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Improved Extended Kahnan Filter Design for Passive
Tracking

H. WEISS ANOJ. B. MOORE, FfLLOW, IESB

Awrwcf-Extended Kalroan futersare here modufed for COordiMte

eatimatkrnofastathwyo bjectdngbearing nmsmments taken froma

moving pfatfofm. ‘me ndmdons improve s@dffm3tfy the coordhate
eatfmation onthewperiod of data couedonvrheo~b

wf~ fsfarfrom opdmaf.lll emodlfkation saretotbe nonuDed-
tleaand ~fnsome ~beimpfemented bytbektdudonofa
tfmede4mdng arnpUtudettither sfgnaltntha extade4f KatmanfUterprior
totheorttput ndbwdty. Abound ona Lyapunov funetkm decay rate k
aboglvenwtdehassistsi nthedeaigno fthemdfffed ndkwMeaandin
thfseledOn ofmapprqdate ca3dnate basis to beme4ffntheaxtendd
Kafman futer.

I. INTRODUCTION

.&nimportant nottfinear filtering application is passive tracking where,
for example, coordinate estimation of a Stationary object ig calculated
on-line using noisy bearing measurements taken from a moving plat-
form. Extended Kalman filters (EKF) are attractive for such applica-
tions but their performance cart be Significantly improved with addi-
tional processing. UsuaUy some smoothing of a first batch of the data is
required to achieve a good initial estimate. Here we seek to improve the
extended Kalrnan filter performance for the initial procesgitt~ without
increasing sigrtifkantiy the processing effort and without the need for
reprocessing the initial batch of data as when smoothing techniques are
employed. We seek modification to the EKF to improve its transient
performance. Since the ideas of the paper may have more general
application than is validated here, the topic is fmt reviewed in a general
context.

AO attractive feature of the class of extended Kalrrtao fii~m is hat
when eithcs the estimation errors are snd Or the ftOdittearitie ~ cone

bounded with tight cone bounds, the performance 1Snear optimal, and
of COurgC,for the linear case, the performance is optimal. Howevm, ~
highly notdittear Situations, when either the initial estirnateg are ~r or
the noise levels are high [1], [2], extended K~rtMo filters are far from
optimal and are mbject to divergence. 1Optimal or near optimal Echemes
for these situations are usually too mstly to implement. There ig, there-
fore, strong motivation to seek simple modifications for the EKF which
wiu improve its performance, even if only for restricted chsaes of
problems. It makes sense to seek Eimple modification which in effect
broaden the class of filters under consideration.

In optimal linear filtering [1], [2], poor transient performance is usually
not a problem but divergence problems can arise in parameter eatima-
fion or when there is inadquate modeting, even though the” optimal
linear filter for the a.wumed model is guaranted to he asymptotically
stable. The divergence problems can be overcome by, in effecg assuming
additional input noise in the system, or equivalently, giving more weight
to the most recent data. Ag a cortsquence, the Kalman gain value and
the filter degree of stability are increased at the expense of “optirnality.”
Certainly the same divergence avoidance techniques can be applied to an
EKF when there is evidence that the calculated Kalrnatr gain cart be
increased with benefit, as, for example, in parameter estimation prob-
lems. However, the Eituation in the nonlinear filtering case is made more
complicated due to the inherent suhoptimality of the approach.

Our position irkthis paper is that for the nordirtear filtering situation,
speci- t=httiqu- for each type of filter divergence may be required.
In this paper we focus on two techniques for improving transient
perfortnanm of an EKF for which there are no corresponding linear
filter techniques. The first concerns coordinate basis selection while the
second ccmccrtts tightening of the nonlinearity cone bounds -during
initial transients.

It has been pointed out in [3] that for nonlinear filters, in contrast to
the linear filtering case, the selection of an appropriate coordinate basis
may be crucial to the achievement of good filter performance. This is an
example of how a simple change in the EKF design procedure can
significantly affect both transient and Eteady-state performance. There is
no design criteria given in [3] to avoid a poor coordinate basis selection.

