KALMTOOL

for Use with MATLAB

State Estimation for Nonlinear Systems
Technical Report IMM-REP-2000-6
Magnus Ngrgaard

Department of Mathematical Modelling & Department of Automation
Technical University of Denmark

November 10, 2000

RELEASE NOTES

This note contains important information on how the present toolbox is to be installed,
and the conditions under which it may be used. Please read it carefully before use.

Before You Start Using the Toolbox

After installation, all toolbox functions will be located in one directory, and the files
associated with the demonstration programs will be located in a subdirectory under
this. The user should make a path to these directories with the MATLAB function
path:

>> path(path,’/xx/.../xx/Kalmtool’);
>> path(path,’/xx/.../xx/Kalmtool/Demo’);

If the toolbox is going to be used on a regular basis it is recommended to include this
statement in the file startup.m, which is invoked during the start of MATLAB.

If a C compiler is available, and the MATLAB mex command has been properly set
up, the CMEX functions in the demonstration directory are compiled as follows:

>> cd /xx/xx/.../Kalmtool/Demo
>> demomex

This script invokes the mex command for each of the CMEX functions in the demon-
stration directory.

Conditions/Disclaimer
By using the toolbox the user agrees to all of the following:

e If one is going to publish any work where this toolbox has been used, please re-
member it was obtained free of charge and include a reference to the technical
report: M. Ngrgaard: "KALMTOOL - State Estimation for Nonlinear Systems"
Tech. Report. IMM-REP-2000-6, Department of Mathematical Modelling, Tech-
nical University of Denmark, 2000.

e Magnus Ngrgaard, Department of Mathematical Modelling, or Department of Au-
tomation, DTU do not offer any support for this product whatsoever.

ii

e For educational purposes and research at universities and government research lab-
oratories, the toolbox is copyrighted freeware by Magnus Ngrgaard /Department of
Mathematical Modelling/Department of Automation, DTU, and it may be dis-
tributed freely unmodified. Companies and private research laboratories can eval-
uate the toolbox but are required to obtain a license for a fee of 200 USD (does
not include support) in case they wish to use it. Please contact Magnus Ngrgaard
(e-mail address given below).

e It is not permitted to utilize any part of the software in commercial products with-
out prior written consent of Magnus Ngrgaard, The Department of Mathematical
Modelling, DTU.

e The C source code for the MEX files can be purchased by contacting Magnus
Ngrgaard. Price depends on application.

e THE TOOLBOX IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
MAGNUS NORGAARD AND/OR THE DEPARTMENT OF MATHEMATICAL
MODELLING AND/OR THE DEPARTMENT OF AUTOMATION BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAM-
AGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA, OR PROFITS, WHETHER OR NOT MN/IMM/IAU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND/OR
ON ANY THEORY OF LIABILITY ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Trademarks of companies and/or organizations mentioned in this documentation appear
for identification purposes only and are the property of their respective companies and /or
organizations.

Magnus Ngrgaard

Department of Mathematical Modelling
Bldg. 321

Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark

pmn@iau.dtu.dk

Chapter 1

Introduction

This manual is a user’s guide for the KALMTOOL toolbox; a MATLAB toolbox con-
taining functions for state estimation for nonlinear systems. The toolbox contains the
well-known Fztended Kalman Filter (EKF) and two new filters called the DD1 filter and
the DD2 filter.

The toolbox will run under MATLAB 5.3 and higher, and it is independent of other
MATLAB toolboxes. All functions exist as m-files but for faster execution of the com-
putationally intensive functions these have also been written in C and are provided as
CMEX-functions. The user will have to add some problem specific C code and compile
the functions with the mex command in order to run the CMEX-functions.

Generally, it will require only superficial knowledge about the C programming language
to work with the MEX functions. However, a C compiler must of course be installed on
the system, and the mex command in MATLAB properly set up (see the Application
Interface Guide for MATLAB).

1.1 Why this Toolbox?

The purpose of this toolbox is to make implementations of the new DD1 and DD2 filters
available for solving nonlinear state estimation problems and to enable a comparison
with a conventional method like the extended Kalman filter.

So what’s the deal with these filters? If you are familiar with the EKF, or one of its
‘relatives’, you will quickly find out about the advantage of the new filters. First of
all, they are easier to use. Secondly, you can expect a similar (DD1) or better (DD2)
performance than with the EKF. On the downside, the new filers tend to require more
computations than the EKF.

It should be mentioned that the filters are implemented in a very general fashion. In most
practical application this generality is not needed but since it is provided one should be

1

2 CHAPTER 1. INTRODUCTION

aware of the fact that faster execution times could be obtained with more specialized
software. In particular in the case of the DD1 and DD2 filters one will encounter exces-
sive computation times for “simple” applications.

What exactly is different about the new filters? To make a short story long, we found
that the extended Kalman filter was somewhat inconvenient to use in some of our appli-
cations. A small modification of the application sometimes had serious implications on
the EKF implementation. Moreover, it was often difficult to implement. Our problem
was that the EKF requires a linearization of the system model. Sometimes this is easy
to find but sometimes it can be pretty hard. In any case, it makes things inflexible. If a
small change is made in the model one has to work out a new set of derivatives. This is
particularly inconvenient in model calibration where certain model parameters are tem-
porarily included in the state vector and estimated simultaneously with the actual states.

So where can I read about these filters? So far three publications are available.

The short introduction:
M. Ngrgaard, N.K. Poulsen, O. Ravn: Fasy and Accurate State Estimation for Nonlin-
ear Systems, 14th IFAC World Conference in Beijing, China, July 5-9, 1999, pp. 343-348.

An expanded version:
M. Ngrgaard, N.K. Poulsen, O. Ravn: New Developments in State Estimation for Non-
linear Systems, Automatica, (36:11), Nov. 2000, pp. 1627-1638.

The most thorough description:

M. Nogrgaard, N.K. Poulsen, O. Ravn: Advances in Derivative-Free State Estimation for
Nonlinear Systems, Technical Report IMM-REP-1998-15, Department of Mathematical
Modelling, DTU, 1998 (revised Apr. 2000).

Chapter 2

User’s Guide

2.1 What You Need to Figure Out First

In order to use filter routines you need the following prerequisites:
A state space model in the form:

Trr1 = [Tk, uk,vr)
e = g(zp, w)
The noise covariance matrices
Q = E{uw}
R = E {wkw,{}
Initial estimates of state and covariance matrix
To = E{:E()}
Py, = E {(IEU — j?o)(:l?g — :f‘U)T}
Input-output data sets
y = {vo,y1,y2,...}
u = {ug,u1,ug,...}

For application of the extended Kalman filter you must also derive the linearized
state and observation equations:

Tpt1 =~ f(ik,uk,ﬁk) =+ A(k)(]?k — :i‘k) + F(k)(vk — ’T)k)
ye ~ g(zk,wg) + C(k)(zr — zx) + G(k)(wi — wp)

where
A(I{Z) — af(x,Uk,Q_)k) F(I{Z) af(:%kaukav)
Oz T=iy, v v=1y,
Oz |yeg, Ow |y,

4 CHAPTER 2. USER’S GUIDE

When you have collected all this information you must specify the model in MATLAB
functions. These functions must conform to a particular structure, which is discussed
below

2.2 Writing the Equations in M-Functions

If you wish to run the DD1 or DD2 filter you must write two functions. One should
contain the state equation and the other should contain the output equation (if you are
working with more than one observation stream, you must write a function for each
stream but more about that later). If you are going to use the EKF, it is necessary to
write an additional function that specifies the linearization of the two equations.

