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Uncertainty 2:

1.1Variance of a Sum of Random Variables

1 Combining Uncertainties
» The basic theory behind everything to do with the Kalpan
Filter can be obtained from two sources:

1) Uncertainty transformation with the Jacobian mattix
» 2) The Central Limit Theorem
1.1 Variance of a Sum of Random ¥riables

» We can use our uncertainty transformation rules to conjpute
the variance of a sum of random variables. Let thera tve
random variables - each of which are normally distributed ith
the same distribution:

Xi ON(n,0) , 1 =1,n

 Let us define the new random variayle as the sum of all of
these.

y=>X

=1

« By our transformation rules:

2 _ 24T
o, = Jo,J

» where the Jacobian is simply ones:

* Hence:
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1.2Variance of A Continuous Sum

2
y

 Thus the variance of a sum of identical random variaples
grows linearly with the number of elements in the sum.

1.2 Variance of A Continuous Sum

» Consider a problem where an integral is being computed ffrom
noisy measurements. This will be important later in dead
reckoning models.

e In such a case where a new random variable is addeg@l at a

regular frequency, the expression gives the development ¢f the

standard deviation versus time because:
{

At

2
0, = N0,

n =

in a discrete time system.

* In this simple model, uncertainty expressed as stangdard
deviationgrows with the square root of time

A

>

@

time

» Uncertainty grows rapidly and then levels off as time evoll/es
This arises from the fact that truly random errors tend to cqncel
each other if enough of them are added.

Alonzo Kelly Fall 1996



Tntroguction to MoDITE Robots

Uncertainty 2:

1.3Central Limit Theorem

1.3 Central Limit Theorem

» This important theorem has several important interpretatjons.

One was mentioned already. The sum of a large numbjr of
independent random variables is Gaussian - regardless pf the
distribution of each.

 The CLT also describes the so-called “sampling distribytion
of the mean” which is discussed below.

e Let (X;, X5, X3, ... ) be a random sample%size n from a
normal distribution having megn and variamce

* Then ifXx is the sample mean, as» the distributior ¢f
iszthe standard normal distribution with mgan and varignce
o /n.

x ON(p, 6/ ./n)

* Intuitively, this means that the most likely sample mean ig the
population mean and that the approximatiofikgly (not
guaranteed) to get better as the sample size incteases

* We have a different use for this.
1.4 Combined Obsevations of a Constant

» Consider the results of the CLT when the sample size| is
taken as a variable. The CLT directly tells us that|the
uncertainty of the sample mean decreases with rtore
measurements. That is, to get a better answer, measufe the
same thing over and over again and take the average.

» Suppose several redundant measurements of a constgnt are
obtained and that they all have identical statistics. Then th¢ true

1. Hence the opinion poll which predicts the behavior of 300 million peoplg
based on interviewing a few thousand.
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1.5Variance of A Continuous Measurement of a Constant

value can be approximated as the mean of the observalions.
Under these circumstances, the uncertainty in this mean ig:

n n

12 12 n 1
Z - = - = — ] 0‘3 — —o')%
- Oy _ OX O n

» Thus, the variance in the mean decreases with increfsing
numbers of measurements.

1.5 Variance of A Continuous Measuement of a Constant

» Consider a problem where a constant value must be estifnated
from a sequence of noisy measurements.

* In such a case where a new measurement is taken at a 1egular
frequency, the expression gives the development of the
standard deviation versus time because:

X
At

n =

in a discrete time system.

* In this simple model, uncertainty expressed as stangdard
deviationdecreases with the square root of timkhis idea tha
taking and merging multiple observationsduces the

Alonzo Kelly Fall 1996



Tntroguction to MoDITE Robots

Uncertainty 2:

1.5Variance of A Continuous Measurement of a Constant

uncertainty of the combined resuls the basic idea of thie
Kalman filter.

uncertainty of
one measurement

time

« Uncertainty decreases rapidly and then levels off as fime
evolves.
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2 Compounding Uncertainty in Measurement Sequences 7
2.1General Formulation

2 Compounding Uncertainty in Measuement
Seguences

compute the uncertainty in a continuously changing qua

sequence of measurements.

