
KALMTOOL

for Use with MATLAB

State Estimation for Nonlinear Systems

Technical Report IMM-REP-2000-6

Magnus Nørgaard

Department of Mathematical Modelling & Department of Automation

Technical University of Denmark

November 10, 2000





RELEASE NOTES

This note contains important information on how the present toolbox is to be installed,

and the conditions under which it may be used. Please read it carefully before use.

Before You Start Using the Toolbox

After installation, all toolbox functions will be located in one directory, and the �les

associated with the demonstration programs will be located in a subdirectory under

this. The user should make a path to these directories with the MATLAB function

path:

>> path(path,'/xx/.../xx/Kalmtool');

>> path(path,'/xx/.../xx/Kalmtool/Demo');

If the toolbox is going to be used on a regular basis it is recommended to include this

statement in the �le startup.m, which is invoked during the start of MATLAB.

If a C compiler is available, and the MATLAB mex command has been properly set

up, the CMEX functions in the demonstration directory are compiled as follows:

>> cd /xx/xx/.../Kalmtool/Demo

>> demomex

This script invokes the mex command for each of the CMEX functions in the demon-

stration directory.

Conditions/Disclaimer

By using the toolbox the user agrees to all of the following:

� If one is going to publish any work where this toolbox has been used, please re-

member it was obtained free of charge and include a reference to the technical

report: M. Nørgaard: "KALMTOOL - State Estimation for Nonlinear Systems"

Tech. Report. IMM-REP-2000-6, Department of Mathematical Modelling, Tech-

nical University of Denmark, 2000.

� Magnus Nørgaard, Department of Mathematical Modelling, or Department of Au-

tomation, DTU do not o�er any support for this product whatsoever.

i



ii

� For educational purposes and research at universities and government research lab-

oratories, the toolbox is copyrighted freeware by Magnus Nørgaard/Department of

Mathematical Modelling/Department of Automation, DTU, and it may be dis-

tributed freely unmodi�ed. Companies and private research laboratories can eval-

uate the toolbox but are required to obtain a license for a fee of 200 USD (does

not include support) in case they wish to use it. Please contact Magnus Nørgaard

(e-mail address given below).

� It is not permitted to utilize any part of the software in commercial products with-

out prior written consent of Magnus Nørgaard, The Department of Mathematical

Modelling, DTU.

� The C source code for the MEX �les can be purchased by contacting Magnus

Nørgaard. Price depends on application.

� THE TOOLBOX IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL

MAGNUS NØRGAARD AND/OR THE DEPARTMENT OF MATHEMATICAL

MODELLING AND/OR THE DEPARTMENT OF AUTOMATION BE LIABLE

FORANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAM-

AGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA, OR PROFITS, WHETHER OR NOT MN/IMM/IAU

HAVEBEEN ADVISED OF THE POSSIBILITY OF SUCHDAMAGES, AND/OR

ON ANY THEORY OF LIABILITY ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Trademarks of companies and/or organizations mentioned in this documentation appear

for identi�cation purposes only and are the property of their respective companies and/or

organizations.

Magnus Nørgaard

Department of Mathematical Modelling

Bldg. 321

Technical University of Denmark

DK-2800 Kgs. Lyngby

Denmark

pmn@iau.dtu.dk



Chapter 1

Introduction

This manual is a user's guide for the KALMTOOL toolbox; a MATLAB toolbox con-

taining functions for state estimation for nonlinear systems. The toolbox contains the

well-known Extended Kalman Filter (EKF) and two new �lters called the DD1 �lter and

the DD2 �lter.

The toolbox will run under MATLAB 5.3 and higher, and it is independent of other

MATLAB toolboxes. All functions exist as m-�les but for faster execution of the com-

putationally intensive functions these have also been written in C and are provided as

CMEX-functions. The user will have to add some problem speci�c C code and compile

the functions with the mex command in order to run the CMEX-functions.

Generally, it will require only super�cial knowledge about the C programming language

to work with the MEX functions. However, a C compiler must of course be installed on

the system, and the mex command in MATLAB properly set up (see the Application

Interface Guide for MATLAB).

1.1 Why this Toolbox?

The purpose of this toolbox is to make implementations of the new DD1 and DD2 �lters

available for solving nonlinear state estimation problems and to enable a comparison

with a conventional method like the extended Kalman �lter.

So what's the deal with these �lters? If you are familiar with the EKF, or one of its

`relatives', you will quickly �nd out about the advantage of the new �lters. First of

all, they are easier to use. Secondly, you can expect a similar (DD1) or better (DD2)

performance than with the EKF. On the downside, the new �lers tend to require more

computations than the EKF.

It should be mentioned that the �lters are implemented in a very general fashion. In most

practical application this generality is not needed but since it is provided one should be

1



2 CHAPTER 1. INTRODUCTION

aware of the fact that faster execution times could be obtained with more specialized

software. In particular in the case of the DD1 and DD2 �lters one will encounter exces-

sive computation times for �simple� applications.

What exactly is di�erent about the new �lters? To make a short story long, we found

that the extended Kalman �lter was somewhat inconvenient to use in some of our appli-

cations. A small modi�cation of the application sometimes had serious implications on

the EKF implementation. Moreover, it was often di�cult to implement. Our problem

was that the EKF requires a linearization of the system model. Sometimes this is easy

to �nd but sometimes it can be pretty hard. In any case, it makes things in�exible. If a

small change is made in the model one has to work out a new set of derivatives. This is

particularly inconvenient in model calibration where certain model parameters are tem-

porarily included in the state vector and estimated simultaneously with the actual states.

So where can I read about these �lters? So far three publications are available.

The short introduction:

M. Nørgaard, N.K. Poulsen, O. Ravn: Easy and Accurate State Estimation for Nonlin-

ear Systems, 14th IFACWorld Conference in Beijing, China, July 5-9, 1999, pp. 343�348.

An expanded version:

M. Nørgaard, N.K. Poulsen, O. Ravn: New Developments in State Estimation for Non-

linear Systems, Automatica, (36:11), Nov. 2000, pp. 1627�1638.

The most thorough description:

M. Nørgaard, N.K. Poulsen, O. Ravn: Advances in Derivative-Free State Estimation for

Nonlinear Systems, Technical Report IMM-REP-1998-15, Department of Mathematical

Modelling, DTU, 1998 (revised Apr. 2000).



