indir ect Measurements

• Let the measurements  be indirectly related to the state
vector . Let the measurement vector be corrupted by a
random noise vector  of known covariance :
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• Identical derivation from the central limit theorem (or, from
optimization as in Gelb) leads to the “Gelb form” of the
Kalman Filter:

• The form  is themeasurement residual - the
difference between the current measurement and the
measurement predicted based on the current state estimate.

3.2.5Matrix F orm with Indir ect Nonlinear Measurements

• When the measurement relationship (or other things we have
not covered) are nonlinear, the filter is called anExtended
Kalman Filter (EKF).
• Let the measurements  be indirectly related to the state
vector .by a nonlinear function and let the measurement
vector be corrupted by a random noise vector  of known
covariance :

• We define the Jacobian matrix of the measurement
relationship evaluated at the current state estimate:
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• of the Kalman Filter:

3.3 Example: Building Maps of Objects with Perfect
Positioning

• Consider a situation where a mobile robot observes the
positions of various objects as it roams around. As it moves, it
sees the same objects over and over, so an opportunity exists to
fix their position accurately through merging observations.
• While the sensor position in the world, , is known perfectly,
the position of the object  relative to the sensor is computed
from a noisy sensor. Based on techniques presented earlier and
a model of sensor uncertainty, the covariance of the object
position relative to the sensor is .
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• The position of the object relative to the world is called
and is given by:

• This is of the form . Given an initial estimate of the
position and uncertainty of the object position , a new
measurement of uncertainty  can be merged with it.

3.4 Example: Building Maps of Objects with Imperfect
Positioning

• It is possible to do exactly the same operations whenboth the
sensor position and the object position are updated and
considered noisy.
• Let the sensor position in the world be  and the object
position in the world be . The composite state vector and its
uncertainty is:
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• Let the object position wrt the sensor be denoted  with
covariance .
• The position of the object relative to the world is given by:

• This is of the form . Given an initial estimate of the
position and uncertainty of the sensor position  and the
object position , a new measurement of uncertainty  can
be merged with it.

3.5 Duality of Mapping and Position Estimation

• A very general duality exits between position estimation and
mapping in mobile robotics.
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• In mapping, we take the vehicle pose and relative object
positions as known and update the positions of objects based
on it and sensor readings:

• In position estimation from landmarks, we take the absolute
object positions as known and update the position of the
vehicle based on it and sensor readings:

• And we have seen that its possible to do both at once.
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4 Summary
• Combining noisy measurements leads to a noisier result.
However, merging redundant measurements (filtering) leads to
a less noisier result.
• In a compounding situation, a continuously changing quantity
is computed from a sequence of measurements.
• In a merging situation, redundant measurements related even
indirectly to the quantity of interest are combined.
• Kalman Filters can be used to estimate the positions of
objects and the position of the robot simultaneously.