» This is a more general combination of measurements t
continuous sum. The measurements may be added or co
in more complicated ways.

sequential measurements by considering the result at any
to be a function of:

* The last answer and its uncertainty
* The current measurement and its uncertainty.
2.1 General Formulation

» Generally, let a function depend on a parameter vector
we have decided to partition into two smaller parameter ve
of possibly different length:

y = (¥ X = [xl )_(JT

 Let us also partition the covarian€g,  and Jacobjan
the inputs:

J, = [31 32} C, = {Cn C12]

C:21 C22

* Our transformation rules give all the tools necessary to

ntity

that is computed in an arbitrary way from a continupus

an a
bined

» We can determine the uncertainty in a general combinatipn of

point

that
ctors

of
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2 Compounding Uncertainty in Measurement Sequences 8
2.1General Formulation

* where:

G = EXP(X)_(,'T)

* Then, the covariance gf is:

Cy Cool |1
ny — [31 Jz} 11 ~12| | Y1
Cs Cyy J;

* This can be written out in gory detail, but to save work, It us
make the assumption thef axd areorrelated:

_~ _ 100 Cy 011J;
C12—C21—{} DC=J\][“}1
yy 2

00 5% 0 Cyp|J]

» Note that the size of the input correlation matrix is the Ierzgth
of the parameters , but the output is determined by the size of
y.
* Intuitively, two variables are uncorrelated when knowing|the

value of one tells you nothing at all about the value of|the
second, on average. That is, they are not co - related.

» This assumption then allows us to simply write the resujt as
the sum of the individual transformed uncertainties.

Cy, = J,Cypd; + Jzsz‘J;
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2 Compounding Uncertainty in Measurement Sequences
2.2Example: Dead Reckoning with Odometer Error Only

2.2 Example: Dead Recéning with Odometer Error Only

current positionx; and the current measurements
when combined generate the new positpny ;

» Consider a case where vehicle position is generated
dead reckoning and a Gaussian error exists on the odorpeter.
The heading is assumed determined from a perfect compdss.

 This case can be formulated in terms of two vectors

y W

I (Xié-lvyi+1))_(i _ [Xi yJT z = Di GJT

) = [Xi + |i005(ei)]

Yw

y; + 1;sin(6;)

» The Jacobhians are:

J:%+1:10 J:%+1:Ci_llsi
o 0X 01 © 0z s |,c

measurements (for a perfect compass) be:

* Let the uncertainties in the current position and

Ci — Oxx ny Cz — O'|2 0)
ny ny [ 00

from

the
nich

the
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2 Compounding Uncertainty in Measurement Sequences 10
2.2Example: Dead Reckoning with Odometer Error Only
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 So, for uncorrelated error (i.e. if the error in the rlew
measurements has nothing to do with the current position
error in the new position can be written as:

. the

Ciyi = J,CJy+3,CJ,

C20'2 cS0O°
_ i 01 CS0,
Ci1=C+

2 2 2
CiSi0p S0

» This gives the uncertainty of the new position estimate. INote
in particular that:

* The cross terms will remain zero for motion along fthe
axes.

» The diaginal terms are always positive so the uncertginty
increases monotonically.

» For example, in the following run of such a system, alopg a

slowly turning path, the uncertainty grows without bouhd.

Also, the ellipses slowly turn to the right but because
remember the contributions of all past measurments,
remain pointing mostly upward.

Yw

hey
hey
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3.1Batch Estimation

3 Merging Redundant Measuements

related to the same thing. These can be used to get th

estimate is callegstimation and the tools used are call
estimators

» Most of robotics currently employs the Kalman filter
estimatestatic quantities - though it was originally develo

covered later.

in order from simple to complex. All Kalman Filters have th
characteristics:

» They estimate recursively
* They combine multiple measurements
» Other options in the formulation include:

» Weighted estimation or not (R or | matrix?)
 Direct and indirect measurement (H or | matrix?)
 Linear and Nonlinear versions (Hx or h(x))
» System Dynamics Model (F matrix?)

3.1 Batch Estimation

3.1.1Sample Mean

« The most straightforward example of merging dat
computing the mean of a set of measurements. Let a se

 Sometimes, we have several measurements that are directly

> best

overall estimate. This process of getting the best ové¢rall

od

to

d

to estimate dynamically changing quantities. This section deals
with the static case and the more general dynamic cgse is

» Unfortunately there are at least a half dozen forms of Kajman
Filter equations out there. This section will walk through spme

Se

A IS
of

measurementg  exist of the (unknown) constant called the
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3.1Batch Estimation

state vector The sample mean can be computed fron] all
measurements in one shot as follows:

K

" 1

Xy = RZZi
i=1

3.1.2Weighted Batch Estimator

By computing an average for the best estimate we have
implicitly assumed that the measurements all have the game
uncertainty. If they do not, weighted &erage is the begt

estimate. One technique for computing the best estimgte of
measurements of varying uncertaintyvisighted least squar

» The problem is now generalized as follows:
» Thestate x andmeasurementsz are now vectors.