Chapter 2

User's Guide

2.1 What You Need to Figure Out First

In order to use �lter routines you need the following prerequisites:

A state space model in the form:

xk+1 = f(xk; uk; vk)

yk = g(xk; wk)

The noise covariance matrices

Q = E
�
vkv

T
k

	

R = E
�
wkw

T
k

	

Initial estimates of state and covariance matrix

�x0 = E fx0g

P0 = E
�
(x0 � �x0)(x0 � �x0)

T
	

Input-output data sets

y = fy0; y1; y2; : : :g

u = fu0; u1; u2; : : :g

For application of the extended Kalman �lter you must also derive the linearized

state and observation equations:

xk+1 � f(x̂k; uk; �vk) +A(k)(xk � x̂k) + F (k)(vk � �vk)

yk � g(�xk; �wk) + C(k)(xk � �xk) +G(k)(wk � �wk)

where

A(k) =
@f(x; uk; �vk)

@x

����
x=x̂k

F (k) =
@f(x̂k; uk; v)

@v

����
v=�vk

C(k) =
@g(x; �wk)

@x

����
x=�xk

G(k) =
@g(�xk; w)

@w

����
w= �wk

:

3



4 CHAPTER 2. USER'S GUIDE

When you have collected all this information you must specify the model in MATLAB

functions. These functions must conform to a particular structure, which is discussed

below

2.2 Writing the Equations in M-Functions

If you wish to run the DD1 or DD2 �lter you must write two functions. One should

contain the state equation and the other should contain the output equation (if you are

working with more than one observation stream, you must write a function for each

stream but more about that later). If you are going to use the EKF, it is necessary to

write an additional function that speci�es the linearization of the two equations.

2.2.1 The state equation

As an example, let us implement the state equation in a function called myxfunc. The

necessary components are shown below (for a nonsense system!).

function xout=myxfunc(x,u,v)

% Make variables static

persistent mypar1 mypar2;

% Check if variables should be initialized

if nargin==1,

mypar1 = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

return

end

% A priori update of states

xout = zeros(3,1);

xout(1) = x(1) + mypar2*cos(x(2)+u(1)*v(1));

xout(2) = x(3) + mypar2*cos(x(2)+u(2)*v(2));

xout(3) = mypar1*x(1) + v(3);

Dissection of the function

The header must always look like this: function xout=myxfunc(x,u,v)

The function and variable names are unimportant, but the function must always take 3

arguments and return one output. The arguments, which should be (column) vectors,



2.2. WRITING THE EQUATIONS IN M-FUNCTIONS 5

are the current state estimate, control input, and process noise (in that order). The

function should output the a priori state update. Argument 2 and 3 must be present

even if there are no inputs or process noise.

By using the persistent declaration, a feature which was introduced in MATLAB 5.2, it

is possible to maintain parameters from one function call to another. This is convenient

as one can initialize certain parameters before the �ltering.

There should always be an initialization section in the function. This must take the

form

if nargin==1,

.. do initialization stuff

return

end

Before the actual �ltering is performed, myxfunc will be invoked as myxfunc(opt.init).

Thus, by specifying parameter initializations in the variable opt.init, these parameters

are passed to the function through the argument x. The initialization section must be

included even if there are no such initializations. In this case it should just contain the

return statement.

The last part of the function is the actual state update. If x is not also used as the

return variable, make sure that the returned variable is a column vector.

2.2.2 The output equation

The output equation is written in an m-function with a similar format:

function y=myyfunc(x,w)

% Make variables static

persistent mypar3

% Check if variables should be initialized

if nargin==1

mypar3=x(4);

return

end

% Calculate output estimate

y = mypar3*x.*x+w;

The function should take two arguments: the state vector and the measurement noise

vector. Apart from that, the function has the same structure as xfunc.



6 CHAPTER 2. USER'S GUIDE

Linearization of the equations

When using the EKF it is necessary to write a separate function that contains the

linearization of the two equations. The function must have the following format (the

contents is still nonsense!)

function [M,N]=mylinfunc(x,u,vw,flag)

% Make variables static

persistent mypar1 mypar2;

% Check if variables should be initialized

if nargin==1,

mypar1 = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

A0 = diag([1 1]);

F0 = zeros(2,2);

C0 = [1 0];

G0 = [];

return

end

% Linearize state equation

if flag==0,

M = A0;

M(1,2) = mypar1*(sin(x(1)*u(1)) + x(2)*u(2));

N = F0;

N(1,1) = mypar2/x(2);

N(2,2) = x(1)*x(2);

% Linearize output equation

elseif flag==1,

M=C0;

N=G0;

end

Dissection of the function

The header must always look like this: function [M,N]=my_linfunc(x,u,vw,flag)

The function and variable names are unimportant, but the function must always take

4 input arguments and return 2 outputs. The arguments, three (column) vectors and

an integer, are the current state estimate, control input, process noise or measurement

noise, and a �ag (in that order). If flag=0 then vw is process noise and the function

should linearize the state equation and return the matrix A in M and the matrix F in



2.3. RUNNING THE FILTERS 7

N. If flag=1 then vw is measurement noise and the function should linearize the output

equation and return the C matrix in M and the G matrix in N.

Argument 2 and 3 must be present even if there are no inputs or no process/measurement

noise.

2.3 Running the Filters

When input and observation data are available, and the appropriate m-functions have

been written, it is straightforward to run the �lters. The DD2 �lter is invoked in the

following way:

[xhat,Smat]=dd2('myxfunc','myyfunc',x0,P0,Q,R,u,y,tidx);

u is a matrix of inputs to the system. The �rst row contains the inputs applied at time

k=0, the second row contains the inputs at time k=1, etc. If the system has no inputs,

the empty matrix [ ] is passed.

y is a matrix of observations and tidx is a vector with time stamps for the observa-

tions in y. The �rst row in y contains the observations acquired at the sample number

speci�ed in the �rst element of tidx, the second row in y contains the observations ac-

quired at the sample number speci�ed in the second element of tidx, etc. If observations

are available at all sampling instants, we simply have that tidx=0:size(u,1).

The state estimates are returned in the matrix xhat. The �rst row in xhat is the

estimate at time k=0. If there is no observation update at that time, it will simply be

the argument x0 that was passed to the �lter function upon the call.

The matrix Smat is a matrix containing coe�cients of the Cholesky factors of the esti-

mation error covariance matrices. The format of this matrix will be further explained in

the following section.

The DD1 �lter is called in the exact same way. For the extended Kalman �lter it is

necessary to include the name of your m-function that performs the linearizations:

[xhat,Pmat]=ekf('myxfunc','myyfunc','mylinfunc',x0,P0,Q,R,u,y,tidx)

The coe�cients of the covariance matrices (and not their Cholesky factor) are returned in

the matrix Pmat. The format of this matrix will also be explained in the following section.

If the noise processes have mean values di�erent from 0, these can of course be sub-

tracted at the appropriate places in the functions myxfunc and myyfunc. They can

also be passed to the �lter functions through the optional data structure 'optpar'. For

example,

[xhat,Smat]=dd2('myxfunc','myyfunc',x0,P0,Q,R,u,y,tidx,optpar);



8 CHAPTER 2. USER'S GUIDE

optpar contains up to three �elds: optpar.vmean is the mean of process noise vector and

optpar.wmean is the mean of measurement noise vector. optpar.init can be included

if there are any initial parameters for the user-written m-functions. optpar.init can

be either a vector or a matrix. Upon call of the �lter functions, optpar.init will be

passed as the �rst argument to the user's functions in the initialization process prior to

the actual �ltering, e.g., myxfunc(opt.init)

2.4 Analyzing the Results

The performance of the �lters can be evaluated with the function kalmeval. This func-

tion calculates the output estimates and compares these to the actual observations. Ad-

ditionally, it plots the state estimates along with three times their (estimated) standard

deviations. For the DD2 �lter, the function is called as follows:

[yhat,RMS]=kalmeval('dd2','myyfunc',R,xhat,Smat,y,tidx,optpar)

and similarly for the DD1 �lter. RMS is the RMS error between observations and predic-

tions.