2.2.1 The state equation

As an example, let us implement the state equation in a function called myxfunc. The
necessary components are shown below (for a nonsense system!).

function xout=myxfunc(x,u,v)

% Make variables static
persistent myparl mypar2;

% Check if variables should be initialized
if nargin==1,

myparl = x(1)*0.5 + x(2);
mypar2 = 75*x(3);
return

end

% A priori update of states

xout = zeros(3,1);

xout (1) = x(1) + mypar2*cos(x(2)+u(1)*v(1));
xout (2) = x(3) + mypar2*cos(x(2)+u(2)*v(2));
xout (3) = myparixx(1) + v(3);

Dissection of the function

The header must always look like this: function xout=myxfunc(x,u,v)

The function and variable names are unimportant, but the function must always take 3
arguments and return one output. The arguments, which should be (column) vectors,

2.2. WRITING THE EQUATIONS IN M-FUNCTIONS)

are the current state estimate, control input, and process noise (in that order). The
function should output the a priori state update. Argument 2 and 3 must be present
even if there are no inputs or process noise.

By using the persistent declaration, a feature which was introduced in MATLAB 5.2, it
is possible to maintain parameters from one function call to another. This is convenient
as one can initialize certain parameters before the filtering.

There should always be an initialization section in the function. This must take the
form

if nargin==1,
. do initialization stuff
return
end

Before the actual filtering is performed, myxfunc will be invoked as myxfunc (opt.init).
Thus, by specifying parameter initializations in the variable opt.init, these parameters
are passed to the function through the argument x. The initialization section must be
included even if there are no such initializations. In this case it should just contain the
return statement.

The last part of the function is the actual state update. If x is not also used as the
return variable, make sure that the returned variable is a column vector.

2.2.2 The output equation
The output equation is written in an m-function with a similar format:

function y=myyfunc(x,w)
% Make variables static
persistent mypar3

% Check if variables should be initialized
if nargin==

mypar3=x(4) ;

return
end

% Calculate output estimate
y = mypar3*x.*x+w;

The function should take two arguments: the state vector and the measurement noise
vector. Apart from that, the function has the same structure as zfunc.

6 CHAPTER 2. USER’S GUIDE

Linearization of the equations

When using the EKF it is necessary to write a separate function that contains the
linearization of the two equations. The function must have the following format (the
contents is still nonsense!)

function [M,N]=mylinfunc(x,u,vw,flag)
% Make variables static
persistent myparl mypar2;

% Check if variables should be initialized
if nargin==1,

myparl = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

A0 = diag([1 11);
FO = zeros(2,2);
Co = [1 0];
Go = [1;
return

end

% Linearize state equation

if flag==0,
M = AO;
M(1,2) = myparlx(sin(x(1)*u(1)) + x(2)*u(2));
N = FO;
N(1,1) = mypar2/x(2);

N(2,2) = x(1)*x(2);

% Linearize output equation
elseif flag==1,

M=CO;

N=GO;
end

Dissection of the function

The header must always look like this: function [M,N]=my_linfunc(x,u,vw,flag)

The function and variable names are unimportant, but the function must always take
4 input arguments and return 2 outputs. The arguments, three (column) vectors and
an integer, are the current state estimate, control input, process noise or measurement
noise, and a flag (in that order). If flag=0 then vw is process noise and the function
should linearize the state equation and return the matrix A in M and the matrix F in

2.3. RUNNING THE FILTERS 7

N. If flag=1 then vw is measurement noise and the function should linearize the output
equation and return the C matrix in M and the G matrix in N.

Argument 2 and 3 must be present even if there are no inputs or no process/measurement
noise.

2.3 Running the Filters

When input and observation data are available, and the appropriate m-functions have
been written, it is straightforward to run the filters. The DD2 filter is invoked in the
following way:

[xhat,Smat]=dd2(’myxfunc’,’myyfunc’,x0,P0,Q,R,u,y,tidx);

u is a matrix of inputs to the system. The first row contains the inputs applied at time
k=0, the second row contains the inputs at time k=1, etc. If the system has no inputs,
the empty matrix [] is passed.

y is a matrix of observations and tidx is a vector with time stamps for the observa-
tions in y. The first row in y contains the observations acquired at the sample number
specified in the first element of tidx, the second row in y contains the observations ac-
quired at the sample number specified in the second element of tidx, etc. If observations
are available at all sampling instants, we simply have that tidx=0:size(u,1).

The state estimates are returned in the matrix xhat. The first row in xhat is the
estimate at time k=0. If there is no observation update at that time, it will simply be
the argument x0 that was passed to the filter function upon the call.

The matrix Smat is a matrix containing coefficients of the Cholesky factors of the esti-
mation error covariance matrices. The format of this matrix will be further explained in
the following section.

The DDL1 filter is called in the exact same way. For the extended Kalman filter it is

necessary to include the name of your m-function that performs the linearizations:
[xhat,Pmat]=ekf (’myxfunc’,’myyfunc’,’mylinfunc’,x0,P0,Q,R,u,y,tidx)

The coefficients of the covariance matrices (and not their Cholesky factor) are returned in

the matrix Pmat. The format of this matrix will also be explained in the following section.

If the noise processes have mean values different from 0, these can of course be sub-
tracted at the appropriate places in the functions myxfunc and myyfunc. They can
also be passed to the filter functions through the optional data structure ’optpar’. For
example,

[xhat,Smat]=dd2(’myxfunc’,’myyfunc’,x0,P0,Q,R,u,y,tidx,optpar);

8 CHAPTER 2. USER’S GUIDE

optpar contains up to three fields: optpar.vmean is the mean of process noise vector and
optpar.wmean is the mean of measurement noise vector. optpar.init can be included
if there are any initial parameters for the user-written m-functions. optpar.init can
be either a vector or a matrix. Upon call of the filter functions, optpar.init will be
passed as the first argument to the user’s functions in the initialization process prior to
the actual filtering, e.g., myxfunc (opt.init)

2.4 Analyzing the Results

The performance of the filters can be evaluated with the function kalmeval. This func-
tion calculates the output estimates and compares these to the actual observations. Ad-
ditionally, it plots the state estimates along with three times their (estimated) standard
deviations. For the DD2 filter, the function is called as follows:

[yhat ,RMS]=kalmeval(’dd2’,’myyfunc’,R,xhat,Smat,y,tidx,optpar)
and similarly for the DD1 filter. RMS is the RMS error between observations and predic-

tions.