In the next section of the paper we first consider a Lyapunov function
for an EKF with measurement nordirtearities, and an associated hound
on its decay rate thereby giving indirectly, a stability measure. It is then
verified that this meawire can be readity employed to avoid a poor
coordinate basis selection for the state quations and to guide in the trial
and error selection of a suitable coordinate basis. Application of the
Nability measure is illustrated for the tracking filter of [3] where im-
proved stability of the filter is demonstrated in passing from a Cartesian
coordinate basis to a more suitable coordinate basis.

The paper moveg on in Section HI to explore the novel notion of
modiiying the nonfinearities in an EKF during the initial transient
period so as to improve the transient performance. From another
viewpoint, the aim of the modification is to avoid filter divergence
during the transient period without significantly increasing the on-line
calculated error covariance, as happens in applying linear filter diver-
gence avoidance techniques [1], [2]. We seek to achieve a filter perfor-
mance which is closer to the calculated one and, in turn, is closer to the
optimal achievable performance. Motivated as in deterministic feedback
Eystems with cone bounded nordinearitieg where dither signak [4]–[6] are
used to tighten the cone bounds and to improve stability propertied, we
use dither-modified notdinearities in extended Kalman fifters with cotte-
bounded nordinearities. This techniques gives rise to the term “dithered”
EKF. It is important that the class of “dithered” EKF described con-
tains the optimal linear filter.
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The performance theory in [7] for an EKF with cone-bounded nonlin-
earities achieves useful performance bounda, and these are also applica-
ble to our “dithered” EKF. However, it turns out that the performance
bound theory is unhelpful in explaining why nonlinearity modification
yields performance improvement. In fac~ for the case study given,
simulations demonstrate performance improvements when there is a
performance bound deterioration due to the modifications.

The properties of the “dithered” EKF are examined in Section IV for
a case study which also illustrates the application of the stability measure
in filter design. The application is knowIs as passive tracking and consists
of the coordinate estimation of a fixed station from bearing data col-
lected from a moving sensor, ss discussed in [8], [9]. We demonstrate
that the “dithered” EKF with cone-bounded nonlinearities, when com-
pared to the standard EKF, yields improvements to alf state estimates
under transient conditions, and as a consequence significantly improves
the coordinate estimation.

II. COOStDfNAnBASISSELECTION VSAA STABILITYMEASURE

Consider a signal model

-i,=qf)x,+r(f)ut
z,= h(xt,r).

1ss the stochastic case when there is additive white input noise and
independent measurement noise of zero mean, and having covariances Q
and R, respectively, then the extended Kalman filter is

j,= F(f);, +r(f)u, + K(t)[z,–h(i,, t)]

where

K(r) = P(l)HjR -’(f) (2.1)

+[P(r)]-’=– F’(f) P-l(r) -P-’(r)F(r)

-P-l(f) Q(r) P-l(/) +ff~R-l(/)If; (2.2)

and Hi is the Jacobian of h (;,.). The homogeneous equation of the
extended Kalman filter associated with this model is [1]

~= F(t)& - K(r)h(&,t). (2.3)

Motivated as in the linear case [10], [11], let V(<,t) =fP - l(t)f be a
tentative Lyapunov function for (2.3). Then differentiation of V(~, t)
yields

;($, r) = – f[P-lQP -l]~+[Htf-lt]’R ‘l[Htf–/I]-h’R “h

< [H(,f-h]’R ‘l[Ht~–h]-hR ‘]h ~ -IL, (2.4)

where equality holds when Q = O,or equivalently when the input driving
noise is zero. Application of Lyapunov stability theory [12L [13] tell us
that a sufficient condition for qymptotic stability is that the lower
bound on the rate of decay of V(& t), viz., p,(t, t), be Positive for t+o
and all t. The bound 2 IA,(t, t ) gives some measure of stability and we
loosely term it a “stability measure.” Of course, when QeO, the “stabil-
ity measure” is identicaf to the rate of decay of “energy” in the systert&
and the larger ita value, the more stable the system.