To evaluate the extended Kalman �lter, the function is called as follows (notice that

Pmat is passed instead of Smat):

[yhat,RMS]=kalmeval('ekf','myyfunc',R,xhat,Pmat,y,tidx,optpar)

If you would like to take a closer look at the covariance estimates, four functions are

available to accommodate this. Two of the functions are used together with the DD1

and DD2 �lters. These �lters works on Cholesky factors of the covariance matrices and

not on the covariance matrices themselves. If the covariance matrix is denoted P , the

Cholesky factor, S, is an upper triangular matrix with the property

P = SS
T

For sample no. k, the elements of S(k) are stored in row k + 1 of the matrix, Smat:

S(k) =

2
4
S11 S12 S13

0 S22 S23

0 0 S33

3
5 ! Smat =

2
664

...
...

S11 S12 S13 S22 S23 S33

...
...

3
775

With the function smat2cov it is possible to extract the covariance matrix at a speci�c

sample number:

P = smat2cov(Smat,k+1)

extracts the covariance matrix at time k (recall that the estimates for k=0 are stored in

the �rst row).

The function smat2var uses Smat to calculate the variance of each state estimate, i.e.,

the diagonal of the covariance matrix:



2.5. HOW TO HANDLE MULTIPLE OBSERVATION STREAMS 9

V = smat2var(Smat)

The �rst column contains the variance estimates for the �rst state, etc.

To extract the covariances estimated by the extended Kalman �lter, two similar func-

tions are available. mat2cov takes Pmat as input and returns the covariance matrix at a

speci�ed sample number. The format of Pmat is shown below. If P (k) is the covariance

matrix at time k then row k + 1 of Pmat is organized as follows:

P (k) =

2
4
P11 P12 P13

P12 P22 P23

P13 P23 P33

3
5 ! Pmat =

2
664

...
...

P11 P12 P13 P22 P23 P33

...
...

3
775

P (k) is extracted by

P = mat2cov(Pmat,k+1)

The function mat2var works the same way as smat2var except that it takes Pmat as

input.

2.5 How to Handle Multiple Observation Streams

In some applications one might receive the observations from di�erent sensors, and it is

often reasonable to assume that these are independent. In this case we can talk about

multiple observation streams. If all observations are available at every sampling instant

the regular �lters can be used. If the observations in the di�erent streams do not occur

simultaneously, you should instead use the special versions of the �lters that have been

designed for this speci�c application. It is now assumed that the model has the form:

xk+1 = f (xk; uk; vk)

y
(1)

k = g
(1)
�
xk; w

(1)

k

�

...

y
(n)

k = g
(n)
�
xk; w

(n)

k

�

An m-function for each output equation must be written, conforming to the format

discussed previously. The call of the �lter function (in this case the DD2 �lter) looks

pretty much the same as before. If there are two observation streams the call is

[xhat,Smat]=dd2m('myxfunc',{'myyfunc1','myyfunc2'},x0,P0,Q,{R1,R2},...

u,{y,y2},{tidx1,tidx2})

The so-called cell structure is used two wrap the multiple instances of function names,

measurement noise covariances, observation matrices, and time stamp vectors into com-

mon arguments.

Similar extensions are available for the DD1 �lter (dd1m) and the EKF (ekfm).



10 CHAPTER 2. USER'S GUIDE



Chapter 3

Working with the MEX-�les

With a little extra e�ort one can experience a tremendous increase in execution speed by

using the MEX alternatives to the m-functions. It requires some knowledge about the C

programming language, but typically a super�cial knowledge will be enough. The MEX

alternative is only available for the DD1 and DD2 �lters as the increase in execution

speed is particularly pronounced for these.

Whereas before one had to write m-functions containing state and output equations,

in the MEX case it is necessary to write similar functions in C. As a prototyping stage

it is always a good idea to start out in MATLAB. When things are working here you

can �translate� the m-functions into C and use the MEX functions. Although it seems

like having to do the work twice, overall it might save you time as in MATLAB it is

relatively easy to make things right the �rst time. The MATLAB solution can then be

used for debugging the C implementation.

It is recommended to complement the description provided in the following with a look

in the demonstration functions located in the �Demo� subdirectory.

3.1 A Few Details You Should Know

The MEX �les operate on a special matrix format for storage of vectors and matrices.

In the C code a �matrix� will be pointer to a data structure. A new matrix is declared

by:

matrix *M;

and later memory for the matrix is allocated with

M = mmake(rows,columns);

The data structure contains three variables: number of rows (M->row), number of columns

(M->col) and a pointer to an array that contains pointers to the memory locations where

each row is stored (the content of M->mat[0] points to the �rst element in the matrix).

11



12 CHAPTER 3. WORKING WITH THE MEX-FILES

Now things start sounding a little technical, but you do not really need to understand

this completely. A number of C macros and functions are available to assist you when

operating on matrices (and vectors):

macros functionality

rows = nof_rows(M); Number of rows in matrix.

columns = nof_cols(M); Number of columns in matrix.

len = vec_len(V); Length of vector (matrix with one row/col.).

value = get_val(M,r,c); Get element (r; c) from matrix.

put_val(M,r,c,value); Insert 'value' in element (r; c).

value = cvget(V,r) Get the rth element from a column vector.

value = rvget(V,c) Get the cth element from a row vector.

function name functionality

M = mmake(rows,columns); Allocate matrix of the speci�ed size.

mfree(M); Free the memory allocated to the matrix.

mprint(M); Display the matrix.

minit(M); Initialize all matrix elements to 0.

madd(A,B,C); Add two matrices, A = B + C.

mset(A,B); Copy a matrix, A = B.

3.2 Step 1: Writing State and Output Equations in C

Like in the MATLAB case you must write separate functions for state equation and

observation equation(s). Let us �rst take a look at the format for the state equation

function.

3.2.1 State Equation

/* Function prototype */

int myxfunc(matrix*, matrix*, matrix*, matrix*, int);

/* The state equation function */

int myxfunc(matrix *xbar, matrix *xhat, matrix *u, matrix *v, int flag)

{

/* Variable declarations */

int a, b, c;

double d, e, f;

static int h, i, j;

static matrix *M, *N;

/* Initializations */

if (flag == -1){



3.2. STEP 1: WRITING STATE AND OUTPUT EQUATIONS IN C 13

... Initialize static variables

return 0;

/* Clean up */

else if (flag == -2){

... free matrices that you might have allocated

return 0;

}

/* Normal call of function */

else{

... Perform state update (insert in xbar)

return 0;

}

}

Dissection of the function

Except for the function and variable names, which can be arbitrary, the function call

must have exactly the above format. xbar is the a priori state estimate; i.e., the output

of the function. xhat is the previous state estimate, u is the input (it must be included

in the argument list, but it does not have to be used), and v is the process noise. All

four arguments to the function are column vectors; i.e., matrices with one column.