To evaluate the extended Kalman filter, the function is called as follows (notice that
Pmat is passed instead of Smat):

[yhat ,RMS]=kalmeval(’ekf’,’myyfunc’,R,xhat,Pmat,y,tidx,optpar)

If you would like to take a closer look at the covariance estimates, four functions are
available to accommodate this. Two of the functions are used together with the DD1
and DD2 filters. These filters works on Cholesky factors of the covariance matrices and
not on the covariance matrices themselves. If the covariance matrix is denoted P, the
Cholesky factor, S, is an upper triangular matrix with the property

pP=gs"

For sample no. k, the elements of S(k) are stored in row k + 1 of the matrix, Smat:

S Sz S13 : :
S(k)=1 0 Syp S — Smat=| S11 Si2 Si3 S22 Sz S33
0 0 Ss3 .)

With the function smat2cov it is possible to extract the covariance matrix at a specific
sample number:

P = smat2cov(Smat,k+1)
extracts the covariance matrix at time & (recall that the estimates for k=0 are stored in

the first row).

The function smat2var uses Smat to calculate the variance of each state estimate, i.e.,
the diagonal of the covariance matrix:

2.5, HOW TO HANDLE MULTIPLE OBSERVATION STREAMS 9

V = smat2var(Smat)

The first column contains the variance estimates for the first state, etc.

To extract the covariances estimated by the extended Kalman filter, two similar func-
tions are available. mat2cov takes Pmat as input and returns the covariance matrix at a
specified sample number. The format of Pmat is shown below. If P(k) is the covariance
matrix at time k£ then row k£ 4 1 of Pmat is organized as follows:

Py P2 P : :
P(k)=| P12 Py Pss — Pmat=| P11 P P13 Py Py Ps
Pi3 P3 Ps3) i

P(k) is extracted by
P = mat2cov(Pmat,k+1)

The function mat2var works the same way as smat2var except that it takes Pmat as
input.

2.5 How to Handle Multiple Observation Streams

In some applications one might receive the observations from different sensors, and it is
often reasonable to assume that these are independent. In this case we can talk about
multiple observation streams. If all observations are available at every sampling instant
the regular filters can be used. If the observations in the different streams do not occur
simultaneously, you should instead use the special versions of the filters that have been
designed for this specific application. It is now assumed that the model has the form:

Ter1 = [(2, up,vi)
yl(:) — 4 (xk’wl(cl))

(" : g™ (f’fkawz(cn)>

An m-function for each output equation must be written, conforming to the format
discussed previously. The call of the filter function (in this case the DD2 filter) looks
pretty much the same as before. If there are two observation streams the call is

[xhat,Smat]=dd2m(’myxfunc’,{’myyfuncl’, ’myyfunc2’},x0,P0,Q,{R1,R2}, ...
u,{y,y2},{tidx1,tidx2})

The so-called cell structure is used two wrap the multiple instances of function names,
measurement noise covariances, observation matrices, and time stamp vectors into com-
mon arguments.

Similar extensions are available for the DD1 filter (ddim) and the EKF (ekfm).

10

CHAPTER 2. USER’S GUIDE

Chapter 3

Working with the MEX-files

With a little extra effort one can experience a tremendous increase in execution speed by
using the MEX alternatives to the m-functions. It requires some knowledge about the C
programming language, but typically a superficial knowledge will be enough. The MEX
alternative is only available for the DD1 and DD2 filters as the increase in execution
speed is particularly pronounced for these.

Whereas before one had to write m-functions containing state and output equations,
in the MEX case it is necessary to write similar functions in C. As a prototyping stage
it is always a good idea to start out in MATLAB. When things are working here you
can “translate” the m-functions into C and use the MEX functions. Although it seems
like having to do the work twice, overall it might save you time as in MATLAB it is
relatively easy to make things right the first time. The MATLAB solution can then be
used for debugging the C implementation.

It is recommended to complement the description provided in the following with a look
in the demonstration functions located in the “Demo” subdirectory.

3.1 A Few Details You Should Know

The MEX files operate on a special matrix format for storage of vectors and matrices.
In the C code a “matrix” will be pointer to a data structure. A new matrix is declared
by:

matrix *M;
and later memory for the matrix is allocated with
M = mmake(rows,columns) ;

The data structure contains three variables: number of rows (M->row), number of columns
(M->col) and a pointer to an array that contains pointers to the memory locations where
each row is stored (the content of M->mat [0] points to the first element in the matrix).

11

12

CHAPTER 3. WORKING WITH THE MEX-FILES

Now things start sounding a little technical, but you do not really need to understand
this completely. A number of C macros and functions are available to assist you when
operating on matrices (and vectors):

macros functionality

rows = nof_rows(M); Number of rows in matrix.

columns = nof_cols(M); Number of columns in matrix.

len = vec_len(V); Length of vector (matrix with one row/col.).
value = get_val(M,r,c); | Get element (r,c) from matrix.
put_val(M,r,c,value); Insert 'value’ in element (r,c).

value = cvget(V,r) Get the rth element from a column vector.
value = rvget(V,c) Get the cth element from a row vector.
function name functionality

M = mmake (rows,columns); | Allocate matrix of the specified size.
mfree (M) ; Free the memory allocated to the matrix.
mprint (M) ; Display the matrix.

minit (M) ; Initialize all matrix elements to 0.
madd(A,B,C); Add two matrices, A= B+ C.

mset (A,B); Copy a matrix, A = B.

3.2 Step 1: Writing State and Output Equations in C

Like in the MATLAB case you must write separate functions for state equation and

observation equation(s).

function.

3.2.1

State Equation

/* Function prototype */

Let us first take a look at the format for the state equation

int myxfunc(matrix#*, matrix*, matrix*, matrix*, int);

/* The state equation function */

int myxfunc(matrix *xbar, matrix *xhat, matrix *u, matrix *v, int flag)

/* Variable declarations */

int a, b, c;

double d, e, f;
static int h, 1, j;
static matrix *M, *N;

/* Initializations */
if (flag == -1){

3.2. STEP 1: WRITING STATE AND OUTPUT EQUATIONS IN C 13

. Initialize static variables
return O;

/* Clean up */

else if (flag == -2){
. free matrices that you might have allocated
return O;
3
/* Normal call of function */
else{
. Perform state update (insert in xbar)
return O;
}

Dissection of the function

Except for the function and variable names, which can be arbitrary, the function call
must have exactly the above format. xbar is the a priori state estimate; i.e., the output
of the function. xhat is the previous state estimate, u is the input (it must be included
in the argument list, but it does not have to be used), and v is the process noise. All
four arguments to the function are column vectors; i.e., matrices with one column.

