
The EM Algorithm

This lecture introduces an important statistical

estimation algorithm known as the EM or

\expectation-maximization" algorithm. It reviews

the situations in which EM works well and its

advantages in those applications. In particular the

use of EM to re-estimate the parameters of mixture

models is considered. EM is compared to so-called

\hard" methods such as the k-means algorithm.

Brief Outline

1. Maximum Likelihood Parameters:

Why they are useful but hard to �nd.

2. The EM algorithm: missing information

interpretation

3. Clustering Examples:

fake and real mixtures of gaussians

Sam Roweis



The EM Algorithm Lecture

What's the Point ?

�Maximum likelihood parameter estimates:

One de�nition of the \best" knob settings.

Often impossible to �nd directly.

� The EM Algorithm:

Finds ML parameters when the original (hard)

problem can be broken up into two (easy) pieces:

1. Estimate some \missing" or \unobserved" data

from observed data and current parameters.

2. Using this \complete" data, �nd the maximum

likelihood parameter estimates.

� For EM to work, two things have to be easy:

1. Guessing (estimating) missing data from data

we have and our current guess of parameters.

2. Solving for the ML parameters directly given

the complete data.

� EM is typically used with mixture models, for

example mixture of gaussians.

The \missing" data are the labels showing which

sub-model generated each datapoint.



Maximum Likelihood Parameters

� Given some data ~z1; ~z2; : : : ; ~zn = f~zig = Z.

� Choose a model class (parameterized probability

density p(~z; ~�) over the range of ~z).

� The likelihood function L(Z; ~�) of the data is the

joint probability density of Z under the model:

L(Z; ~�) =
Y

i

p(~zi;
~�) for i.i.d datapoints

L tells us how probable the particular dataset Z

is under our particular choice of model ~�

� The maximum likelihood estimates of the

parameters, denoted ~�ml are those which

maximize L(Z; ~�) and depend only on the data

(and model class):

~�ml(Z) = argmax~�
L(Z; ~�)

� This is one de�nition of the \best" estimate for

the parameter vector because:

1. ~�ml makes the observed dataset the most

probable dataset

2. ~�ml minimizes the cost to communicate the

dataset



Finding ML Parameters

� Small problems: try all possible models ~�

�Direct maximization: for smooth likelihood

functions ~�ml is a solution to:

rL(Z; ~�) = ~0 or

r log L(Z; ~�) = ~0

� Example: The gaussian case is easy.

Given some data points, if we choose our model

class to be gaussians then it is easy to compute

the maximum likelihood parameter estimates:

The mean is the mean of the data and the

variance is the variance of the data.

� In general, however, we cannot �nd ~�ml directly.

We must use an iterative optimization technique.

� Gradient descent (backprop) is one such

technique; the EM algorithm is another.

� Convergence, speed, and local minima are all

issues.



The EM Algorithm

� The EM algorithm:

{ �nds maximum likelihood parameters ~�ml

given a model and some data Z

{ works best in situations where:

1. the data is incomplete or

can be thought of as being incomplete

2. the maximum likelihood parameters are easy

to �nd given observed and unobserved data

3. the unobserved data are easy to estimate

given some model parameters and the

observed data

� The EM algorithm:

E Step: Estimate a probability distribution p̂(~u)

for the unobserved data using the

current parameter vector ~�(t�1)

and the observed data Z (easy).

M Step: �nd the Maximum likelihood parameters

given the observed data Z and the

estimate p̂(~u) of the unobserved data.

Set ~�(t) to these (also easy).



Typical Applications of EM

� EM is generally applied in situations where

underlying model for the data is a mixture model.

� In a mixture model, there are many

\sub-models", each of which has its own

probability distribution which describes how it

generates data when it is active.

There is also a \mixer" or \gate" which controls

how often each sub-model is active.

Sub-Model Sub-Model Sub-Model Sub-Model
1 2 3 K

p(1)
p(2) p(3)

p(K)

MIXTURE MODEL OUTPUT

Gate

� Generally it is easy to �nd the ML parameters for

each sub-model if we know which of the

datapoints it generated. But our data is often

unlabeled.

� So we use EM to estimate which sub-model was

responsible for generating each point and then we

�nd the ML parameters based on these estimates.

� Then we use the new ML parameters to

re-estimate the responsibilities and iterate.



An Example:

\Almost-Mixture of Gaussians"

� Recall that the probability implied by \hard"

clustering is a collection of \clipped" gaussians.

� There is a faster way to learn in this model than

competitive learning. Iterate:

1. Quantize the datapoints using the existing

prototype vectors and a nearest neighbour rule.

2. Replace each prototype vector by the mean of

the datapoints it quantized.

� This is the k-means algorithm (also known as

Lloyd's algorithm or the Lloyd-Max algorithm).

� Each iteration is guaranteed to reduce the

expected reconstruction error (increase the

likelihood) and the algorithm is guaranteed to

converge.

� The initial prototype vectors can be chosen on

datapoints or at random.

� Notice that for any point in the space, the

generative model has only one way to produce it.



Real Mixture of Gaussians

� Goal: Fit a true MOG to Z maximizing p(Zj~�)

� Unobserved data U are the labels telling

which gaussian generated each datapoint ~zi

� Parameter vector ~� are the means/variances

� In this case EM says:

E Step: Compute the responsibility r that gaussian

number k has for point ~zi as:

r(k; i) =
p(~zijk)X

k0

p(~zijk
0)

M Step: Replace the mean and variance of each

gaussian with the responsibility weighted

average across data

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5 1 1.5

� Notice that for any point in the space, the gener-

ative model has many ways to produce it.



A Report Card for EM

� Some good things about EM:

{ no learning rate parameter

{ very fast for low dimensions

{ each iteration guaranteed to improve likelihood

{ adapts unused units rapidly

{ �nds both the model � and the optimal

stochastic coding distribution S for �

� Some bad things about EM:

{ can get stuck in local minima

{ ignores model cost (how many blobs ?)

{ both steps require considering all explanations

of the data which is an exponential amount of

work in the dimension of �

� Two interesting notes:

{ The Baum-Welsh algorithm for training HMMs

is a special case of EM

{ The Boltzmann machine learning rule is a

generalized EM algorithm



Some Ways to Improve EM

� Generalized variants - do not �nd maximum

likelihood model or Boltzmann distribution

� Incremental variants - recalculate model after

each unobserved variable

� Sparse variants - freeze some values for a while

� Use a model that permits only factorial

distributions over its parameters

(a network analogy: must communicate hidden

units independently)

PCA is purely factorial, Clustering is opposite

� This is the idea behind the Wake-Sleep algorithm

and Helmholtz machines