The last argument, flag, is used for specifying whether the function is called in �initial-

ization mode�, in �clean up mode�, or in ��ltering mode�. The modes are explained below:

Initialization mode

The function is called once in this mode prior to the �ltering. It is included because

often it is useful to remember certain parameters, vectors, matrices, etc, from one call

to another rather than having to recalculate them at every sample. In particular, this

section is used for vector/matrix allocations (call of the mmake function). As mmake per-

forms a dynamic memory allocation this is not something one should carry out at every

sample. Variables that are to be remembered from call to call should be declared �static�.

If you wish to pass certain parameters to the function upon �ltering (in contrast to

hard coding all the information), the �lter function has an optional argument, which can

be used for passing such parameters. This argument must be a matrix, and it will be

passed to the function through the �rst argument (xbar) during initialization.

Clean up mode

The function will be called in this mode just before termination of the �lter function. If

you have dynamically allocated memory for matrices or arrays, this is place to free the

memory. In principle MATLAB will do this for you, but in the manual they recommend



14 CHAPTER 3. WORKING WITH THE MEX-FILES

that you do it yourself as this will be faster. Matrices allocated with mmake are deallo-

cated with the mfree command.

Filtering mode

In this section of the function the actual state update is placed. The updated states are

placed in the �rst vector in the argument list (xbar).

3.2.2 Observation Equation

The observation equation has a similar format:

/* Function prototype */

int myyfunc(matrix*, matrix*, matrix*, int);

/* The state equation function */

int myyfunc(matrix *ybar, matrix *xbar, matrix *w, int flag)

{

/* Variable declarations */

/* Initializations */

if (flag == -1){

... Initialize static variables

return 0;

/* Clean up */

else if (flag == -2){

... free matrices that you might have allocated

return 0;

}

/* Normal call of function */

else{

... Calculate output estimate (insert in ybar)

return 0;

}

}

For applications with multiple observation streams the output function must be aug-

mented to handle this. This is di�erent from the MATLAB case where a separate

function was written for each output stream.

/* Normal call of function */

else if (flag == 0){

... Calculate output estimate for stream 1



3.3. STEP 2: MODIFYING THE TEMPLATE AND COMPILE THE FUNCTION15

return 0;

}

else if (flag == 1){

... Calculate output estimate for stream 2

return 0;

}

3.3 Step 2: Modifying the Template and Compile the Func-

tion

Before preparing the actual �ltering you might want to check that the functions will in

fact produce the expected results. To do this you must �rst place the functions described

above in the same �le (place both prototype declarations in the top). Next you must

copy the test template �le xytest.c located in the Kalmtool directory to a new name,

e.g., my_xytest.c. Open the �le in an editor. In the top of the �le the are three "de�ne"

statements: KALMFILE, XFUNC, and YFUNC. After KALMFILE you write the name of the �le

containing your functions, after XFUNC you write the name of the state equation function,

and after YFUNC you write the name of the output equation function:

#define KALMFILE "myfile.c"

#define XFUNC myxfunc

#define YFUNC myyfunc

The �le is compiled by issuing the MATLAB command mex. The compilation depends

on the platform you are working on and the compiler available:

>> mex my_xytest.c kalmlbbc.obj % PC/Windows, Borland (5.2)

>> mex my_xytest.c kalmlbwc.obj % PC/Windows, Watcom (11.0)

>> mex my_xytest.c kalmlbms.obj % PC/Windows, Microsoft (VS 6.0)

>> mex my_xytest.c kalmlblx.o % PC/Linux

>> mex my_xytest.c kalmlbhp.o % HP 9000/735

If the function compiled without problems you can now evaluate your functions with the

statement:

>> [yout,xout] = my_xytest(x,u,ny,v,w,init);

x is a state vector, u is an input, ny is the number of outputs (the dimension of the

output vector), v is a process noise vector, and w is an observation noise vector. init is

a vector or matrix with possible parameters you might want to pass to the function for

initialization purposes. Use [ ] if you do not wish to pass anything.

If your functions behave correctly your next move is to select a �lter function. Four

templates are available: dd1c.c dd1mc.c, dd2c.c, and dd2mc.c. Make a copy of the

template corresponding to the �lter function you wish to use, open the �le in an editor

and modify the define statements in the top of the �le as explained above. The �lter

function can now be compiled:



16 CHAPTER 3. WORKING WITH THE MEX-FILES

>> mex myddfilter.c kalmlbbc.obj % PC/Windows, Borland (5.2)

>> mex myddfilter.c kalmlbwc.obj % PC/Windows, Watcom (11.0)

>> mex myddfilter.c kalmlbms.obj % PC/Windows, Microsoft (VS 6.0)

>> mex myddfilter.c kalmlblx.o % PC/Linux

>> mex myddfilter.c kalmlbhp.o % HP 9000/735

3.4 Step 3: Calling the Filter Routines

The MEX function is now ready to be called from MATLAB. The call is almost the same

as when you call the m-function counterpart. The main di�erence is that you should not

call the function with the covariance matrices, but with a root, S, for which P = SS
T

(not necessarily a Cholesky factor).

>> Sv = chol(Q)';

>> Sw = sqrtm(R);

>> [v,d] = eig(P0);

>> Sx0 = real(v*sqrt(d));

>> [xhat,Smat]=myddfilter(x0,Sx0,Sv,Sw,u,y,tidx,optidx);

For illustration purposes three di�erent ways to factorize the covariance matrices have

been shown above. You can use any which one you prefer.

To evaluate the result of the �ltering you can use the MATLAB functions described

previously.



Chapter 4

Two Examples

Finally it's time for some good clean family entertainment you can trust... Two demon-

stration examples are provided to illustrate how to work with the �lters. In the �rst

example the �lters are applied to a real data set collected on an autonomous guided

vehicle (AGV). The second example is a simulation study of a falling body; an often-

used benchmark example for evaluation of nonlinear �lter designs. Not all details will

be given, and the user is encouraged to open the demos in an editor and take a look at

their implementation. The implementations are by no means optimal; their purpose is

to show the user di�erent ways in which things can be implemented.

4.1 Pose Estimation and Calibration of an AGV

In this example we will consider a data set collected by an autonomous guided vehicle

(a so-called AGV). The purpose is to estimate the position and orientation (the pose)

of the vehicle relative to a pre-selected coordinate system in the room where the vehicle

is located. The vehicle has three wheels. Two driving wheels in the front and a castor

wheel in the back. The vehicle is equipped with wheel encoders for measuring the turn-

ing angle of each of the driving wheels, and a CCD-camera for detecting simple guide

marks placed on the walls in the room. Moreover, a camera has been mounted to the

ceiling and tracks two diodes placed on top of the vehicle.