The last argument, flag, is used for specifying whether the function is called in “initial-
ization mode”, in “clean up mode”, or in “filtering mode”. The modes are explained below:

Initialization mode

The function is called once in this mode prior to the filtering. It is included because
often it is useful to remember certain parameters, vectors, matrices, etc, from one call
to another rather than having to recalculate them at every sample. In particular, this
section is used for vector/matrix allocations (call of the mmake function). As mmake per-
forms a dynamic memory allocation this is not something one should carry out at every
sample. Variables that are to be remembered from call to call should be declared “static”.

If you wish to pass certain parameters to the function upon filtering (in contrast to
hard coding all the information), the filter function has an optional argument, which can
be used for passing such parameters. This argument must be a matrix, and it will be
passed to the function through the first argument (xbar) during initialization.

Clean up mode

The function will be called in this mode just before termination of the filter function. If
you have dynamically allocated memory for matrices or arrays, this is place to free the
memory. In principle MATLAB will do this for you, but in the manual they recommend

14 CHAPTER 3. WORKING WITH THE MEX-FILES

that you do it yourself as this will be faster. Matrices allocated with mmake are deallo-
cated with the mfree command.

Filtering mode
In this section of the function the actual state update is placed. The updated states are
placed in the first vector in the argument list (xbar).

3.2.2 Observation Equation

The observation equation has a similar format:

/* Function prototype */
int myyfunc(matrix*, matrix*, matrix*, int);

/* The state equation function */
int myyfunc(matrix *ybar, matrix *xbar, matrix *w, int flag)

{

/* Variable declarations */

/* Initializations */

if (flag == -1){
. Initialize static variables
return O;

/* Clean up */

else if (flag == -2){
. free matrices that you might have allocated
return O;
}
/* Normal call of function */
else{
. Calculate output estimate (insert in ybar)
return O;
}

For applications with multiple observation streams the output function must be aug-
mented to handle this. This is different from the MATLAB case where a separate
function was written for each output stream.

/* Normal call of function */
else if (flag == 0){
. Calculate output estimate for stream 1

3.3. STEP 2: MODIFYING THE TEMPLATE AND COMPILE THE FUNCTION15

return O;
}
else if (flag == 1){
. Calculate output estimate for stream 2
return O;

3.3 Step 2: Modifying the Template and Compile the Func-
tion

Before preparing the actual filtering you might want to check that the functions will in
fact produce the expected results. To do this you must first place the functions described
above in the same file (place both prototype declarations in the top). Next you must
copy the test template file xytest.c located in the Kalmtool directory to a new name,
e.g., my_xytest.c. Open the file in an editor. In the top of the file the are three "define"
statements: KALMFILE, XFUNC, and YFUNC. After KALMFILE you write the name of the file
containing your functions, after XFUNC you write the name of the state equation function,
and after YFUNC you write the name of the output equation function:

#define KALMFILE "myfile.c"
#define XFUNC myxfunc
#define YFUNC myyfunc

The file is compiled by issuing the MATLAB command mex. The compilation depends
on the platform you are working on and the compiler available:

>> mex my_xytest.c kalmlbbc.obj % PC/Windows, Borland (5.2)
>> mex my_xytest.c kalmlbwc.obj % PC/Windows, Watcom (11.0)
>> mex my_xytest.c kalmlbms.obj % PC/Windows, Microsoft (VS 6.0)
¢ kalmlblx.o % PC/Linux
c

, HP 9000/735

>> mex my_xytest.

=

>> mex my_xytest.c kalmlbhp.o

If the function compiled without problems you can now evaluate your functions with the
statement:

>> [yout,xout] = my_xytest(x,u,ny,v,w,init);

x is a state vector, u is an input, ny is the number of outputs (the dimension of the
output vector), v is a process noise vector, and w is an observation noise vector. init is
a vector or matrix with possible parameters you might want to pass to the function for
initialization purposes. Use [] if you do not wish to pass anything.

If your functions behave correctly your next move is to select a filter function. Four
templates are available: ddic.c ddimc.c, dd2c.c, and dd2mc.c. Make a copy of the
template corresponding to the filter function you wish to use, open the file in an editor
and modify the define statements in the top of the file as explained above. The filter
function can now be compiled:

16

>>
>>
>>
>>
>>

mex
mex
mex
mex
mex

myddfilter.
myddfilter.
myddfilter.
myddfilter.
myddfilter.

CHAPTER 3. WORKING WITH THE MEX-FILES

kalmlbbc.
kalmlbwc.
kalmlbms.
kalmlblx.
kalmlbhp.

obj
obj
obj
0
0

h
h
h
h
h

PC/Windows, Borland (5.2)
PC/Windows, Watcom (11.0)
PC/Windows, Microsoft (VS 6.0)
PC/Linux

HP 9000/735

3.4 Step 3: Calling the Filter Routines

The MEX function is now ready to be called from MATLAB. The call is almost the same
as when you call the m-function counterpart. The main difference is that you should not
call the function with the covariance matrices, but with a root, S, for which P = SS™
(not necessarily a Cholesky factor).

>>
>>
>>
>>

>>

Sv
Sw

chol(Q)’;
sqrtm(R) ;

[v,d] = eig(PO);

Sx0

real (v¥sqrt(d));

[xhat,Smat]=myddfilter(x0,S5x0,Sv,Sw,u,y,tidx,optidx);

For illustration purposes three different ways to factorize the covariance matrices have
been shown above. You can use any which one you prefer.

To evaluate the result of the filtering you can use the MATLAB functions described
previously.

Chapter 4

Two Examples

Finally it’s time for some good clean family entertainment you can trust... Two demon-
stration examples are provided to illustrate how to work with the filters. In the first
example the filters are applied to a real data set collected on an autonomous guided
vehicle (AGV). The second example is a simulation study of a falling body; an often-
used benchmark example for evaluation of nonlinear filter designs. Not all details will
be given, and the user is encouraged to open the demos in an editor and take a look at
their implementation. The implementations are by no means optimal; their purpose is
to show the user different ways in which things can be implemented.

4.1 Pose Estimation and Calibration of an AGV

In this example we will consider a data set collected by an autonomous guided vehicle
(a so-called AGV). The purpose is to estimate the position and orientation (the pose)
of the vehicle relative to a pre-selected coordinate system in the room where the vehicle
is located. The vehicle has three wheels. Two driving wheels in the front and a castor
wheel in the back. The vehicle is equipped with wheel encoders for measuring the turn-
ing angle of each of the driving wheels, and a CCD-camera for detecting simple guide
marks placed on the walls in the room. Moreover, a camera has been mounted to the
ceiling and tracks two diodes placed on top of the vehicle.