« The measurements are indirectly related to the gtate
vector through a measurement mattix

« The measurements are assumed to be corrupted by a
random noise vector of known covariariRe

Zz = Hx+v R = Exp w)

 Here, we attempt to minimize the total weighted squared
residual of all of the measuremehts

[ = (z- HY 'R (z- HY)

1. Note that this is a matrix quadratic form - which results in a scalar. It is npt
like the outer product used to form a covariance matrix.
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3.2Recursive Estimation

where we have weighted the elements of the residual by
reciprocal variances (i.e. those measurements which arg
uncertain do not contribute much to the estimate).

« Setting the derivativeof this with respect to the sta
estimate to zero, there results:

2HR1(z— HX) = 0
(HHR'H)x = H'R 'z
% = (HTRH) " H'Rz

* Note that settindR to the identity matrix results in the us
normal equationsof (unweighted) linear least squares.

3.2 Recursyve Estimation

3.2.1Simple Merging - Recursve Sample Mean

possible by rewriting the above scalar mean as:

Rer1 = K+ 7

Ak+1 (k+1)—k (k+1)'k
* Or as.

Xk+1 - Xk+m[zk—2k]

* When k is large, has less and less effect on the answel.

1. Note that the derivative c_JAx wrt xZAx . Don't forget the 2.
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once. In this case, a recursive formulation for the estimgte is
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3.2Recursive Estimation

Uncertainty 2:

* Where the difference between the current estimate an
current measuremerg,—%, is known commonly as
measurement residual

E the
he

» Let 02 be the variance of a single measuremendlnd He the

total variance of the current estimate at step k.

* The equation for updating the uncertainty is, from the Ce
Limit Theorem:

1
Of+1

+

1
RE

~lF

the old estimate votes ‘k’ times for its value and the
measurement votes once for its value. It is instructive to re
this result as:

» One straightforward way to interpret this formulation is %Cat

Xer1 = Xt Kz, =X ]

whereK is called th&alman gain. Note that, in this simpl
case, it is simply the reciprocal of the time step and it cou
precomputed.

* The uncertainty propagation can be rewritten as:

Orer = H- P2 = (1-K)op

» These last two eqiuations are the “Maybeck form” of
Kalman Filter.

ntral

ew
rite

Ebe

the

» This form of estimator is called a recursive filter. The mgjor

advantages of recursive filters are:
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3.2Recursive Estimation

* They require virtually no memory because there i
longer a need to store all k previous measurements.

* They spread the computation out over time so that
new estimate requires only a few operations.

b NO

bach

3.2.2Inter pretation as Weighted Arerage

Maybeck), suppose that the measurement has an varin
and the state estimate has a varidagce

combine the current estimate and measurement in am
inversely proportional to their own uncertainties thus (eackh
a weight proportional to the other element’s uncertainty):

. R X Pz,
®+1 T B YR P +R
k k Kk k

 Putting this in recursive form:

N N Py N
Xee1 = Xt [—Pk"' RJ(Zk—xk)

estimate has one unit of uncertain®, = 1 , then the
measurement has proportionally mdRe= k . Also,
Kalman gain is:

K, = P
o [Pk+RJ

* When the measurement uncertainty is large, the gain is
and the state is changed very little.

« An as alternate view of what is happening here 1see

e

 We might further suppose that it would be reasonable to

unts
has

e This is equivalent to our earlier form where if the current

new
the

small
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3.2Recursive Estimation

* The central limit theorem suggests that we can computg the
new uncertainty from adding reciprocals:

1 1,1
I:)k+ 1 Pk I:ek
» This can easily be rewritten as:

Peir = (1=K )Py

3.2.3Matrix F orm with Dir ect Measuements

« The matrix form of these equations is the “Smith and
Cheeseman version” of the Kalman Filter:

= PkLPk+ Rk]_l i
Xev1 = X+ K(z,—%)
Pei1 = (1-K)Py

so that the interpretation ¥  is the result of all merging s¢ far
andz, is the latest “approximate transform” to be merged