It is clear from the above analysis that we should avoid a coordinate
baais selection such that Htf= O, for then p,= O. Moreover, we should
select a coordinate baais such that p, is “maximizd’ over the expected
range of state estimates. This technique is applied to the following
example.

Example: AS an example we consider the design of tbe tracking filter
discussed in [3]. In [3] it is reported that in changing from the coordinate
baais, in which the equations are eaaify derived to another one, there is
improved performance. No design criteria are given to guide in the

1A reviewer has pointed out that E[ ;(f, f)] c - lfl P -1A] – A which may give an alter-

native useful “sta biiity measure. ‘“

selection of a suitable coordinate basis. Here we offer such criteria. me
problem is that of estimating the path coordinates x(l), y(t) of a radiant
source where a single sensor is available to detect the center frequency of
the continuous incoming signal and the direction from which it k
arriving. The relative motion of the target and sensor produce DOpPIer
shifts S(i) and source bearing 0(r) that change through time. The semr
is modeled as observing these quantities in the presence of ~~r’relate~
zero-mean Gaussian noise. The velocity components ox, WYand the
center frequency j of the source are assumed to be constant.

From the problem description it is clear that we have a situation where
the state equations are noise-free and the measurements are no&ew
and noisy. using a Cartesian state vector [x(f) Y(I) v= OY~1’, the
observations are

[1x(r)
f3(t)=tan-1 — + w#

y(t)

s(l)=4 11– ~sina(r) + w,

(2.5)

(2.6)

where c is the velocity of the signal propagation, ~ is the time at which
the source is at its closest point to the sensor, and

Io[ ==(0:+0;)”2; U(r - ;)
Sindf)’”~x,(t)+y2(,)Jv2“

With this state selection, the “stability measure” can be calculated titer
tedous manipulations as

The use of the “relative” coordinate baais3 [– u~/r u/r /3 ~ --fu/cY, as
suggested in [3], improves the stability properties of the falter. The
observations are then, with the state elements denoted [x} X2 . . . X5]

f?(f) =tan-i[(x l+xz?)]+x~+w~ (2.5’)

(x, + X21)

‘(’)=X4+X5 [l+(x,+x2r)’]1/2‘Wr
(2.6)

For these measurement functions, the stability measure f+ is increased by
the term

for smaU Ial, this term is approximately

~-,k’,

H
~ a +&-’(a+fl)2

and for Ialmn/2 it approximates R; l[(a +/1)2 – a2]. It is now clear that
this term is positive for a wide range of parameters a, /3, etc., and thus
that the filter with the “relative” state coordinates has better stability
properties than it has with the Cartesian state. This is why it has
improved transient performance.

so far we have seen that by a selection of a coordinate basis, so as to
increase a stability measure over the expected range of states, the
performance of the filter can be improved significantly. The stability
measure is simple to use and is readily employed to avoid a poor
coordinate basis selection.

III. TtWtZNING mm OUTPUTNotwNemrrY CONEBOUNDS

In this section we restrict our attention to an EKF with cone-bounded
nonfinearities. As an autonomous system, the EKF then belongs to the
class of systems studied in the Popov and subsequent stability theories
[14]. These theories teil us that classes of systems exist which, when the
cone bounds are tigbtenecL exhibit an improvement in stability proper-
ties. As noted in [5], experience has shown that the class of such systems

3Tbe pair (r, L?) denotes tic polar coordinates of the target when it is at its C1OSCSIpoint
of approach to the sensor.
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is surprisingly large. This suggests that for some classes of EKF, stability
properties are improved if the cone bounds are tightened. We cannoL of
course, claim that all EKF with cone bounded nordirtearities have
improved stability properties as the cone bounds are tightened. Rather,
we claim that the class of EKF with cone-bounded nordinearities for
which there is improvement in stability properties as the cone bounds are
tightened is large, and for this class there is a potential for finding an
improved EKF modified by tightening the cone bounds during tran-
sients. At this stage there appears to be no simple and useftd classifica-
tion of such filters.

