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Improved Extended Kalman Filter Design for Passive
Tracking

H. WEISS anp J. B. MOORE, FELLOW, IEEE

Abstract—Extended Kalman filters are here modified for coordinate
estimation of a stationary object using bearing measurements taken from a
moving platform. The modifications improve significantly the coordinate
estimation on the initial period of data collection when otherwise the
performance is far from optimal. The modifications are to the nonlineari-
ties and could, in some instances, be implemented by the introduction of a
time decreasing amplitude dither signal in the extended Kalman filter prior
to the output nonlinearity. A bound on a Lyapunov function decay rate is
also given which assists in the design of the modified nonlinearities and in
the selection of an appropriate coordinate basis to be used in the extended
Kalman filter.

I. INTRODUCTION

An important nonlinear filtering application is passive tracking where,
for example, coordinate estimation of a stationary object is caiculated
on-line using noisy bearing measurements taken from a moving plat-
form. Extended Kalman filters (EKF) are attractive for such applica-
tions but their performance can be significantly improved with addi-
tional processing. Usually some smoothing of a first batch of the data is
required to achieve a good initial estimate. Here we seek to improve the
extended Kalman filter performance for the initial processing, without
increasing significantly the processing effort and without the need for
reprocessing the initial batch of data as when smoothing techniques are
employed. We seek modification to the EKF to improve its transient
performance. Since the ideas of the paper may have more general
application than is validated here, the topic is first reviewed in a general
context.
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An attractive feature of the class of extended Kalman filters is that
when cither the estimation errors are small or the nonlinearities are cone
bounded with tight cone bounds, the performance is near optimal, and
of course, for the linear case, the performance is optimal. However, in
highly nonlinear situations, when cither the initial estimates are poor or
the noise levels are high [1), [2], extended Kalman filters are far from
optimal and are subject to divergence.! Optimal or near optimal schemes
for these situations are usualily too costly to implement. There is, there-
fore, strong motivation to seek simple modifications for the EKF which
will improve its performance, even if only for restricted classes of
problems. It makes sense to seek simple modifications which in effect
broaden the class of filters under consideration.

In optimal linear filtering [1], [2], poor transient performance is usually
not a problem, but divergence problems can arise in parameter estima-
tion or when there is inadequate modeling, even though the optimal
linear filter for the assumed model is guaranteed to be asymptotically
stable. The divergence problems can be overcome by, in effect, assuming
additional input noise in the system, or equivalently, giving more weight
to the most recent data. As a consequence, the Kalman gain value and
the filter degree of stability are increased at the expense of “optimality.”
Certainly the same divergence avoidance techniques can be applied to an
EKF when there is evidence that the calculated Kalman gain can be
increased with benefit, as, for example, in parameter estimation prob-
lems. However, the situation in the nonlinear filtering case is made more
complicated due to the inherent suboptimality of the approach.

Our position in this paper is that for the nonlinear filtering situation,
specialized techniques for each type of filter divergence may be required.
In this paper we focus on two techniques for improving transient
performance of an EKF for which there are no corresponding linear
filter techniques. The first concerns coordinate basis selection while the
second concerns tightening of the nonlinearity cone bounds during
initial transients.

It has been pointed out in (3] that for nonlinear filters, in contrast to
the linear filtering case, the selection of an appropriate coordinate basis
may be crucial to the achievement of good filter performance. This is an
example of how a simple change in the EKF design procedure can
significantly affect both transient and steady-state performance. There is
no design criteria given in [3] to avoid a poor coordinate basis selection.

In the next section of the paper we first consider a Lyapunov function
for an EKF with measurement nonlinearities, and an associated bound
on its decay rate thereby giving, indirectly, a stability measure. It is then
verified that this measure can be readily employed to avoid a poor
coordinate basis selection for the state equations and to guide in the trial
and error selection of a suitable coordinate basis. Application of the
stability measure is illustrated for the tracking filter of [3] where im-
proved stability of the filter is demonstrated in passing from a Cartesian
coordinate basis to a more suitable coordinate basis.

