THE EM ALGORITHM

This lecture introduces an important statistical
estimation algorithm known as the EM or
“expectation-maximization” algorithm. It reviews
the situations in which EM works well and its
advantages in those applications. In particular the
use of EM to re-estimate the parameters of mixture
models is considered. EM is compared to so-called
“hard” methods such as the k-means algorithm.

Brief Outline

1. Maximum Likelihood Parameters:
Why they are useful but hard to find.

2. The EM algorithm: missing information
Interpretation

3. Clustering Examples:
fake and real mixtures of gaussians
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THE EM ALGORITHM LECTURE
WHAT’S THE PoOINT ?

e Maximum likelihood parameter estimates:
One definition of the “best” knob settings.
Often impossible to find directly.

e The EM Algorithm:
Finds ML parameters when the original (hard)

problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data
from observed data and current parameters.

2. Using this “complete” data, find the maximum
likelihood parameter estimates.

e For EM to work, two things have to be easy:
1. Guessing (estimating) missing data from data
we have and our current guess of parameters.
2. Solving for the ML parameters directly given
the complete data.

e EM is typically used with mixture models, for

example mixture of gaussians.
The “missing’ data are the labels showing which

sub-model generated each datapoint.



MAXIMUM LIKELIHOOD PARAMETERS

e Given some data 1,25, ..., 2, = {Z;} = Z.

e Choose a model class (parameterized probability
density p(Z, #) over the range of 2).

—

e The likelihood function L(Z,0) of the data is the
joint probability density of Z under the model:

—

L(Z,6) = [[p(Z,6) fori.id datapoints
?

L tells us how probable the particular dataset Z
Is under our particular choice of model

e The maximum likelihood estimates of the
parameters, denoted 0,,,; are those which

maximize L(Z,0) and depend only on the data
(and model class):

—

Omi(Z) = argmax;  L(Z,0)

e [ his is one definition of the “best” estimate for
the parameter vector because:

1. Jml makes the observed dataset the most
probable dataset

2. Jml minimizes the cost to communicate the
dataset



FINDING MLL PARAMETERS

e Small problems: try all possible models 7]

e Direct maximization: for smooth likelihood
functions 6,,,; is a solution to:

VL(Z,0)=0 or
Viog L(Z,6) =0

e Example: The gaussian case is easy.
Given some data points, if we choose our model
class to be gaussians then it is easy to compute
the maximum likelihood parameter estimates:
The mean is the mean of the data and the
variance is the variance of the data.

e In general, however, we cannot find 6,,,; directly.
We must use an iterative optimization technique.

e Gradient descent (backprop) is one such
technique; the EM algorithm is another.

e Convergence, speed, and local minima are all
ISsues.



THE EM ALGORITHM

e The EM algorithm:

— finds maximum likelihood parameters Jml
given a model and some data Z

— works best in situations where:

1. the data is incomplete or
can be thought of as being incomplete

2. the maximum likelihood parameters are easy
to find given observed and unobserved data

3. the unobserved data are easy to estimate
given some model parameters and the
observed data

e The EM algorithm:

E Step: Estimate a probability distribution p()
for the unobserved data using the
current parameter vector li—1)
and the observed data Z (easy).

M Step: find the Maximum likelihood parameters
given the observed data Z and the

estimate p(u) of the unobserved data.
Set 81) to these (also easy).



TYPICAL APPLICATIONS OF EM

e EM is generally applied in situations where
underlying model for the data is a mixture model.

e In a mixture model, there are many
“sub-models”, each of which has its own
probability distribution which describes how it
generates data when it is active.

There is also a “mixer” or “gate” which controls
how often each sub-model is active.
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e Generally it is easy to find the ML parameters for
each sub-model if we know which of the
datapoints it generated. But our data is often
unlabeled.

e So we use EM to estimate which sub-model was
responsible for generating each point and then we
find the ML parameters based on these estimates.

e Then we use the new ML parameters to
re-estimate the responsibilities and iterate.



AN EXAMPLE:
“ALMOST-MIXTURE OF (FAUSSIANS”

e Recall that the probability implied by “hard”
clustering is a collection of “clipped” gaussians.

e There is a faster way to learn in this model than
competitive learning. lterate:

1. Quantize the datapoints using the existing
prototype vectors and a nearest neighbour rule.

2. Replace each prototype vector by the mean of
the datapoints it quantized.

e This is the k-means algorithm (also known as
Lloyd’s algorithm or the Lloyd-Max algorithm).

e Each iteration is guaranteed to reduce the
expected reconstruction error (increase the
likelihood) and the algorithm is guaranteed to
converge.

e T he initial prototype vectors can be chosen on
datapoints or at random.

e Notice that for any point in the space, the
generative model has only one way to produce it.



REAL MIXTURE OF (FAUSSIANS

—

e Goal: Fit a true MOG to Z maximizing p(Z|0)

e Unobserved data U/ are the labels telling
which gaussian generated each datapoint Zz;

e Parameter vector f are the means/variances
e In this case EM says:

E Step: Compute the responsibility r that gaussian
number k has for point Z; as:

r(k, ) p(Z;| k)

ZP Zz|k/

M Step: Replace the mean and variance of each
gaussian with the responsibility weighted
average across data

e Notice that for any point in the space, the gener-
ative model has many ways to produce it.



A REPORT CARD FOR EM

e Some good things about EM:

—no learning rate parameter
—very fast for low dimensions
—each iteration guaranteed to improve likelihood
— adapts unused units rapidly
— finds both the model # and the optimal
stochastic coding distribution .S for
e Some bad things about EM:

—can get stuck in local minima
—ignores model cost (how many blobs ?)

— both steps require considering all explanations
of the data which is an exponential amount of
work in the dimension of 6

e Two interesting notes:
— The Baum-Welsh algorithm for training HMMs
Is a special case of EM

— The Boltzmann machine learning rule is a
generalized EM algorithm



SoME WAYS TO IMPROVE EM

e Generalized variants - do not find maximum
likelihood model or Boltzmann distribution

e Incremental variants - recalculate model after
each unobserved variable

e Sparse variants - freeze some values for a while

e Use a model that permits only factorial
distributions over its parameters
(a network analogy: must communicate hidden
units independently)
PCA is purely factorial, Clustering is opposite

e This is the idea behind the Wake-Sleep algorithm
and Helmholtz machines