We will work with a so-called encoder model of the vehicle. The encoder readings are
used as inputs to the model, and the pose is the output:

z(k+1) = xz(k)+scos¢
ylk+1) = y(k)+ ssing
Ok+1) = 60(k)+2t

where
o = O0(k)+t

17

18 CHAPTER 4. TWO EXAMPLES

K

s = 5 [rrui (k) + rug (k)]

K

t = 25 [rru (k) — rpug (k)]

r and 7; are the wheel radii and B is the distance between the wheels. k is a constant
1
relating to the encoder gain (kep. and the gear (N), k = .
k@nCN

The model is quite accurate but generally one will encounter a certain drift. The main
reason for this is that wheel radii and distance between wheels are known only with a
limited accuracy. Typically, the initial pose will not be known exactly either. As an
absolute measure of the pose we therefore use the camera sensors. To demonstrate the
regular filter functions only the camera in the ceiling is used. Subsequently these obser-
vations will be supplemented with the observations from the camera on board the vehicle
to demonstrate how to handle multiple observation streams. The encoders are sampled
with 40 msec intervals. The camera observations are not available with regular intervals
as the time spent on image processing varies.

Because the camera in the ceiling has a relatively limited view, the data are recorded by
controlling the vehicle with small jerks in a joystick.

We consider the joint state and parameter estimation problem. Along with the pose
we estimate the wheel radii and distance between the wheels. The dimension of the
state vector is therefore 6:

[z] [z] [position i z direction
o Y position i y direction
zz3 | | 0| _ orientation
xqa | | e | radius of right wheel
s 7] radius of left wheel

| 76 | L b | | distance between wheels |

z1(k+1) = z1(k)+ scos¢
zo(k+1) = zo(k)+ ssing
Ig(k‘ + 1) - Ig(k‘) + 2t
$4(k‘ + 1) = $4(k‘) + ’Ug(k‘)
I5(k‘ + 1) = I5(k‘) + ’U4(k‘)
IG(k' + 1) = IG(k') + ’U5(k‘)

where

4.2. THE FALLING BODY BENCHMARK EXAMPLE 19

t = - [£4(k)t1 (k) — 25 (k)T (F)]
Uy (k) = ul(k) + v (k)
’UQ(k) = UQ(k) + Uz(k)

The image processing routine associated with the camera in the ceiling returns the pose;
thus we have three observations:

yi(k) = x1(k) +wi (k)
y2(k) = x2(k) + wa(k)
y3(k) = x3(k) + ws(k)

Open the file agvdemo located in the Demo subdirectory in an editor and take a look
at the implementation and the calls of the different filter functions.

4.2 The Falling Body Benchmark Example

This famous benchmark has been considered in several publications. It will be a good
idea to consult

M. Athans, R. P. Wishner, and A. B. Bertolini: Suboptimal state estimation for continuous-
time nonlinear systems from discrete noisy measurements. IEEE Transactions on Auto-

matic Control, AC-13(5):504-514, Oct. 1968.

for a description of the example. The fall of the body can be described by the two

RANGE, r

RADAR

ALTITUDE, z;

Figure 4.1: Geometry of the vertically falling body problem.

differential equations (4.1),(4.2). z3 represents a ballistic coefficient which we assume
unknown and therefore wish to estimate simultaneously with the altitude and velocity of
the body. The radar measures the range (r). The measurements appear with intervals
of 1 second and are affected by additive white Gaussian noise.

20 CHAPTER 4. TWO EXAMPLES

The model is the following:

i‘l(t) = —:EQ(t) (4.1)
io(t) = —e "™ Wgy(t)2z5(t) (4.2)
3(t) = 0 (4.3)

Yp = Tk+wk=\/M2+(fE1,k—H)2+wk (4.4)

The model parameters are given by:

M = 100,000 ft
H = 100,000 ft
v = 5x107°
Ew?] = 10*ft?
and the initial state of the system is
z1,0 = 300,000 ft
20 = 20, 000 ft/S
T30 = 1073

Due to the nature of the problem it is common practice to employ a continuous-discrete
filter implementation. The state equations (4.1)-(4.3) are integrated using a fourth order
Runge-Kutta method with 64 steps taken between each observation. It is straightfor-
ward to implement continuous-discrete versions of the DD1 and DD2-filter as there is
no process noise. The above mentioned paper describes the implementation of the EKF
and the (modified Gaussian) second order filter for the considered application.

The following initialization of state estimates and covariance matrix is used:

#10 = 300,000 ft

(i‘g,o = 20, 000 ft/S

#30 = 3x107°
) 108 0 0
PO)=] 0 4x105 0

0 0 10~*

To enable a fair comparison of the estimates produced by each of the filters, the estimates
are averaged across a Monte Carlo simulation consisting of 50 runs. Each run is carried
out with a different noise sample.

Open the script falldemo in an editor to study the implementation and filter calls.

Chapter 5

Reference

Filter Functions

dd1l DD1 filter.

ddlm DD1 filter for systems with multiple observation streams.

dd2 DD2 filter.

dd2m DD?2 filter for systems with multiple observation streams.

ekf Extended Kalman filter.

ekfm Extended Kalman filter for systems with multiple
observation streams.

MEX files
ddlc C-Mex counterpart to the ’dd1’ function.
dd1lmc C-Mex counterpart to the ’dd1m’ function.
dd2c C-Mex counterpart to the ’dd2’ function.

dd2mc C-Mex counterpart to the ’dd2m’ function.
kalmlb** Object file that must be linked with the mex files.
xytest Test C-functions before the filtering is performed.

21

22

CHAPTER 5. REFERENCE

Utilities

kalmeval Evaluate filter performance.

mat2cov Extract covariance matrix from vector containing
the upper triangular elements.

mat2var Extract variance estimates from matrix containing
covariance estimates.

smat2cov restore covariance matrix from vector of Cholesky
factor elements.

smat2var Calculate variance estimate for each state from the
Cholesky factored covariance matrices.
covariance estimates.

triag Triangularization with Householder transformation.

Demonstrations

agvdemo Position and orientation estimation and calibration
of an AGV.

falldemo Falling body example (a continuous-time example).

demomex Generates MEX files to speed up the demonstrations.

23

dd1

Purpose

State estimation with the DD1 filter.

Synopsis

[xhat,Smat]=dd1 (xfunc,yfunc,x0,P0,Q,R,u,y,tidx)
[xhat,Smat]=dd1 (xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd1l uses the DDI1 filter to estimate the states for a nonlinear system. The
model of the system must be specified in the form:

Tpp1 = f (2, up,vp)
ye = g (zg,wy)

where z is the state vector, u is a possible input, and v and w are (white) noise
sources. Each of the two equations must be written in an m-function.

The arguments to the dd1 function are explained below:
xfunc Name of file containing the state equation.
yfunc Name of file containing the output equation.

%0 Initial state estimate.
PO Initial covariance matrix (symmetric, nonnegative definite).
Q,R Covariance matrices for v and w, respectively.
u Input signal. Dimension is [samples x inputs].