The above remarks suggest that there is a good a priori chance that an
improvement in filter stabiIity properties can be achieved by modifying
tbe filter nordinearities so as to tighten the cone bounda. However, at
least in the low noise case after initial transients, it is clear that such an
action will degrade the near optimal performance of an EKF. We are led
to the notion of modifying the output nordinearities so as to tighten the
cone bounds onfy during the initial transient when the filter is far from
optimal and with poor stability properties. Denoting the modified non-
Iinearities with tightened cone bounds as h“(x, f), then for such a case,
Ir”(x, I) cars be selected so that /r*(x, ()-A(x. t), say, exponentially over
the transient period.

Of course, it is desirable to have a theory for telling us when and how
to modify the nordinearities of an extended Kalrnart filter, and to
indicate how significant the improvement is from such modifications.

Such a theory is elusive at this time other than one based on the
performance bounds of [7]. For our application the bounds turned out to
be too loose to be belpftd. We now move on to explore a convenient way
of implementing the concept.

A possibly convenient method to tighten the cone bounds is to
introduce dither sigmals [4]-[6], or to use a nonlinearity equivalent to
that obtained by injecting dither signals prior to the unmodified notdin-
earity. A dither is simply a high frequency signal which, when injected
prior to a nonlinearity in a system with low paas filtering characteristics,
mod~les the nonlinearity. By sweeping back and forth quickly across the
domain of a nonlinear element and then low-pass filtering, dither has the
effect of averaging the nonlinearity, making it smoother and in some
sense more linear. When the nonlinearity h ( x, /) is cone bounded and
lies in the incremental sector (a, /3), then the introduction of an ap-
propriate dither signal with amplitude d yields a modified nonlinearity
h: (x, r) which lies in the incremental sector {a’(d), ~“(d)) where
a < a*(d)< /3*(d)< /3 [5]. As the magnitude of the dither sigrtaf irt-
creases, we can loosely say that h: ( x, r) becomes closer to a linear
function. Analytically it is a function of the dither waveform and its
amplitude. It is defined by [4], [5]

(3.1)

where d is the dither amplitude and p(q) is its amplitude probability
density function.

In the design of an EKF with tightened cone bounds we will use the
analytical expression of (3. I). The thrust of this technique is that by an
adjustment of only one parameter, d, we can control the tightness of the
cone bounds. Note that with d= %e - f/r, then /Ij(x, r)~h(x, t) exponen-

tially as t-+co. Of course, this same end could be achieved in any of a
number of ways.

IV. CGGRDtNATSESTIMATION FROM BWUNG DATA

Consider the specific problem of estimating the coordinates of a fixed
station from bearing observations taken by a moving sensor, such as
when an aircraft senses the direction of a fixed radar or radio transmitter
with coordinates [X, Y] as in Fig. 1.

In the case of discrete-time bearing and velocity measurements 0, and

Viat time iQS~tS rOrmursive es~~s of X and Y an bC ob~~. In
the simple noise free case when the velocity is constant (o, D SY),~~
Y=o(r2– fl)/(tr3nOl –tast8~, X- YtanO1+ txl. In the case of noisy
measurements, the following model is assumed:

x-u, v=8., X=o, i-o (4.1)

Y

(x, Y)

/

radiant source

e /I bearing

measurement -,

x
moving sensor

with velocity v(t)

Fig. 1. Problem illustration.

where 8. is an acceleration uncertainty considered as white noise with
distribution NIO,o:]. The sampled measurements are modeled as

[1Oi=tan-l$–++88
where 88 is the uncertainty in angle measurement considered as white
noise with distribution N(O,o;). Likewise, velocity is measured as

vi=vi+8., 80-N(0, U:).