The paper moves on in Section III to explore the novel notion of
modifying the nonlinearities in an EKF during the initial transient
period so as to improve the transient performance. From another
viewpoint, the aim of the modification is to avoid filter divergence
during the transient period without significantly increasing the on-line
calculated error covariance, as happens in applying linear filter diver-
gence avoidance techniques [1), [2]. We seek to achieve a filter perfor-
mance which is closer to the calculated one and, in turn, is closer to the
optimal achievable performance. Motivated as in deterministic feedback
systems with cone bounded nonlinearities where dither signals [4]-[6] are
used to tighten the cone bounds and to improve stability properties, we
use dither-modified nonlinearities in extended Kalman filters with cone-
bounded nonlinearities. This techniques gives rise to the term “dithered”
EKF. It is important that the class of “dithered” EKF described con-
tains the optimal linear filter.

'Divergence occurs when the calculated error covariance is optimistic and misleadi
ion when the calculated error covariance goes to zero, but in the
the actual error covariance converges initially and then diverges, or when
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The performance theory in [7] for an EKF with cone-bounded nonlin-
carities achieves useful performance bounds, and these are also applica-
ble to our “dithered” EKF. However, it turns out that the performance
bound theory is unhelpful in explaining why nonlinearity modification
yields performance improvement. In fact, for the case study given,
simulations demonstrate performance improvements when there is a
performance bound deterioration due to the modifications.

The properties of the “dithered” EKF are examined in Section IV for
a case study which also illustrates the application of the stability measure
in filter design. The application is known as passive tracking and consists
of the coordinate estimation of a fixed station from bearing data col-
lected from a moving sensor, as discussed in [8), [9). We demonstrate
that the “dithered” EKF with cone-bounded nonlinearities, when com-
pared to the standard EKF, yiclds improvements to all state estimates
under transient conditions, and as a consequence significantly improves
the coordinate estimation.

II. COORDINATE BASIS SELECTION VIA A STABILITY MEASURE
Consider a signal model
x,=F()x, +T(t)u,
z,=h(x,1).

In the stochastic case when there is additive white input noise and
independent measurement noise of zero mean, and having covariances Q
and R, respectively, then the extended Kalman filter is

X, = F(0)%+T(t)u,+ K(O)[ 2,~ h(%,,1)]

where
K(£)=P()H:R V(1) @)
L 1p() "=~ F(P ')~ P () F()
~P7QOP I (O)+HR™W(OH, (22)

and H; is the Jacobian of A(x,-). The homogeneous equation of the
extended Kalman filter associated with this model is [1]

&= F()% ~ K(D)h(Ea1). @3)
Motivated as in the linear case {10], [11], let V(£ £)=&P Y1) be a
tentative Lyapunov function for (2.3). Then differentiation of V(x,?)
yields

V(§1)=—§[P'QP "¢+ [Hf~ A} R ~'[H—h) - KR 'k

<[H&—h'R[Hg—h]-WR h= —p, 24
where equality holds when Q =0, or equivalently when the input driving
noise is zero. Application of Lyapunov stability theory (12}, (13] tell us
that a sufficient condition for asymptotic stability is that the lower
bound on the rate of decay of V(¢,¢), viz,, (£, 1), be positive for {20
and all t. The bound? (£, ¢) gives some measure of stability and we
loosely term it a “stability measure.” Of course, when Q=0, the “stabil-
ity measure” is identical to the rate of decay of “energy” in the system,
and the larger its value, the more stable the system.

It is clear from the above analysis that we should avoid a coordinate
basis selection such that H =0, for then pu,=0. Moreover, we should
select a coordinate basis such that p, is “maximized” over the expected
range of state estimates. This technique is applied to the following
example.