Use [| if there is no input.
y Output signal. Dimension is [observations x outputs].
tidx Vector containing time stamps (in samples) for the

observations in y.
optpar Data structure containing initialization parameters (optional).
optpar.vmean: Mean of process noise vector (default is 0).
optpar.wmean: Mean of measurement noise vector (default is 0).
optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).

24

dd1

CHAPTER 5. REFERENCE

The function returns the state estimates and the Cholesky factored covariance
matrices for the state estimation errors. If the final time is k=samples, yhat
and Smat will have samples+1 rows. The first row contains the initial estimates,
i.e., the estimate at time k=(0. The estimates will be a posteriori estimates at
the sampling times for which an observation is available. At the remaining
sampling times, the a priori estimates are provided.

dd1l works on Cholesky factors of the covariance matrices and not on
the covariance matrices themselves. If the covariance matrix is denoted P, the
Cholesky factor, S, is an upper triangular matrix with the property

pP=5s"

For sample no. k, the elements of S(k) are stored in row k + 1 of the returned
matrix, Smat:

St Sz Si3 : :
S(k) = 0 Sz So3 — Smat= | Si1 Si2 Siz S S23 S33
0 0 Ssi3 . .

With the function smat2cov it is possible to extract the covariance matrix at
a specified sample number.

The function smat2var uses Smat to calculate the variance of each state
estimate, i.e., the diagonal of the covariance matrix.

In order to compare output estimates with observations of the output,
use the function kalmeval.

25

dd1

How to write the m-functions

Each of the functions whose names are specified in xfunc and yfunc must have
the appropriate structure. This is explained below:

xfunc

Assume xfunc=’myxfunc’:

function xout=myxfunc(x,u,v)
% Make variables static
persistent myparl mypar2;

% Check if variables should be initialized
if nargin==1,

myparl = x(1)*0.5 + x(2);

mypar2 = 75%x(3);

return
end

% A priori update of states

xout = zeros(3,1);

xout (1) = x(1) + mypar2xcos(x(2)+u(1)*v(1));
xout(2) = x(3) + mypar2*cos(x(2)+u(2)*v(2));
xout(3) = myparixx(1) + v(3);

Dissection of the function

The header must always look like this: function xout=myxfunc(x,u,v)

The function and variable names are unimportant, but the function must
always take 3 arguments and return one output. The arguments, which should
be (column) vectors, are the current state estimate, control input, and process
noise (in that order). The function should output the a priori state update.
Argument 2 and 3 must be present even if there are no inputs or process noise.

By using the persistent declaration, a feature which was introduced in
MATLAB 5.2, it is possible to maintain parameters from one call to another.
This is convenient as one can initialize certain parameters before the filtering.

26

dd1

CHAPTER 5. REFERENCE

There should always be an initialization section in the function. This must take
the form

if nargin==1,
. do initialization stuff
return
end

Before the actual filtering is performed, myxfunc will be invoked as
myxfunc (opt.init). Thus, by specifying parameter initializations in
opt.init, these parameters are passed to the function through the argument
x. The section must be included even if there are no such intializations. In this
case, it should just include the return statement.

The last part of the function is the actual state update. If x is not also
used as the return variable, make sure that the returned variable is a column
vector.

yfunc

The output equation is written in an m-function in a similar way:

function y=myyfunc(x,w)
% Make variables static
persistent mypar3

% Check if variables should be initialized
if nargin==

mypar3=x(4) ;

return
end

% Calculate output estimate
y = mypar3*x.*x+w;

The function should take two arguments: the state vector and the measurement
noise vector. Apart from that, the function has the same structure as zfunc.

27

dd1

Algorithm

The DDI1 filter is based on first-order polynomial approximations of the
nonlinear mappings. The approximations are derived by using a multivariable
extension of Stirling’s interpolation formula. The filter is described in:

M. Ngrgaard, N.K. Poulsen, O. Ravn: Fasy and Accurate State FEstima-
tion for Nonlinear Systems, 14th IFAC World Conference in Beijing, China,
July 5-9, 1999, pp. 343-348.

and much more thoroughly in: M. Ngrgaard, N.K. Poulsen, O. Ravn:
New Developments in State Estimation for Nonlinear Systems, to be published
in Automatica.

A similar, but slightly simpler, filter is described in:
Tor S. Schei: A Finite-Difference Method for Linearization in Nonlinear
Estimation Algorithms, Automatica, Vol. 33, No. 11, 1997, pp. 2053—2058.

See Also
ddim, ddic

28 CHAPTER 5. REFERENCE

dd1lm

Purpose

DD1 filtering for systems with multiple observation streams.

Synopsis

[xhat,Smat]=ddim(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)
[xhat,Smat]=ddim(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd1lm uses the DDI1 filter to estimate the states for a nonlinear system. The
model of the system must be specified in the form:

Ter1 = f (zp, uk, vg)
y](cl) — 4 (wk,w,(cl))

vy) g™ (ok,wf)

where z is the state vector, u is a possible input, and v and w are (white)
noise sources. Each of the equations must be written in an m-function. The
arguments to the dd1m function are explained below:
xfunc Name of file containing the state equation.
yfunc Cell structure containing in each cell the name of a
file containing an output equation. Dimension is n

x0 Initial state estimate.

PO Initial covariance matrix (symmetric, nonnegative definite).

Q Covariance matrices for v.

R Cell structure containing the covariance matrices for w®) — w(™

u Input signal. Dimension is [samples x inputs|. Use [| if there is no input.
y Cell structure containing in each cell a matrix with output

signals, y) — 4™ Dimension of each cell is
[observations-in-stream X outputs-in-stream|.
tidx Cell structure containing in each cell a vector of time
stamps (in samples) for the corresponding observations.
optpar Data structure containing initialization parameters (optional).
optpar.vmean: Mean of process noise vector (default is 0).
optpar.wmean: Cell structure with means of measurement noise vectors (def. 0).
optpar.init: Initial parameters for the functions in xfunc and yfunc.

29

dd1lm

The function returns the state estimates and the Cholesky factored covariance
matrices for the state estimation errors. If the final time is k=samples, yhat and
Smat will have samples+1 rows. The first row contains the initial estimates, i.e.,
the estimate at time k=0. The estimates will be a posteriori estimates at the
sampling times for which an observation is available. At the remaining sampling
times, the a priori estimates are provided. See dd1 for details on how to write
the state and output equations in m-functions.

See Also
dd1, ddlmec

30 CHAPTER 5. REFERENCE

dd2

Purpose
State estimation with the DD2 filter.

Synopsis
[xhat,Smat]=dd2(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)
[xhat,Smat]=dd2 (xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description
dd2 uses the DD2 filter to estimate the states for a nonlinear system. The
model of the system must be specified in the form:

i1 = f(@k, wk, vk)
ye = g(zk,wy)

where z is the state vector, u is a possible input, and v and w are (white) noise
sources. Each of the two equations must be written in an m-function.
Read the section about the ddl function to see what the arguments for
dd2 are, and to see the format of the returned variables.