Itturns out that the filter performance can be improved significantly if
the Cartesian coordinate basig is modified. Since the input noise covan-
ance in this problem is known to be small we can use the results of
Section 11. Following the example described there, we select a new
coordinate baais 6’= [Cl,.&,~3,$4] as

[
x(r) u(r)

f’(r). --y 1y u(r)$
The coordinates X and Y of the radiant source are estimated as ~= t3/i2
and ~=~~.

The state equations are

II
k
i, =
i,

i4

[1

e,
vi =

0100 1[1[
o

0000::+ /ia/Y
0000(3 60

0000
&o

(4.4)

For our simulations. we work with discrete-time versions of the above

1[1tan-1 [&4–~l(ti)] + 6.
vi 130“

(4.3)

equations and introduce a simplification that u] is a known constant with
60 very small. This means that the state dimension can be reduced
thereby simplifying the filter.

Notice that the change of tbe coordinate basis has an additional effect.
The nonlinearity of (4.2) involving tan- 1(.) and division of one state
variable by another has been simplified in (4.4). The division amongst
state variables in botb the state model and the state estimation process is
avoided. This is a useful simplification when working with dither-mod-
ified nordirtearities since dither has no effect on either a multiplication or
a division process.

Notice also that in (4.3), the input noise term 6./Y is, in effec~ state
depe~dent and so for estimation purposes 6a/Y wiU be replaced by
ISa/Y. This approximation turns out to be a good one since simulations
show that the state estimation process has low sensitivity to this term.

The dither-modified nonlinearity for tbe tan-’ function is calculated
for a triangular dither signal. Using the fact that a triangular dither
signal has a rmifomr amplitude distribution function,4

4ACtIUtty, otier density functions for dirber signais cm be employed but we avoid
those which couid lead to a modified nonlinearity with dead zones.
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the modified tan -1 function is calculated via (3.1) as “stability measure” associated with h“(i) is greater than that the h(i)
for all ;, and thus as d increases, the filter becomes more stable.

h;(x)= ~
{

1 (x+d)tan-t(x+d) The measurement nonlinearity used in the modified filter is h;(x) with
hj(x)ah(x) exponentially as t~m with time constit 7. One way to

-(x-d)tin-’(x-d)++’n[ ::::~w “’) actievemisford’o::’:d-d”e-’’’formmedo

The vafue of T is selected by a comparison of two Monte Carlo runs,
one for T= O (the unmoddled falter) and one for T= m. The value of T is
then selected as, say, 1/4 the period for wtich there is ~ fiprovement

Note that h~(0)=O and h$(f m)= 27r/2. Fig. 2 gives a sketch of h(~) in the performance of the second run over the fnt run.
and /Ij(x) for this case with d==O.5. It is not difficult to see that the The selection of the initial dither amplitude 4 is best guided by a trial
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~d error procedure. Since with a zero ~hj -h, it mak= sense to start
the runs characterized by r= co with a stnalf 4 and then to increass its
value untif performance begins to deteriorate.

In order to eliminate numerical problems in the calculation of the gain
and the covstriance matrix using discrete-time verions not spelled out in
detail here, we w U-D factorization [15~ [16].

Figs. 3 and 4 illustrate typical performance of the state estimate and
the coordinate estimate. The errors are obtained by averaging the esti-
mated and actual square errors over 400 runs. Tlte results shown corre-
spond to the parameters

o.= 0.1 m/s2, Oe= 2 mrad x=200 km, Y-lookm

X(ro)-0.0 q U(to)= 200 m/s, o<r<2000s

[o-N(&PO), &[O, 1.33X 10-3,200, 1.67]

PO=dia~4.44x 10-7,0.5X 10-6,1, 1].