We will work with a so-called encoder model of the vehicle. The encoder readings are

used as inputs to the model, and the pose is the output:

x(k + 1) = x(k) + s cos�

y(k + 1) = y(k) + s sin�

�(k + 1) = �(k) + 2t

where

� = �(k) + t

17



18 CHAPTER 4. TWO EXAMPLES

s =
�

2
[rru1(k) + rlu2(k)]

t =
�

2B
[rru1(k)� rlu2(k)]

rr and rl are the wheel radii and B is the distance between the wheels. � is a constant

relating to the encoder gain (kenc and the gear (N), � =
1

kencN
.

The model is quite accurate but generally one will encounter a certain drift. The main

reason for this is that wheel radii and distance between wheels are known only with a

limited accuracy. Typically, the initial pose will not be known exactly either. As an

absolute measure of the pose we therefore use the camera sensors. To demonstrate the

regular �lter functions only the camera in the ceiling is used. Subsequently these obser-

vations will be supplemented with the observations from the camera on board the vehicle

to demonstrate how to handle multiple observation streams. The encoders are sampled

with 40 msec intervals. The camera observations are not available with regular intervals

as the time spent on image processing varies.

Because the camera in the ceiling has a relatively limited view, the data are recorded by

controlling the vehicle with small jerks in a joystick.

We consider the joint state and parameter estimation problem. Along with the pose

we estimate the wheel radii and distance between the wheels. The dimension of the

state vector is therefore 6:

2
6666664

x1

x2

x3

x4

x5

x6

3
7777775

=

2
6666664

x

y

�

rr

rl

b

3
7777775

=

2
6666664

position i x direction

position i y direction

orientation

radius of right wheel

radius of left wheel

distance between wheels

3
7777775

x1(k + 1) = x1(k) + s cos�

x2(k + 1) = x2(k) + s sin�

x3(k + 1) = x3(k) + 2t

x4(k + 1) = x4(k) + v3(k)

x5(k + 1) = x5(k) + v4(k)

x6(k + 1) = x6(k) + v5(k)

where

� = x3(k) + t

s =
�

2
[x4(k)�u1(k) + x5(k)�u2(k)]



4.2. THE FALLING BODY BENCHMARK EXAMPLE 19

t =
�

2x6(t)
[x4(k)�u1(k)� x5(k)�u2(k)]

�u1(k) = u1(k) + v1(k)

�u2(k) = u2(k) + v2(k)

The image processing routine associated with the camera in the ceiling returns the pose;

thus we have three observations:

y1(k) = x1(k) + w1(k)

y2(k) = x2(k) + w2(k)

y3(k) = x3(k) + w3(k)

Open the �le agvdemo located in the Demo subdirectory in an editor and take a look

at the implementation and the calls of the di�erent �lter functions.

4.2 The Falling Body Benchmark Example

This famous benchmark has been considered in several publications. It will be a good

idea to consult

M. Athans, R. P. Wishner, and A. B. Bertolini: Suboptimal state estimation for continuous-

time nonlinear systems from discrete noisy measurements. IEEE Transactions on Auto-

matic Control, AC-13(5):504�514, Oct. 1968.

for a description of the example. The fall of the body can be described by the two

RADAR

ALTITUDE, x1

x2

H

M

RANGE, r

Figure 4.1: Geometry of the vertically falling body problem.

di�erential equations (4.1),(4.2). x3 represents a ballistic coe�cient which we assume

unknown and therefore wish to estimate simultaneously with the altitude and velocity of

the body. The radar measures the range (r). The measurements appear with intervals

of 1 second and are a�ected by additive white Gaussian noise.



20 CHAPTER 4. TWO EXAMPLES

The model is the following:

_x1(t) = �x2(t) (4.1)

_x2(t) = �e
�
x1(t)x2(t)

2
x3(t) (4.2)

_x3(t) = 0 (4.3)

yk = rk + wk =

q
M2 + (x1;k �H)2 + wk (4.4)

The model parameters are given by:

M = 100; 000 ft

H = 100; 000 ft


 = 5� 10�5

E[w2
k] = 104 ft2

and the initial state of the system is

8<
:

x1;0 = 300; 000 ft

x2;0 = 20; 000 ft/s

x3;0 = 10�3

Due to the nature of the problem it is common practice to employ a continuous-discrete

�lter implementation. The state equations (4.1)-(4.3) are integrated using a fourth order

Runge-Kutta method with 64 steps taken between each observation. It is straightfor-

ward to implement continuous-discrete versions of the DD1 and DD2-�lter as there is

no process noise. The above mentioned paper describes the implementation of the EKF

and the (modi�ed Gaussian) second order �lter for the considered application.

The following initialization of state estimates and covariance matrix is used:

8<
:

x̂1;0 = 300; 000 ft

x̂2;0 = 20; 000 ft/s

x̂3;0 = 3� 10�5

P̂ (0) =

2
4

106 0 0

0 4� 106 0

0 0 10�4

3
5 :

To enable a fair comparison of the estimates produced by each of the �lters, the estimates

are averaged across a Monte Carlo simulation consisting of 50 runs. Each run is carried

out with a di�erent noise sample.

Open the script falldemo in an editor to study the implementation and �lter calls.



Chapter 5

Reference

Filter Functions

dd1 DD1 �lter.

dd1m DD1 �lter for systems with multiple observation streams.

dd2 DD2 �lter.

dd2m DD2 �lter for systems with multiple observation streams.

ekf Extended Kalman �lter.

ekfm Extended Kalman �lter for systems with multiple

observation streams.

MEX �les

dd1c C-Mex counterpart to the 'dd1' function.

dd1mc C-Mex counterpart to the 'dd1m' function.

dd2c C-Mex counterpart to the 'dd2' function.

dd2mc C-Mex counterpart to the 'dd2m' function.

kalmlb** Object �le that must be linked with the mex �les.

xytest Test C-functions before the �ltering is performed.

21



22 CHAPTER 5. REFERENCE

Utilities

kalmeval Evaluate �lter performance.

mat2cov Extract covariance matrix from vector containing

the upper triangular elements.

mat2var Extract variance estimates from matrix containing

covariance estimates.

smat2cov restore covariance matrix from vector of Cholesky

factor elements.

smat2var Calculate variance estimate for each state from the

Cholesky factored covariance matrices.

covariance estimates.

triag Triangularization with Householder transformation.

Demonstrations

agvdemo Position and orientation estimation and calibration

of an AGV.

falldemo Falling body example (a continuous-time example).

demomex Generates MEX �les to speed up the demonstrations.



23

dd1

Purpose

State estimation with the DD1 �lter.

Synopsis

[xhat,Smat]=dd1(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Smat]=dd1(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd1 uses the DD1 �lter to estimate the states for a nonlinear system. The

model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

yk = g (xk; wk)

where x is the state vector, u is a possible input, and v and w are (white) noise

sources. Each of the two equations must be written in an m-function.

The arguments to the dd1 function are explained below:
xfunc Name of �le containing the state equation.

yfunc Name of �le containing the output equation.

x0 Initial state estimate.

