THE EM ALGORITHM

This lecture introduces an important statistical estimation algorithm known as the EM or "expectation-maximization" algorithm. It reviews the situations in which EM works well and its advantages in those applications. In particular the use of EM to re-estimate the parameters of mixture models is considered. EM is compared to so-called "hard" methods such as the k-means algorithm.

Brief Outline

- 1. Maximum Likelihood Parameters: Why they are useful but hard to find.
- 2. The EM algorithm: missing information interpretation
- 3. Clustering Examples: fake and real mixtures of gaussians

THE EM ALGORITHM LECTURE WHAT'S THE POINT?

- Maximum likelihood parameter estimates:
 One definition of the "best" knob settings.
 Often impossible to find directly.
- The EM Algorithm:
 Finds ML parameters when the original (hard)
 problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- For EM to work, two things have to be easy:
 - 1. Guessing (estimating) missing data from data we have and our current guess of parameters.
 - 2. Solving for the ML parameters directly given the complete data.
- EM is typically used with mixture models, for example mixture of gaussians.
 - The "missing" data are the labels showing which sub-model generated each datapoint.

Maximum Likelihood Parameters

- ullet Given some data $ec{z}_1, ec{z}_2, \ldots, ec{z}_n = \{ec{z}_i\} = \mathcal{Z}$.
- Choose a model class (parameterized probability density $p(\vec{z}, \vec{\theta})$ over the range of \vec{z}).
- The *likelihood* function $L(\mathcal{Z}, \vec{\theta})$ of the data is the joint probability density of \mathcal{Z} under the model:

$$L(\mathcal{Z}, \vec{ heta}) = \prod_i p(\vec{z_i}, \vec{ heta})$$
 for i.i.d datapoints

L tells us how probable the particular dataset $\mathcal Z$ is under our particular choice of model $\vec\theta$

ullet The maximum likelihood estimates of the parameters, denoted $ec{ heta}_{ml}$ are those which maximize $L(\mathcal{Z}, ec{ heta})$ and depend only on the data (and model class):

$$\vec{\theta}_{ml}(\mathcal{Z}) = \mathrm{argmax}_{\vec{\theta}} \quad L(\mathcal{Z}, \vec{\theta})$$

- This is one definition of the "best" estimate for the parameter vector because:
 - 1. $\vec{\theta}_{ml}$ makes the *observed* dataset the *most probable* dataset
 - 2. $\vec{\theta}_{ml}$ minimizes the cost to communicate the dataset

FINDING ML PARAMETERS

- ullet Small problems: try all possible models $ec{ heta}$
- ullet Direct maximization: for smooth likelihood functions $\vec{\theta}_{ml}$ is a solution to:

- Example: The gaussian case is easy.
 Given some data points, if we choose our model class to be gaussians then it is easy to compute the maximum likelihood parameter estimates:
 The mean is the mean of the data and the variance is the variance of the data.
- ullet In general, however, we cannot find $\vec{\theta}_{ml}$ directly. We must use an iterative optimization technique.
- Gradient descent (backprop) is one such technique; the EM algorithm is another.
- Convergence, speed, and local minima are all issues.

THE EM ALGORITHM

- The EM algorithm:
 - finds maximum likelihood parameters $\vec{\theta}_{ml}$ given a model and some data \mathcal{Z}
 - works best in situations where:
 - 1. the data is incomplete or can be thought of as being incomplete
 - 2. the maximum likelihood parameters are easy to find given observed and unobserved data
 - 3. the unobserved data are easy to estimate given some model parameters and the observed data
- The EM algorithm:
 - E Step: Estimate a probability distribution $\hat{p}(\vec{u})$ for the unobserved data using the current parameter vector $\vec{\theta}^{(t-1)}$ and the observed data \mathcal{Z} (easy).
 - \mathbf{M} Step: find the \mathbf{M} aximum likelihood parameters given the observed data \mathcal{Z} and the estimate $\hat{p}(\vec{u})$ of the unobserved data. Set $\vec{\theta}^{(t)}$ to these (also easy).

Typical Applications of EM

- EM is generally applied in situations where underlying model for the data is a *mixture model*.
- In a mixture model, there are many "sub-models", each of which has its own probability distribution which describes how it generates data when it is active.

There is also a "mixer" or "gate" which controls how often each sub-model is active.

- Generally it is easy to find the ML parameters for each sub-model if we know which of the datapoints it generated. But our data is often unlabeled.
- So we use EM to estimate which sub-model was responsible for generating each point and then we find the ML parameters based on these estimates.
- Then we use the new ML parameters to re-estimate the responsibilities and iterate.

AN EXAMPLE: "ALMOST-MIXTURE OF GAUSSIANS"

- Recall that the probability implied by "hard" clustering is a collection of "clipped" gaussians.
- There is a faster way to learn in this model than competitive learning. Iterate:
 - 1. Quantize the datapoints using the existing prototype vectors and a nearest neighbour rule.
 - 2. Replace each prototype vector by the mean of the datapoints it quantized.
- This is the k-means algorithm (also known as Lloyd's algorithm or the Lloyd-Max algorithm).
- Each iteration is guaranteed to reduce the expected reconstruction error (increase the likelihood) and the algorithm is guaranteed to converge.
- The initial prototype vectors can be chosen on datapoints or at random.
- Notice that for any point in the space, the generative model has only one way to produce it.

REAL MIXTURE OF GAUSSIANS

- ullet Goal: Fit a true MOG to ${\mathcal Z}$ maximizing $p({\mathcal Z}|\vec{\theta})$
- ullet Unobserved data ${\cal U}$ are the labels telling which gaussian generated each datapoint $ec{z_i}$
- ullet Parameter vector $ec{ heta}$ are the means/variances
- In this case EM says:

E Step: Compute the *responsibility* r that gaussian number k has for point $\vec{z_i}$ as:

$$r(k,i) = \frac{p(\vec{z}_i|k)}{\sum_{k'} p(\vec{z}_i|k')}$$

M Step: Replace the mean and variance of each gaussian with the *responsibility weighted* average across data

Notice that for any point in the space, the generative model has many ways to produce it.

A REPORT CARD FOR EM

- Some good things about EM:
 - no learning rate parameter
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
 - adapts unused units rapidly
 - finds both the model θ and the optimal stochastic coding distribution S for θ
- Some bad things about EM:
 - can get stuck in local minima
 - ignores model cost (how many blobs ?)
 - both steps require considering *all* explanations of the data which is an exponential amount of work in the dimension of θ
- Two interesting notes:
 - The Baum-Welsh algorithm for training HMMs is a special case of EM
 - The Boltzmann machine learning rule is a generalized EM algorithm

Some Ways to Improve EM

- Generalized variants do not find maximum likelihood model or Boltzmann distribution
- Incremental variants recalculate model after each unobserved variable
- Sparse variants freeze some values for a while
- Use a model that permits only factorial distributions over its parameters

 (a network analogy: must communicate hidden units independently)
 - PCA is purely factorial, Clustering is opposite
- This is the idea behind the Wake-Sleep algorithm and Helmholtz machines