Algorithm
The DD2 filter is based on second-order polynomial approximations of
the nonlinear mappings. The approximations are derived by using a mul-
tivariable extension of Stirling’s interpolation formula. The filter is described in:
M. Norgaard, N.K. Poulsen, O. Ravn: FEasy and Accurate State FEstima-
tion for Nonlinear Systems, 14th TFAC World Conference in Beijing, China,
July 5-9, 1999, pp. 343-348.
and much more thoroughly in: M. Ngrgaard, N.K. Poulsen, O. Ravn:
New Developments in State Estimation for Nonlinear Systems, to be published
in Automatica.

See Also

dd1, dd2m, dd2c

31

dd2m

Purpose

DD2 filtering for systems with multiple observation streams.

Synopsis
[xhat,Smat]=dd2m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx)
[xhat,Smat]=dd2m(xfunc,yfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

dd2m uses the DD2 filter to estimate the states for a nonlinear system. The
model of the system must be specified in the form:

Ter1 = f (zp, uk, vg)
y](cl) — 4 (wk,w,(cl))

vy) g™ (ok,wf)

where z is the state vector, u is a possible input, and v and w are (white) noise
sources. FEach of the equations must be written in an m-function. The arguments
to the dd2m function are explained in the section covering the dd1m function.

See Also
dd1lm, dd2, dd2mc

32 CHAPTER 5. REFERENCE

ekf

Purpose

State estimation with the extended Kalman filter (EKF).

Synopsis

[xhat ,Pmat]=ekf (xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx)
[xhat ,Pmat]=ekf (xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

ekf uses the extended Kalman filter to estimate the states for a nonlinear system.
The model of the system must be specified in the form:

Tpp1 = f (2, up,vp)
ye = g (zg,wp)

where z is the state vector, u is a possible input, and v and w are (white) noise
sources. Each of the two equations must be written in an m-function.

The arguments to the ekf function are explained below:

xfunc Name of file containing the state equation.
yfunc Name of file containing the output equation.
linfunc Name of file containing the linearization procedures.
x0 Initial state estimate.
PO Initial covariance matrix (symmetric, nonnegative definite).
Q,R Covariance matrices for v and w, respectively.
u Input signal. Dimension is [samples x inputs].
Use [| if there is no input.
y Output signal. Dimension is [observations X outputs].
tidx Vector containing time stamps (in samples) for the

observations in y.
optpar Data structure containing initialization parameters (optional).
optpar.vmean: Mean of process noise vector (default is 0).
optpar.wmean: Mean of measurement noise vector (default is 0).
optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).

ekf

33

The function returns the state estimates and covariance matrices for the state
estimation errors. If the final time is k=samples, yhat and Pmat will have
samples+1 rows. The first row contains the initial estimates, i.e., the estimates
at time k=0. The estimates will be a posterior: estimates at the sampling times
for which an observation is available. At the remaining sampling times, the a
priori estimates are provided.

In order to reduce the amount of memory required for storage, only the
elements corresponding to the upper triangular part of the covariance matrices
are stored in Pmat (a covariance matrix is always symmetric). If P(k) is the
covariance matrix at time k then row k + 1 of Pmat is organized as follows:

Py P2 Pr3 : :
P(k)=| Pia Py Ps3 — Pmat=| Pi1 P Pi3 Py Py3 Ps3
Pz Pz Ps3 : :

With the function mat2cov it is possible to extract the covariance matrix at a
specified sample number.

The function mat2var extracts the variance estimates from Pmat, corre-
sponding to the diagonal of each covariance matrix P(k), k=0,...,N.

In order to compare output estimates with observations of the output,
use the function kalmeval.

34 CHAPTER 5. REFERENCE

ekf

How to write the m-functions
Each of the functions whose names are specified by xfunc, yfunc, and 1infunc
must have the appropriate structure. In the section covering the function dd1 it
is explained how to write the two former functions. Below, an example describing
the structure of the linearization function is given (for a nonsense system). The
following notation is used:

Tpt1 N f(:i‘k,uk,f)k) + A(/{:)(IL‘k — ik) + F(/{:)(’Uk — T)k)
ye = g9(@g,wr) + C(k) (@ — zk) + G (k) (wg, — wy)

where
o af(wauka,ak) 8f(£f3k,Uk,U)
A(k) aw oy F(k) - a,u —
dg(x,w 09(Zp,w
T=T} W=wk
linfunc

Assume linfunc=’my_linfunc’:

function [M,N]=my_linfunc(x,u,vw,flag)
% Make variables static
persistent myparl mypar?2;

% Check if variables should be initialized
if nargin==1,

myparl = x(1)*0.5 + x(2);

mypar2 = 75*x(3);

A0 = diag([1 11);
FO = zeros(2,2);
Co = [1 0];

GO = [1;

return

end

ekf

35

% Linearize state equation
if flag==0,
M = AO;
M(1,2) = myparl*(sin(x(1)*u(1)) + x(2)*u(2));

N = FO;
N(1,1) = mypar2/x(2);
N(2,2) = x(1)*x(2);

% Linearize output equation
elseif flag==1,

M=CO;

N=GO;
end

Dissection of the function

The header must always look like this:
function [M,N]=my_linfunc(x,u,vw,flag)

The function and variable names are unimportant, but the function must
always take 4 arguments and return two outputs. The arguments, three
(column) vectors and an integer, are the current state estimate, control input,
process noise or measurement noise, and a flag (in that order). If flag=0
then vw is process noise and the function should linearize the state equation
and return the matrix A in M and the matrix F in N. If flag=1 then vw is
measurement noise and the function should linearize the output equation and
return the C in M and G in N.

Argument 2 and 3 must be present even if there are no inputs or no pro-
cess/measurement noise.

By using the persistent declaration, a feature which was introduced in
MATLAB 5.2, it is possible to maintain parameters from one call to another.
This is convenient as one can initialize certain parameters before the filtering.

36 CHAPTER 5. REFERENCE

ekf
There should always be an initialization section in the function. This must take
the form
if nargin==1,

. do initialization stuff
return
end
Before the actual filtering is performed, my_linfunc will be invoked as
my_linfunc(opt.init). Thus, by specifying parameter initializations in
opt.init, these parameters are passed to the function through the argument
x. The section must be included even if there are no such intializations. In this
case it should just include the return statement.
The remaining part of the function contains the actual linearizations.
Notice that if the certain elements in the matrices are constant, one can set the
constant elements in the initialization section of the function (A0, CO0, etc). If
one of the noise matrices (F', G) equals the identity matrix, it is recommended
to set it to the empty matrix, [], in which case one can reduce the number of
computations performed in the filtering.
Algorithm
The extended Kalman filter is based on first-order Taylor approximations of
the nonlinear mappings. The EKF is described in, e.g.,
M. S. Grewal & A. P. Andrews: Kalman Filtering: Theory and Practice,
Prentice Hall, 1993.
F. L. Lewis: Optimal Estimation, John Wiley & Sons, 1986.
See Also

ekfm, dd1

37

ekfm

Purpose

Extended Kalman filtering for systems with multiple observation streams.