P0 Initial covariance matrix (symmetric, nonnegative de�nite).

Q,R Covariance matrices for v and w, respectively.

u Input signal. Dimension is [samples � inputs].

Use [ ] if there is no input.

y Output signal. Dimension is [observations � outputs].

tidx Vector containing time stamps (in samples) for the

observations in y.

optpar Data structure containing initialization parameters (optional).

optpar.vmean: Mean of process noise vector (default is 0).

optpar.wmean: Mean of measurement noise vector (default is 0).

optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).



24 CHAPTER 5. REFERENCE

dd1

The function returns the state estimates and the Cholesky factored covariance

matrices for the state estimation errors. If the �nal time is k=samples, yhat

and Smat will have samples+1 rows. The �rst row contains the initial estimates,

i.e., the estimate at time k=0. The estimates will be a posteriori estimates at

the sampling times for which an observation is available. At the remaining

sampling times, the a priori estimates are provided.

dd1 works on Cholesky factors of the covariance matrices and not on

the covariance matrices themselves. If the covariance matrix is denoted P , the

Cholesky factor, S, is an upper triangular matrix with the property

P = SS
T

For sample no. k, the elements of S(k) are stored in row k + 1 of the returned

matrix, Smat:

S(k) =

2
4
S11 S12 S13

0 S22 S23

0 0 S33

3
5 ! Smat =

2
664

...
...

S11 S12 S13 S22 S23 S33

...
...

3
775

With the function smat2cov it is possible to extract the covariance matrix at

a speci�ed sample number.

The function smat2var uses Smat to calculate the variance of each state

estimate, i.e., the diagonal of the covariance matrix.

In order to compare output estimates with observations of the output,

use the function kalmeval.



25

dd1

How to write the m-functions

Each of the functions whose names are speci�ed in xfunc and yfunc must have

the appropriate structure. This is explained below:

xfunc

Assume xfunc='myxfunc':

function xout=myxfunc(x,u,v)

% Make variables static

persistent mypar1 mypar2;

% Check if variables should be initialized

if nargin==1,

mypar1 = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

return

end

% A priori update of states

xout = zeros(3,1);

xout(1) = x(1) + mypar2*cos(x(2)+u(1)*v(1));

xout(2) = x(3) + mypar2*cos(x(2)+u(2)*v(2));

xout(3) = mypar1*x(1) + v(3);

Dissection of the function

The header must always look like this: function xout=myxfunc(x,u,v)

The function and variable names are unimportant, but the function must

always take 3 arguments and return one output. The arguments, which should

be (column) vectors, are the current state estimate, control input, and process

noise (in that order). The function should output the a priori state update.

Argument 2 and 3 must be present even if there are no inputs or process noise.

By using the persistent declaration, a feature which was introduced in

MATLAB 5.2, it is possible to maintain parameters from one call to another.

This is convenient as one can initialize certain parameters before the �ltering.



26 CHAPTER 5. REFERENCE

dd1

There should always be an initialization section in the function. This must take

the form

if nargin==1,

.. do initialization stuff

return

end

Before the actual �ltering is performed, myxfunc will be invoked as

myxfunc(opt.init). Thus, by specifying parameter initializations in

opt.init, these parameters are passed to the function through the argument

x. The section must be included even if there are no such intializations. In this

case, it should just include the return statement.

The last part of the function is the actual state update. If x is not also

used as the return variable, make sure that the returned variable is a column

vector.

yfunc

The output equation is written in an m-function in a similar way:

function y=myyfunc(x,w)

% Make variables static

persistent mypar3

% Check if variables should be initialized

if nargin==1

mypar3=x(4);

return

end

% Calculate output estimate

y = mypar3*x.*x+w;

The function should take two arguments: the state vector and the measurement

noise vector. Apart from that, the function has the same structure as xfunc.



27

dd1

Algorithm

The DD1 �lter is based on �rst-order polynomial approximations of the

nonlinear mappings. The approximations are derived by using a multivariable

extension of Stirling's interpolation formula. The �lter is described in:

M. Nørgaard, N.K. Poulsen, O. Ravn: Easy and Accurate State Estima-

tion for Nonlinear Systems, 14th IFAC World Conference in Beijing, China,

July 5-9, 1999, pp. 343�348.

and much more thoroughly in: M. Nørgaard, N.K. Poulsen, O. Ravn:

New Developments in State Estimation for Nonlinear Systems, to be published

in Automatica.

A similar, but slightly simpler, �lter is described in:

Tor S. Schei: A Finite-Di�erence Method for Linearization in Nonlinear

Estimation Algorithms, Automatica, Vol. 33, No. 11, 1997, pp. 2053�2058.

See Also

dd1m, dd1c



28 CHAPTER 5. REFERENCE

dd1m

Purpose

DD1 �ltering for systems with multiple observation streams.

Synopsis

[xhat,Smat]=dd1m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Smat]=dd1m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd1m uses the DD1 �lter to estimate the states for a nonlinear system. The

model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

y
(1)

k = g
(1)
�
xk; w

(1)

k

�

...

y
(n)

k = g
(n)
�
xk; w

(n)

k

�

where x is the state vector, u is a possible input, and v and w are (white)

noise sources. Each of the equations must be written in an m-function. The

arguments to the dd1m function are explained below:
xfunc Name of �le containing the state equation.

yfunc Cell structure containing in each cell the name of a

�le containing an output equation. Dimension is n

x0 Initial state estimate.

P0 Initial covariance matrix (symmetric, nonnegative de�nite).

Q Covariance matrices for v.

R Cell structure containing the covariance matrices for w(1)
� w

(n).

u Input signal. Dimension is [samples � inputs]. Use [ ] if there is no input.

y Cell structure containing in each cell a matrix with output

signals, y(1) � y
(n). Dimension of each cell is

[observations-in-stream � outputs-in-stream].

tidx Cell structure containing in each cell a vector of time

stamps (in samples) for the corresponding observations.

optpar Data structure containing initialization parameters (optional).

optpar.vmean: Mean of process noise vector (default is 0).

optpar.wmean: Cell structure with means of measurement noise vectors (def. 0).

optpar.init: Initial parameters for the functions in xfunc and yfunc.



29

dd1m

The function returns the state estimates and the Cholesky factored covariance

matrices for the state estimation errors. If the �nal time is k=samples, yhat and

Smat will have samples+1 rows. The �rst row contains the initial estimates, i.e.,

the estimate at time k=0. The estimates will be a posteriori estimates at the

sampling times for which an observation is available. At the remaining sampling

times, the a priori estimates are provided. See dd1 for details on how to write

the state and output equations in m-functions.

See Also

dd1, dd1mc



30 CHAPTER 5. REFERENCE

dd2

Purpose

State estimation with the DD2 �lter.

Synopsis

[xhat,Smat]=dd2(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Smat]=dd2(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd2 uses the DD2 �lter to estimate the states for a nonlinear system. The

model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

yk = g (xk; wk)

where x is the state vector, u is a possible input, and v and w are (white) noise

sources. Each of the two equations must be written in an m-function.