Example: As an example we consider the design of the tracking filter
discussed in [3]. In (3] it is reported that in changing from the coordinate
basis, in which the equations are easily derived to another one, there is
improved performance. No design criteria are given to guide in the

2A reviewer has pointed out that £] l»"((,l)]< ~1{P ~'4]— p, which may give an alter-
native useful “stability measure.”
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selection of a suitable coordinate basis. Here we offer such criteria. The
problem is that of estimating the path coordinates x(¢), y(¢) of a radian;
source where a single sensor is available 10 detect the center frequency of
the continuous incoming signal and the direction from which it jg
arriving. The relative motion of the target and sensor produce Doppler
shifts S(¢) and source bearing #(r) that change through time. The sensor
is modeled as observing these quantities in the presence of uncorrelateq,
zero-mean Gaussian noise. The velocity components v,,v, and the
center frequency f of the source are assumed to be constant.

From the problem description it is clear that we have a situation where
the state equations are noise-free and the measurements are nonlinear
and noisy. Using a Cartesian state vector [x(¢) y(#) v, v, f], the
observations are

0(!)-tan"'[yig—;]+w, (2.5)
S(1) =){l—l%lsina(1)]+w/ @6)

where ¢ is the velocity of the signal propagation, f is the time at which
the source is at its closest point to the sensor, and

o(t—1)
[0+ ()]

With this state selection, the “stability measure” can be calculated after
tedious manipulations as

2 .
lv|=(vf+vy2)l/ ; sina(r) =

- lol . 2 ol :
B= Ry ‘fz[ 1- —c-sma(t)‘ —,—C—sma(t)k .
The use of the “relative” coordinate basis® {—vf/r v/r B f —fv/c], as
suggested in [3}, improves the stability properties of the filter. The

observations are then, with the state elements denoted {x; x5 -+ xs]
() =tan " '[(x, +x;0)} + x5+ w, 2.5)
Xxq+ xyt
S(£) = x4+ x5 et x1) Wy (2.6)

[1+(x,+x,z)2]1/2+

For these measurement functions, the stability measure u, is increased by
the term

(£ Y sintot B (at )~ (= Jsin2a)
R, (c)sma Ry a (a 78 a)
for small |«f, this term is approximately
2
F (L) s R a8y

and for |a|~=w/2 it approximates Ry '{(a+8)%—a?). It is now clear that
this term is positive for a wide range of parameters a, 8, etc., and thus
that the filter with the “relative” state coordinates has better stability
properties than it has with the Cartesian state. This is why it has
improved transient performance.

So far we have seen that by a selection of a coordinate basis, so as to
increase a stability measure over the expected range of states, the
performance of the filter can be improved significantly. The stability
measure is simple to use and is readily employed to avoid a poor
coordinate basis selection.

III. TIGHTENING THE QUTPUT NONLINEARITY CONE BOUNDS

In this section we restrict our attention to an EKF with cone-bounded
nonlinearities. As an autonomous system, the EKF then belongs to the
class of systems studied in the Popov and subsequent stability theories
{14). These theories tell us that classes of systems exist which, when the
cone bounds are tightened, exhibit an improvement in stability proper-
ties. As noted in {5), experience has shown that the class of such systems

3The pair (r, 8) denotes the polar coordinates of the target when it is at its closest point
of approach to the sensor.
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is surprisingly large. This suggests that for some classes of EKF, stability
properties are improved if the cone bounds are tightened. We cannot, of
course, claim that all EKF with cone bounded nonlinearities have
improved stability properties as the cone bounds are tightened. Rather,
we claim that the class of EKF with cone-bounded nonlinearities for
which there is improvement in stability properties as the cone bounds are
tightened is large, and for this class there is a potential for finding an
improved EKF modified by tightening the cone bounds during tran-
sients. At this stage there appears to be no simple and useful classifica-
tion of such filters.