Synopsis

[xhat,Smat]=ekfm(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx)
[xhat,Smat]=ekfm(xfunc,yfunc,linfunc,x0,P0,Q,R,u,y,tidx,optpar)

Description

ekfm uses the Extended Kalman Filter (EKF) to estimate the states for a
nonlinear system. The model of the system must be specified in the form:

ey = f (2, ug, vr)
y]gl) = 40 (xk’w£1)>

y ™ : g™ (xk wén))

where z is the state vector, u is a possible input, and v and w are (white)
noise sources. Each of the equations must be written in an m-function. The
arguments to the ekfm function are explained in the section covering the dd1m
function. The difference from the call of dd1m is that it is necessary to write a
file containing the linearizations. It was described under ekf how to do this. In
the multi-stream case, the file must have a slightly different structure, though.
An example of the structure is given below:

38 CHAPTER 5. REFERENCE

ekfm

linfunc

Assume linfunc=’my_linfunc’:

function [M,N]=my_linfunc(x,u,vw,flag)
% Make variables static

% Check if variables should be initialized
if nargin==1,

return
end

% Linearize state equation
if flag==0,

M= ..

N=..

% Linearize output equation 1
elseif flag==1,

% Linearize output equation 2
elseif flag==2,

Dissection of the function

The variable flag is used for pointing out which linearization to perform. If
flag=0 the linearization of the state equation should be returned. If flag=1
the linearization of the first output equation should be returned. If flag=2 the
linearization of the second output equation should be returned, and so forth.

ekfm

39

See Also
dd1lm, ekf.

40 CHAPTER 5. REFERENCE

kalmeval

Purpose

Evaluate filter performance.

Synopsis

[yhat ,RMS]=kalmeval(’method’,yfunc,R,xhat,PS,y,tidx)
[yhat ,RMS]=kalmeval(’method’,yfunc,R,xhat,PS,y,tidx,optpar)

Description

kalmeval estimates the output, y, based on the state estimates obtained from
the filtering. The function plots the observed and estimated outputs as well as
the state estimates along with 3 times their standard deviations.

The function assumes the (nonlinear) output equation

ye = g (zg, wy)

is available, where z is the state vector and w is (white) measurement noise.
The equation must be written in an m-function. The arguments to the
kalmeval function are explained in the section covering the dd1 function.

The arguments to the kalmeval function are explained below:
method Filter method (’ekf’, ’dd1’, ’dd2’; ’ekfm’, ’dd1m’, ’dd2m’).
yfunc Name of file containing the output equation.

R Covariance matrix for the measurement noise. Only used
if method='dd2’ or ’dd2m’.

xhat State estimates. Dimension is [samples+1 x states].

PS Matrix where each row contains elements of (the upper

triangular part of) the Cholesky factor of the covariance
matrix (dd1, dd2, dd1m, dd2m) or the covariance matrix
(ekf, ekfm). The dimension is [samples+1 X
0.5*states™(states+1)].
y Output signal. Dimension is [observations x outputs].
tidx Vector containing time stamps (in samples) for the
observations in y.
optpar Data structure containing initialization parameters (optional).
optpar.vmean: Mean of process noise vector (default is 0).
optpar.wmean: Mean of measurement noise vector (default is 0).
optpar.init: Initial parameters for xfunc, yfunc (arbitrary format).

41

kalmeval

The section covering the dd1 filter explains how to write the function yfunc.
This section also explains the format of the matrix PS. See also ekf.

In case of multiple observation streams (ddlm, dd2m, ekfm), the arguments
yfile, R, y, tidx, and optpar.wmean must be cell structures.

The function returns the output estimates through the argument yhat,
which is a matrix of dimension [samples x outputs|. The output argument RMS
is a vector containing the RMS error between observations and estimates of
each output.

42 CHAPTER 5. REFERENCE

mat2cov

Purpose

Extract covariance matrix from vector of upper triangular elements.

Synopsis

P = mat2cov(Pvec) returns the (quadratic) covariance matrix when given a
vector containing the upper triangular elements.

P = mat2cov(Pmat,k) extracts the kth row from the matrix of vectors,
Pmat. The vectors of upper triangular elements must be organized row wise in
Pmat.

Description

The matrix Pmat is an output argument from the functions ekf and ekfm. If
P(k) is the covariance matrix at time & then row &k + 1 of Pmat is organized as

follows:
Py P P : :
P(k)=| P12 Py Ps3 — Pmat=| P11 Pig P13 Py Py Ps3
Pi3 Pz Ps3 : :

The purpose of mat2cov is to extract the specified row from Pmat and restore
the proper format of the covariance matrix.

See Also

ekf, ekfm, mat2var

43

mat2var

Purpose

Extract variance estimates from matrix of covariance estimates.

Synopsis

varmat = mat2var(Pmat)

Description

mat2var extracts the variance estimates (corresponding to the diagonals of
the covariance matrices) from a matrix for which each row contains the upper
triangular elements of a covariance matrix.

See Also

ekf, ekfm, mat2cov

44 CHAPTER 5. REFERENCE

smat2cov

Purpose

Restore covariance matrix from vector of Cholesky factor elements.

Synopsis

P = smat2cov(Svec) returns the (quadratic) covariance matrix when given a
vector containing the (upper triangular) Cholesky factor elements.

P = smat2cov(Smat,k) extracts the kth row from the matrix of vectors,
Smat. The vectors of Cholesky factor elements must be organized row wise in
Smat.

Description

The matrix Smat is an output argument from the functions dd1, dd2, dd1m,
and dd2m. If the covariance matrix is denoted P, the Cholesky factor S is an
upper triangular matrix with the property

pP=g8sT

For sample no. k, the elements of S(k) are stored in row k + 1 of the returned
matrix, Smat:

St S22 Si3 : :
S(k) = 0 S S — Smat= | Si1 Si2 Siz S Sz S33
0 0 833 : .

The purpose of smat2cov is to extract the specified row from Smat, and restore
the proper format of the covariance matrix.

See Also
dd1l, dd1m, dd2, dd2m, smat2var

45

smat2var

Purpose

Calculate variance estimate for each state.

Synopsis

varmat = smat2var(Smat)

Description

smat2var returns a matrix where each column is the variance of a state esti-
mate. Smat is a matrix where each row contains elements of (the upper triangular
part of) the Cholesky factor of a covariance matrix.

See Also
dd1l, dd1m, dd2, dd2m, smat2cov

46 CHAPTER 5. REFERENCE

triag

Purpose

Triangularization with Householder transformation.

Synopsis
S = triag(A)

Description

triag uses a Householder transformation on the rectangular matrix A to produce
a square and upper triangular matrix S with the property SS7 = AA”.