Observations are taken evsry 20s. The inital error in the estimate of X
and Y is 50 km. The time constant r used is 12.5 s, and 4=0.55.

Simulations show that the modified EKF yields improvements to the
state estimatss under transient conditions, and significant performance
improvement in the coordinate estimation. Also, the modified EKF has
no increase in the on-line calculated error covariancc in comparison to
the unmodified EKF.

V. f3NCLUSt0NS

We have seen that by modifying an EKF with relatively simple
modifications, the transient performance of the filter may bs improved
significantly. Specific modifkation techniques have been derived and
studisd in the important application of passive tracking. The restriction
of the techniques to limited classes of EKF sugg=ts that there could bs

o~er techttiques which also broaden the range of useful appii~tiom of
the EKF concept.

RBFERENCSS

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. H. Juwimki, Stocfuutic Proces.w.sd Piltering 77mocY. New York: Academic,
1970.
B.D. O. An&non and J. B. Moore, Optimal Fi/fering. Englewood Cliffs, NJ:
Frentic.e-Hall, 1979.
R. R. Temey, R. S. Hebbert, and N. R. Sam-tell, Jr., “A tracking fitter for

maneuvering sourcm,” IEEE Tranr. Auromat. Conrr., vol. AC-22, pp. 246-251, Apr.
1977.
D, P. Atberron, Nonfine@ Conoul Engineering. London, England: Van Nostrand-
Reinbold, 1975.
N. A. Sbneydor md G. ZaIIIes, “Dither in nonlinear systems,” IEEE Trau.
Automat. Cow,,, vol. AC-21, pp. 6643-667, Oct. 1976.
G. ZuIIra and N. A. Sbneydor, “Structural stabitimtion snd qumwbing by dither in
nonlinear 8yS~” IEEE Tram. Autmnat Conw., VO1. AC-22, Pp. 352-361, Jum
19n.
A. S. Oilman snd L B. RIIoda, “ConAxxmdcd nonlinearity and mun-squam
bounds- Estinution upper b0un4” IEEE Tram. Automat. Conlr., vol. AC-18, pp.
260-265, June 1973.
H. A. Titus and W. R. Pope, “Multiple emitter airborne direction-finding with EOB
utilization,” in Prcu. 16th AfIIL Jm’nl El#ctnm& Wo+rc Conf., Naval Pmwuate
.%hoot, Monterey, CA, Dec. 1970.
H. A. Titus and S. R, Neat, “Fitter applications to navat systems,” in Pmt. 2111J
$VIQ. Nmdinear Estiwmtlon Thmny and Appi., h Diego, CA. Sept. 13-15, 1971,

pp. 379-384.
R. E. Katman and R. S. Bucy, “New result, in tin- fitlering and pdiCtiOU

lbwry: TMIU. ASME, J. Swic Eng,, vol. S3D, pp. 95- 10S, Msr. 1%1.
B. D. O. Anderacm, “’Stability pmpCI’dU of KAIUWI-BUCY filters,,, J. Fmnklin Inrt.,
vol. 291, pp. 137-144, Feb. 1971.
R. E. Katman and J. E. Bertmm. “Control anatysis and design via the second
method of Lyapunov,” Tram. ASME, J. tkxic Eng., vol. S2D, pp. 37 I -400, June
1960.
J. L. Wilfems,Stobiliw T&my of K3PM”cal wstems. London, England: Net#on,
1970.
C. A. Desoer and M. Vidyasagar, Feedbock .$wtmu: Input- Onqmu Pmpmtiu.
New York: Academic, 1975.
G. J. Bierman,‘.Measurementupdatingusing tbe U-D factorization,” in Froc.
IEEE Crqf. Duuhm COW., 1975, PP. 337-346.
C. L. Thornton and G. J. Bierman, “Wram-Schmidt daoritkum for covu’ianca

p~ution.” in P?oc. IEEE Cmf. Decuion Co@r., 1975, w 4s9-49s.