The above remarks suggest that there is a good a priori chance that an
improvement in filter stability properties can be achieved by modifying
the filter nonlinearities so as to tighten the cone bounds. However, at
least in the low noise case after initial transients, it is clear that such an
action will degrade the near optimal performance of an EKF. We are led
to the notion of modifying the output nonlinearities so as to tighten the
cone bounds only during the initial transient when the filter is far from
optimal and with poor stability properties. Denoting the modified non-
linearities with tightened cone bounds as A*(x, 1), then for such a case,
h*(x, t) can be selected so that A*(x, t)—h(x, t), say, exponentially over
the transient period.

Of course, it is desirable to have a theory for telling us when and how
to modify the nonlinearities of an extended Kalman filter, and to
indicate how significant the improvement is from such modifications.
Such a theory is elusive at this time other than one based on the
performance bounds of [7]. For our application the bounds turned out to
be too loose to be helpful. We now move on to explore a convenient way
of implementing the concept.

A possibly convenient method to tighten the cone bounds is to
introduce dither signals {4]~[6]), or to use a nonlinearity equivalent to
that obtained by injecting dither signals prior to the unmodified nonlin-
earity. A dither is simply a high frequency signal which, when injected
prior to a nonlinearity in a system with low pass filtering characteristics,
modifies the nonlinearity. By sweeping back and forth quickly across the
domain of a nonlinear element and then low-pass filtering, dither has the
effect of averaging the nonlinearity, making it smoother and in some
sense more linear. When the nonlinearity A(x, t) is cone bounded and
lies in the incremental sector {a, 8}, then the introduction of an ap-
propriate dither signal with amplitude d yields a modified nonlinearity
h%(x,t) which lies in the incremental sector {a*(d),8*(d)} where
a<a*(d)< B*(d)<pB [5]. As the magnitude of the dither signal in-
creases, we can loosely say that A%(x,?) becomes closer to a linear
function. Analytically it is a function of the dither waveform and its
amplitude. It is defined by {4), [5]

hx.0)= [ ha+ x 0p(m) €X)

where d is the dither amplitude and p(n) is its amplitude probability
density function.

In the design of an EKF with tightened cone bounds we will use the
analytical expression of (3.1). The thrust of this technique is that by an
adjustment of only one parameter, 4, we can control the tightness of the
cone bounds. Note that with d=dge ~*/, then h}(x,)—h(x,) exponen-
tially as t—o0. Of course, this same end could be achieved in any of a
number of ways.

IV. COORDINATE ESTIMATION FROM BEARING DATA

Consider the specific problem of estimating the coordinates of a fixed
station from bearing observations taken by a moving sensor, such as
when an aircraft senses the direction of a fixed radar or radio transmitter
with coordinates [X, Y] as in Fig. 1.

In the case of discrete-time bearing and velocity measurements 6, and
v; at time instants ¢, recursive estimates of X and Y can be obtained. In
the simple noise free case when the velocity is constant (v, =v), then
Y=u(t,—t,)/(tand, —1an8,), X="Ytand,+oz;. In the case of noisy
measurements, the following model is assumed:
X=0, Y=0 (.1

X=yp, o=3§,,
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X, Y)
radfant source

bearing
measurement ~+~ 8
-n m
T < Z "
787

moving sensor

with velocity v(t)

Fig. 1. Problem illustration.

where 8, is an acceleration uncertainty considered as white noise with
distribution N{0,02). The sampled measurements are modeled as

X X
=tan~ ! = - 2 | +§,
01 [ Y Y] )
where 8, is the uncertainty in angle measurement considered as white
noise with distribution N(0,02). Likewise, velocity is measured as

Vi=u,+8,  8,~N(0,07).

It turns out that the filter performance can be improved significantly if
the Cartesian coordinate basis is modified. Since the input noise covari-
ance in this problem is known to be small we can use the results of
Section II. Following the example described there, we select a new
coordinate basis § =[£,,§,;,£;,§4] as

X
)

. x(1} o(0)
=[5 77 o0
The cpogdi:}atcs X and Y of the radiant source are estimated as );=§3 / 22
and X=£,Y.
The state equations are

? 0 1 0 0 2' a(}y

2|_[0 O O 0 2 a

;7|00 0 ollg s, “3)
21 lo o o offg 0

A

[”= tan-‘[s;_—s.(t,)l]+[§o}_ 4.9)

For our simulations, we work with discrete-time versions of the above
equations and introduce a simplification that v; is a known constant with
8, very small. This means that the state dimension can be reduced
thereby simplifying the filter.