Read the section about the dd1 function to see what the arguments for

dd2 are, and to see the format of the returned variables.

Algorithm

The DD2 �lter is based on second-order polynomial approximations of

the nonlinear mappings. The approximations are derived by using a mul-

tivariable extension of Stirling's interpolation formula. The �lter is described in:

M. Nørgaard, N.K. Poulsen, O. Ravn: Easy and Accurate State Estima-

tion for Nonlinear Systems, 14th IFAC World Conference in Beijing, China,

July 5-9, 1999, pp. 343�348.

and much more thoroughly in: M. Nørgaard, N.K. Poulsen, O. Ravn:

New Developments in State Estimation for Nonlinear Systems, to be published

in Automatica.

See Also

dd1, dd2m, dd2c



31

dd2m

Purpose

DD2 �ltering for systems with multiple observation streams.

Synopsis

[xhat,Smat]=dd2m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Smat]=dd2m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd2m uses the DD2 �lter to estimate the states for a nonlinear system. The

model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

y
(1)

k = g
(1)
�
xk; w

(1)

k

�

...

y
(n)

k = g
(n)
�
xk; w

(n)

k

�

where x is the state vector, u is a possible input, and v and w are (white) noise

sources. Each of the equations must be written in an m-function. The arguments

to the dd2m function are explained in the section covering the dd1m function.

See Also

dd1m, dd2, dd2mc



32 CHAPTER 5. REFERENCE

ekf

Purpose

State estimation with the extended Kalman �lter (EKF).

Synopsis

[xhat,Pmat]=ekf(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Pmat]=ekf(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

ekf uses the extended Kalman �lter to estimate the states for a nonlinear system.

The model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

yk = g (xk; wk)

where x is the state vector, u is a possible input, and v and w are (white) noise

sources. Each of the two equations must be written in an m-function.

The arguments to the ekf function are explained below:
xfunc Name of �le containing the state equation.

yfunc Name of �le containing the output equation.

linfunc Name of �le containing the linearization procedures.

x0 Initial state estimate.

P0 Initial covariance matrix (symmetric, nonnegative de�nite).

Q,R Covariance matrices for v and w, respectively.

u Input signal. Dimension is [samples � inputs].

Use [ ] if there is no input.

y Output signal. Dimension is [observations � outputs].

tidx Vector containing time stamps (in samples) for the

observations in y.

optpar Data structure containing initialization parameters (optional).

optpar.vmean: Mean of process noise vector (default is 0).

optpar.wmean: Mean of measurement noise vector (default is 0).

optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).



33

ekf

The function returns the state estimates and covariance matrices for the state

estimation errors. If the �nal time is k=samples, yhat and Pmat will have

samples+1 rows. The �rst row contains the initial estimates, i.e., the estimates

at time k=0. The estimates will be a posteriori estimates at the sampling times

for which an observation is available. At the remaining sampling times, the a

priori estimates are provided.

In order to reduce the amount of memory required for storage, only the

elements corresponding to the upper triangular part of the covariance matrices

are stored in Pmat (a covariance matrix is always symmetric). If P (k) is the

covariance matrix at time k then row k + 1 of Pmat is organized as follows:

P (k) =

2
4
P11 P12 P13

P12 P22 P23

P13 P23 P33

3
5 ! Pmat =

2
664

...
...

P11 P12 P13 P22 P23 P33

...
...

3
775

With the function mat2cov it is possible to extract the covariance matrix at a

speci�ed sample number.

The function mat2var extracts the variance estimates from Pmat, corre-

sponding to the diagonal of each covariance matrix P (k); k = 0; :::; N .

In order to compare output estimates with observations of the output,

use the function kalmeval.



34 CHAPTER 5. REFERENCE

ekf

How to write the m-functions

Each of the functions whose names are speci�ed by xfunc, yfunc, and linfunc

must have the appropriate structure. In the section covering the function dd1 it

is explained how to write the two former functions. Below, an example describing

the structure of the linearization function is given (for a nonsense system). The

following notation is used:

xk+1 � f(x̂k; uk; �vk) +A(k)(xk � x̂k) + F (k)(vk � �vk)

yk � g(�xk; �wk) + C(k)(xk � �xk) +G(k)(wk � �wk)

where

A(k) =
@f(x; uk; �vk)

@x

����
x=x̂k

F (k) =
@f(x̂k; uk; v)

@v

����
v=�vk

C(k) =
@g(x; �wk)

@x

����
x=�xk

G(k) =
@g(�xk; w)

@w

����
w= �wk

:

linfunc

Assume linfunc='my_linfunc':

function [M,N]=my_linfunc(x,u,vw,flag)

% Make variables static

persistent mypar1 mypar2;

% Check if variables should be initialized

if nargin==1,

mypar1 = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

A0 = diag([1 1]);

F0 = zeros(2,2);

C0 = [1 0];

G0 = [];

return

end

.

.

.



35

ekf

.

.

% Linearize state equation

if flag==0,

M = A0;

M(1,2) = mypar1*(sin(x(1)*u(1)) + x(2)*u(2));

N = F0;

N(1,1) = mypar2/x(2);

N(2,2) = x(1)*x(2);

% Linearize output equation

elseif flag==1,

M=C0;

N=G0;

end

Dissection of the function

The header must always look like this:

function [M,N]=my_linfunc(x,u,vw,flag)

The function and variable names are unimportant, but the function must

always take 4 arguments and return two outputs. The arguments, three

(column) vectors and an integer, are the current state estimate, control input,

process noise or measurement noise, and a �ag (in that order). If flag=0

then vw is process noise and the function should linearize the state equation

and return the matrix A in M and the matrix F in N. If flag=1 then vw is

measurement noise and the function should linearize the output equation and

return the C in M and G in N.

Argument 2 and 3 must be present even if there are no inputs or no pro-

cess/measurement noise.

By using the persistent declaration, a feature which was introduced in

MATLAB 5.2, it is possible to maintain parameters from one call to another.

This is convenient as one can initialize certain parameters before the �ltering.



36 CHAPTER 5. REFERENCE

ekf

There should always be an initialization section in the function. This must take

the form

if nargin==1,

.. do initialization stuff

return

end

Before the actual �ltering is performed, my_linfunc will be invoked as

my_linfunc(opt.init). Thus, by specifying parameter initializations in

opt.init, these parameters are passed to the function through the argument

x. The section must be included even if there are no such intializations. In this

case it should just include the return statement.

The remaining part of the function contains the actual linearizations.

Notice that if the certain elements in the matrices are constant, one can set the

constant elements in the initialization section of the function (A0, C0, etc). If

one of the noise matrices (F , G) equals the identity matrix, it is recommended

to set it to the empty matrix, [ ], in which case one can reduce the number of

computations performed in the �ltering.

Algorithm

The extended Kalman �lter is based on �rst-order Taylor approximations of

the nonlinear mappings. The EKF is described in, e.g.,

M. S. Grewal & A. P. Andrews: Kalman Filtering: Theory and Practice,

Prentice Hall, 1993.