3.2.4Matrix F orm with Indir ect Measuements

 Smith and Cheeseman use a direct measurement of thEstate

* Let the measurements be indirectly related to the gtate
vector x . Let the measurement vector be corrupted by a
random noise vectar of known covariariRe

Z= Hx+v R = Exp(v_\7)
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3.2Recursive Estimation

Uncertainty 2:

* Identical derivation from the central limit theorem (or, from

optimization as in Gelb) leads to the “Gelb form” of
Kalman Filter:

T T -1
Ky = PeH[HP H + R
X1 = X Kk(zk_Hka)
Peir = (1=K H )Py

* The formz —H, X, is themeasurement residual- the
difference Eetween the current measurement anc
measurement predicted based on the current state estima

3.2.5Matrix F orm with Indir ect Nonlinear Measuements

e

the

* When the measurement relationship (or other things we ‘have

not covered) are nonlinear, the filter is calledEatiended
Kalman Filter (EKF).

* Let the measurements be indirectly related to the 9
vector x .by a nonlinear function and let the measure

vector be corrupted by a random noise veator of kn
covariancer

z=hR+v R = Exp vV)

« We define the Jacobian matrix of the measurem
relationship evaluated at the current state estimate:

0
Hy = a—)_([h(l()] i

tate
ent
wn

ent
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3.3Example: Building Maps of Objects with Perfect Positioning

« of the Kalman Filter:
Ki = PH[HPHC+RI™
Xer1 = X+ Ki(ze—h(X))
Pii1 = (1-KH)P,
3.3 Example: Building Maps of Objects with Rrfect

Positioning

e Consider a situation where a mobile robot observeq the
positions of various objects as it roams around. As it moves, it
sees the same objects over and over, so an opportunity exists to
fix their position accurately through merging observations.

« While the sensor position in the world, , is known perfegtly,
the position of the obje& relative to the sensor is compEted

from a noisy sensor. Based on techniques presented earligr and
a model of sensor uncertainty, the covariance of the object

position relative to the sensorks
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3.4Example: Building Maps of Objects with Imperfect Positioning

and is given by:

X = X +2

Express in world
coordinates:

X = X+ Rz

In standard form:

z = R(x—X)

Yw

measurement of uncertainf® can be merged with it.

3.4 Example: Building Maps of Objects with Imperfect
Positioning

* It is possible to do exactly the same operations vizadéim the
sensor position and the object position are updated
considered noisy.

position in the world b&, . The composite state vector a
uncertainty is:

X = [>_<1 >_<2] P = [P“ P”}

I:)21 I:)22

 Let the sensor position in the world Bg  and the oﬂ'ject

e The position of the object relative to the world is calb_ed|

» This is of the fornrz = h( X . Given an initial estimate of the
position and uncertainty of the object positiBn , a new

|and

its
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3.5Duality of Mapping and Position Estimation

covariancer .
* The position of the object relative to the world is given by

X, = Ry +2

Express in world
coordinates:

_ W
X, = X+ RgZ

In standard form:

Z = R?v()—(z - )_(1)

e This is of the fornrz = h(X . Given an initial estimate of
position and uncertainty of the sensor positinr and

object positionP,, , a new measurement of uncertaity
be merged with it.

3.5 Duality of Mapping and Rosition Estimation

mapping in mobile robotics.

» Let the object position wrt the sensor be denated Yith

the
can

* A very general duality exits between position estimationfand
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3.5Duality of Mapping and Position Estimation

* In mapping, we take the vehicle pose and relative oljject
positions as known and update the positions of objects jased

on it and sensor readings:
Estimated
' églma Absolute
Object Pos.

* In position estimation from landmarks, we take the absg@lute
object positions as known and update the position off the
vehicle based on it and sensor readings:

Absolute
Vehicle Pos

+ | Derived
Absolute
+ | Object Pos.

Relative
Object Pos.

Absolute
Object Pos.

+ | Derived Estimated
Absolute Absolute
- | Vehicle Pos Vehicle Pos

Relative
Object Pos.

* And we have seen that its possible to do both at once.
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4 Summary

« Combining noisy measurements leads to a noisier rg
However, merging redundant measurements (filtering) lea
a less noisier result.

* In a compounding situation, a continuously changing qua
IS computed from a sequence of measurements.

* [n a merging situation, redundant measurements related even
indirectly to the quantity of interest are combined.

« Kalman Filters can be used to estimate the position
objects and the position of the robot simultaneously.

sult.
s to

ntity

s of
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