Notice that the change of the coordinate basis has an additional effect.
The nonlinearity of (4.2) involving tan~!(-) and division of one state
variable by another has been simplified in (4.4). The division amongst
state variables in both the state model and the state estimation process is
avoided. This is a useful simplification when working with dither-mod-
ified nonlinearities since dither has no effect on either a multiplication or
a division process. ’

Notice also that in (4.3), the input noise term 8,/ Y is, in effect, state
dependent and so for estimation purposes 8,/ Y will be replaced by
8,/ Y. This approximation turns out to be a good one since simulations
show that the state estimation process has low sensitivity to this term.

The dither-modified nonlinearity for the tan™' function is calculated
for a triangular dither signal. Using the fact that a triangular dither
signal has a uniform amplitude distribution function,*

1
p(n)= [ 24 <4
0 |n|>d

“Actually, other density functions for dither signals can be employed but we avoid
those which could lead to a modified nonlinearity with dead zones.
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Fig. 2. Effect of nonlinearity dither on the cone bounded.
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the modified tan~"! function is calculated via (3.1) as
hi(x)= %I {(x+d)tan"(x+d)

1+(x—d)?

(x— “Yx—ays L
(x—d)tan™(x d)+2ln[l+(x+d)2

and h%(x) for this case with 4=0.5. It is not difficult to see

) o

Note that 45(0)=0 and h%(+ 00)= +7/2. Fig. 2 gives a sketch of A(x)

Fig. 4. Error in estimate of Y.

“stability measure” associated with A*(x) is greater than that the A(x)
for all x, and thus as 4 increases, the filter becomes more stable.

The measurement nonlinearity used in the modified filter is A3(x) with
h3(x)—>h(x) exponentially as r—oc with time constant r. One way to
achieve this is for d to be set as d=dye ="/ for some dj,

The value of 7 is selected by a comparison of two Monte Carlo runs,
one for 7=0 (the unmodified filter) and one for 7= o00. The value of 7 is
then selected as, say, 1/4 the period for which there is an improvement
in the performance of the second run over the first run.

that the The selection of the initial dither amplitude 4, is best guided by a trial
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and error procedure. Since with a zero dg, A = A, it makes sense to start
the runs characterized by r= oo with a small d, and then to increase its
value until performance begins to deteriorate.

In order to eliminate numerical problems in the calculation of the gain
and the covariance matrix using discrete-time verions not spelled out in
detail here, we use U-D factorization [15], {16]).

Figs. 3 and 4 illustrate typical performance of the state estimate and
the coordinate estimate. The errors are obtained by averaging the esti-
mated and actual square errors over 400 runs. The results shown corre-
spond to the parameters

0,=0.1 m/s?>, 0,=2 mrad, X =200 km, Y =100 km
x(t)=00m, v(f)=200m/s, 0<r<2000s
fo~N(20P),  €=[0,133%x1072,200,1.67]

P,=diag[4.44x10~7,0.5x 1075, 1,1).

Observations are taken every 20 s. The inital error in the estimate of X
and Y is 50 km. The time constant 7 used is 12.5 s, and d,=0.55.

Simulations show that the modified EKF yields improvements to the
state estimates under transient conditions, and significant performance
improvement in the coordinate estimation. Also, the modified EKF has
no increase in the on-line calculated error covariance in comparison to
the unmodified EKF.

V. CONCLUSIONS

We have seen that by modifying an EKF with relatively simple
modifications, the transient performance of the filter may be improved
significantly. Specific modification techniques have been derived and
studied in the important application of passive tracking. The restriction
of the techniques to limited classes of EKF suggests that there could be
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other techniques which also broaden the range of useful applications of
the EKF concept.
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