F. L. Lewis: Optimal Estimation, John Wiley & Sons, 1986.

See Also

ekfm, dd1



37

ekfm

Purpose

Extended Kalman �ltering for systems with multiple observation streams.

Synopsis

[xhat,Smat]=ekfm(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx)

[xhat,Smat]=ekfm(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

ekfm uses the Extended Kalman Filter (EKF) to estimate the states for a

nonlinear system. The model of the system must be speci�ed in the form:

xk+1 = f (xk; uk; vk)

y
(1)

k = g
(1)
�
xk; w

(1)

k

�

...

y
(n)

k = g
(n)
�
xk; w

(n)

k

�

where x is the state vector, u is a possible input, and v and w are (white)

noise sources. Each of the equations must be written in an m-function. The

arguments to the ekfm function are explained in the section covering the dd1m

function. The di�erence from the call of dd1m is that it is necessary to write a

�le containing the linearizations. It was described under ekf how to do this. In

the multi-stream case, the �le must have a slightly di�erent structure, though.

An example of the structure is given below:



38 CHAPTER 5. REFERENCE

ekfm

linfunc

Assume linfunc='my_linfunc':

function [M,N]=my_linfunc(x,u,vw,flag)

% Make variables static

.

.

% Check if variables should be initialized

if nargin==1,

.

.

return

end

% Linearize state equation

if flag==0,

M = ..

N = ..

% Linearize output equation 1

elseif flag==1,

M=..

N=..

% Linearize output equation 2

elseif flag==2,

M=..

N=..

end

Dissection of the function

The variable flag is used for pointing out which linearization to perform. If

flag=0 the linearization of the state equation should be returned. If flag=1

the linearization of the �rst output equation should be returned. If flag=2 the

linearization of the second output equation should be returned, and so forth.



39

ekfm

See Also

dd1m, ekf.



40 CHAPTER 5. REFERENCE

kalmeval

Purpose

Evaluate �lter performance.

Synopsis

[yhat,RMS]=kalmeval('method',yfunc,R,xhat,PS,y,tidx)

[yhat,RMS]=kalmeval('method',yfunc,R,xhat,PS,y,tidx,optpar)

Description

kalmeval estimates the output, y, based on the state estimates obtained from

the �ltering. The function plots the observed and estimated outputs as well as

the state estimates along with 3 times their standard deviations.

The function assumes the (nonlinear) output equation

yk = g (xk; wk)

is available, where x is the state vector and w is (white) measurement noise.

The equation must be written in an m-function. The arguments to the

kalmeval function are explained in the section covering the dd1 function.

The arguments to the kalmeval function are explained below:
method Filter method ('ekf', 'dd1', 'dd2', 'ekfm', 'dd1m', 'dd2m').

yfunc Name of �le containing the output equation.

R Covariance matrix for the measurement noise. Only used

if method='dd2' or 'dd2m'.

xhat State estimates. Dimension is [samples+1 � states].

PS Matrix where each row contains elements of (the upper

triangular part of) the Cholesky factor of the covariance

matrix (dd1, dd2, dd1m, dd2m) or the covariance matrix

(ekf, ekfm). The dimension is [samples+1 �

0.5*states*(states+1)].

y Output signal. Dimension is [observations � outputs].

tidx Vector containing time stamps (in samples) for the

observations in y.

optpar Data structure containing initialization parameters (optional).

optpar.vmean: Mean of process noise vector (default is 0).

optpar.wmean: Mean of measurement noise vector (default is 0).

optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).



41

kalmeval

The section covering the dd1 �lter explains how to write the function yfunc.

This section also explains the format of the matrix PS. See also ekf.

In case of multiple observation streams (dd1m, dd2m, ekfm), the arguments

yfile, R, y, tidx, and optpar.wmean must be cell structures.

The function returns the output estimates through the argument yhat,

which is a matrix of dimension [samples � outputs]. The output argument RMS

is a vector containing the RMS error between observations and estimates of

each output.



42 CHAPTER 5. REFERENCE

mat2cov

Purpose

Extract covariance matrix from vector of upper triangular elements.

Synopsis

P = mat2cov(Pvec) returns the (quadratic) covariance matrix when given a

vector containing the upper triangular elements.

P = mat2cov(Pmat,k) extracts the kth row from the matrix of vectors,

Pmat. The vectors of upper triangular elements must be organized row wise in

Pmat.

Description

The matrix Pmat is an output argument from the functions ekf and ekfm. If

P (k) is the covariance matrix at time k then row k + 1 of Pmat is organized as

follows:

P (k) =

2
4
P11 P12 P13

P12 P22 P23

P13 P23 P33

3
5 ! Pmat =

2
664

...
...

P11 P12 P13 P22 P23 P33

...
...

3
775

The purpose of mat2cov is to extract the speci�ed row from Pmat and restore

the proper format of the covariance matrix.

See Also

ekf, ekfm, mat2var



43

mat2var

Purpose

Extract variance estimates from matrix of covariance estimates.

Synopsis

varmat = mat2var(Pmat)

Description

mat2var extracts the variance estimates (corresponding to the diagonals of

the covariance matrices) from a matrix for which each row contains the upper

triangular elements of a covariance matrix.

See Also

ekf, ekfm, mat2cov



44 CHAPTER 5. REFERENCE

smat2cov

Purpose

Restore covariance matrix from vector of Cholesky factor elements.

Synopsis

P = smat2cov(Svec) returns the (quadratic) covariance matrix when given a

vector containing the (upper triangular) Cholesky factor elements.

P = smat2cov(Smat,k) extracts the kth row from the matrix of vectors,

Smat. The vectors of Cholesky factor elements must be organized row wise in

Smat.

Description

The matrix Smat is an output argument from the functions dd1, dd2, dd1m,

and dd2m. If the covariance matrix is denoted P , the Cholesky factor S is an

upper triangular matrix with the property

P = SS
T

For sample no. k, the elements of S(k) are stored in row k + 1 of the returned

matrix, Smat:

S(k) =

2
4
S11 S12 S13

0 S22 S23

0 0 S33

3
5 ! Smat =

2
664

...
...

S11 S12 S13 S22 S23 S33

...
...

3
775

The purpose of smat2cov is to extract the speci�ed row from Smat, and restore

the proper format of the covariance matrix.

See Also

dd1, dd1m, dd2, dd2m, smat2var



45

smat2var

Purpose

Calculate variance estimate for each state.

Synopsis

varmat = smat2var(Smat)

Description

smat2var returns a matrix where each column is the variance of a state esti-

mate. Smat is a matrix where each row contains elements of (the upper triangular

part of) the Cholesky factor of a covariance matrix.

See Also

dd1, dd1m, dd2, dd2m, smat2cov



46 CHAPTER 5. REFERENCE

triag

Purpose

Triangularization with Householder transformation.

Synopsis

S = triag(A)

Description

triag uses a Householder transformation on the rectangular matrix A to produce

a square and upper triangular matrix S with the property SST = AA
T.


